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S i l m m a l ' y  

Anti-DNA antibodies, specifically those that stain nuclei in a homogenous nuclear (HN) fashion, 
are diagnostic of systemic lupus erythematosus (SLE) and the MRL-Ipr/Ipr SLE murine model. 
We have used a heavy chain transgene that increases the frequency of anti-HN antibodies to 
address whether their production in SLE is the consequence of a defect in B cell tolerance. Anti-HN 
B cells were undetectable in nonautoimmune-prone transgenic mice, but in MRL-Ipr/Ipr trans- 
genic mice their Ig was evident in the sera and they were readily retrievable as hybridomas. 
We conclude that nonautoimmune animals actively delete anti-HN-specific B cells, and that 
mRL-1pr/Ipr mice are defective in this process possibly because of the lpr defect in theJ~s gene. 

S LE is a complex disease that has a spectrum of clinical 
manifestations thought to be the consequence of a dys- 

functional immune system. Autoantibodies, specifically anti- 
DNA antibodies, are the serological hallmark of SLE (1). Al- 
though the etiology of serum autoantibodies is unknown, 
their presence has been attributed to a defect in the regula- 
tion of self-reactive B and/or T cells (2-6). Studies using self- 
reactive Ig transgenic (tg) 1 mice have demonstrated that B 
cells are normally subject to tolerance induction either by 
deletion or functional inactivation (7, 8). It is not clear, how- 
ever, how the rules that have been established for B cell toler- 
ance to exogenous antigens or neo-self antigens apply to an- 
tigens targeted in autoimmunity. 

Anti-DNA antibodies from both SLE patients and animal 
models of SLE are heterogeneous in terms of their specificity 
for DNA and DNA/protein complexes (1, 9-12). Antibodies 
that stain nuclei and mitotic figures in a homogeneous fashion 
in the anti-nuclear antibody (ANA) assay are designated as 
anti-homogeneous nuclear (anti-HN). The presence of this 
subset of anti-DNA antibodies is one of the diagnostic criteria 
for SLE (13). Here we address the regulation of various anti- 
DNA antibodies in nonautoimmune mice and how this may 
be disrupted in autoimmune animals. Our approach has been 
to generate anti-DNA Ig tg mice and cross the anti-DNA 
Ig tg onto both nonautoimmune (BALB/c) and autoimmune 
(MRL-Ipr/lpr) genetic backgrounds. 

The MRL-lt, r/lpr mouse provides a well characterized model 
of human SLE, developing anti-DNA antibodies and a lu- 
puslike nephritis (10-12). The Ipr mutation was recently shown 

I Abbreviations used in this paper: ANA, anti-nuclear antibody; anti-HN, 
anti-homogenous nuclear; tg, transgenic. 

to be the consequence of an insertion of a retrotransposon 
(ETn) into the second intron of the gene encoding the mem- 
brane antigen Fas (14-16). The resulting defect in mRNA 
splicing prevents production of normal levels of Fas protein. 
In mice homozygous for the Ipr mutation (Ipr/lpr mice) only 
2-10% of Fas mKNA is wild type (15, 16), and Fas protein 
has not been detected in cell populations such as thymocytes 
and activated peripheral B and T cells which normally ex- 
press Fas (17). The observation that Fas is a receptor whose 
engagement on certain transformed cell lines results in apop- 
tosis (18) has led to the suggestion that a defect in apoptosis- 
mediated negative sdection is the cause of autoimmunity in 
MRL-lpr/Ipr mice (14). However, the involvement of Fas in 
selection of the immune repertoire is controversial. Several 
reports have indicated that MRL-Ipr/Ipr mice are not grossly 
defective in negative selection of T cells (19, 20) and are also 
capable of mediating appropriate positive selection (20), 
whereas other studies report defects in the induction and main- 
tenance of T cell tolerance (21, 22). Whether the Ipr muta- 
tion has a direct effect on B cell repertoire formation in MR.b 
lpr/lpr mice is not known. However, since the lpr mutation 
when crossed to a number of mouse strains results in the 
induction of various autoantibodies (including anti-DNA an- 
tibodies) (23), the lpr mutation appears to have a direct role 
in the genesis of autoantibodies. 

We have used an Ig H chain tg that increases the frequency 
of anti-DNA autoantibodies to address whether the produc- 
tion of anti-DNA antibodies in MRL-Ipr/lpr mice is the con- 
sequence of a breakdown of B cell tolerance. The design of 
our Ig tg was based on the observation that a particular H 
chain, VH3H9, has been recurrently isolated from anti-DNA 
antibodies arising spontaneously in MRDlpr/Ipr mice, indi- 
cating that this VH has inherent DNA-binding capacity (24). 
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Moreover, this VH can pair with many different VL genes 
to give anti-DNA antibodies as well as non-DNA binding 
antibodies (25, and this report). By crossing the VH3H9 tg 
onto BALB/c and MRL-Ipr/lpr genetic backgrounds and as- 
sessing the specificity of their peripheral B cell repertoires, 
we have identified the kinds of anti-DNA antibodies that are 
present in normal mice and the kinds that are only found 
in the autoimmune-prone animals. We found that anti-HN 
B cells were undetectable in nonautoimmune-prone VH3H9 
tg mice, whereas they were readily retrievable as hybridomas 
and their Ig was evident in the sera of MlkL-lpr/Ipr VH3H9 
tg mice. This suggests that nonautoimmune animals actively 
delete anti-HN-specific B cells, and that MRI~Ipr/lpr mice 
are defective in this process. 

Materials and Methods 
Mice. The generation of VH3H9 tg mice using a construct 

consisting of the MRL.lpr/lpr-derived 3H9 V region combined with 
the BALB/c/z constant region has been described previously (26). 
The tg has been backcrossed onto the nonautoimmune BALB/c 
and the SLE-prone MRLlpr/Ipr backgrounds: homozygosity for 
the Ipr mutation infas was determined for mice on the MRL back- 
ground by scoring for development of lymphadenopathy and the 
presence of (CD4-, CDS-, CD3 +) double negative T cells that 
characterize Ipr/lpr mice (12). In addition, the earliest backcross 
mouse (MRL1 at backcross 2) was verified as Ipr/lpr by PCR 
amplification which distinguishes the Ipr allele from the wild-type 
allele (data not shown). Each VH3H9 tg mouse is at least back- 
cross 2, which corresponds to three matings onto and *88% of 
a given genetic background. Mice carrying the VH3H9 tg were 
identified by amplification of tail DNA using the VH3H9 tg specific 
primers (26): VH3H9 Leader 5'CTGTCAGGAACTGCAGGTAAG- 
G3'; VH3H9CDR3 5'CATAACATAGGAATATTTACTCCTCGC- 
3'. Non-tg MRL-Ipr/Ipr mice were purchased from The Jackson 
Laboratory (Bar Harbor, ME) and BALB/cJ mice were purchased 
from Charles River Laboratories (Wilmington, MA). 

B CelIHybridoma Production. Spleen calls from mice were fused 
without further manipulation to the Ig- myeloma Sp2/0 (27). 
Cells were plated at limiting dilutions and only wells beating single 
colonies were expanded for analysis. 

ELISA Assays. Isotype and Ig concentration were determined 
using indirect solid-phase ELISA assays, as described previously (26). 
Isotype was determined using anti-g or anti-X L chain antibodies 
(Southern Biotechnology Associates, Birmingham, AL) as the pri- 
mary antibody, then developing with alkaline phosphatase-labded 
anti-IgM or anti-(IgGl+IgG2a+IgG2b+IgG3+IgA) antibodies 
(Southern Biotechnology Associates). Ig concentration was deter- 
mined by comparing samples to a titrated isotype-matched stan- 
dard. Binding to ssDNA was detected in the same manner, except 
that belled and snap-chilled sonicated salmon sperm DNA (Sigma 
Chemical Co., St. Louis, MO) at 14/xg/well in PBS was used in 
place of primary antibodies, as described previously (26). Values 
of five times the negative control were considered positive. 

Preparation and Analysis of DNA. DNA was prepared from 
confluent hybridoma cell cultures using proteinase K digestion fol- 
lowed by phenol extraction. 10/~g of DNA was then digested with 
either EcoRI or BamHI, size separated, and blotted onto Zeta-probe 
blotting membrane (Bio-Rad, Richmond, CA). DNA rearrange- 
ments at the H chain locus were detected by probing EcoRi mem- 
branes with pJ11 (28), and at the L chain locus by probing BamHI 
membranes with pECr (29). 

Anti-HN Antibody Detection. The presence of anti-HN antibody 
in sera and hybridoma supernatants was detected using permeabi- 
lized HEP-2 cells as the substrate (Antibodies Incorporated, Davis, 
CA). The manufacturer's instructions were followed except for sub- 
stitution of undiluted supernatants when hybridomas were assayed. 

Sequence Analysis of lg H and L Chain mRNA. Cytoplasmic 
RNA was isolated from ml05 hybridoma cells by NP-40 lysis fol- 
lowed by proteinase K digestion, phenol/chloroform extraction, 
and ethanol precipitation. Constant region-specific oligonucleo- 
tide primers were used to direct synthesis of cDNA copies of the 
H and L chain V regions, which were then amplified in the PCR 
using the same constant region primers and degenerate primers 
that hybridize to the 5'-ends of H and L chain V regions as de- 
scribed previously (30), except that unffactionated cDNA prod- 
ucts were subjected to amplification. The dsDNA copies of the 
H and L chain V regions were fractionated by agarose gel electro- 
phoresis, isolated using GeneClean (Biol01, distributed by American 
Bioanalytical, Nafick, MA), and directly sequenced using Sequenase 
(USB, Cleveland, OH) and either the constant or V region-specific 
primer that was used in the amplification reaction to direct syn- 
thesis. Sequence was read and translated using the Wisconsin pro- 
gram (31). Sequence comparison was carried out by searching the 
EMBL/GenBank/DDBJ databases and Kabat et al. (32). 

Primers. Production ofcDNA was carried out using a 3' primer 
of interest (e.g., C r for r L chains). Amplification utilized 3' and 
5' primer pairs as indicated for a given chain. Sequencing was car- 
ried out using either the 3' or 5' primer, and sequence reverse com- 
plimented as appropriate. Primer pairs used were the following: 
r (3') C r: 5'GTTGGTGCAGCATCAGC 3" (5') L5': 5'CCAGTT- 
CCGAGCTCCAGATGACCCAGACTCCA3'; ~,1 (3')CM: 5'CTT- 
CAGAGGAAGGTGGAAACAGGGTG3', (5') X1L: 5'TCTCCT- 
GGCTCTCAGCTCAG3'; )~ X (3') C~,2-3: 5'GGTGAG(A/T)- 
GTGGGAG'IGGACTTGGGC3', (5') VXX: 5'GAGCTTAAGAAA- 
GATC~AAGCCA3', # (3') IgM: 5'AGACATTTGGGAAGGACT, 
(5') VH5'I: 5'GAGGTGAAGCSGG'[GGAG(T/A)C(T/A)GG3'; and 
3~ (3') C-ycross: 5 '~CAG'IGGATAGAC3',  (5') VH5'I: 5'GAG- 
GTGAAGCTGGTGGAG(T/A)C(T/A)GG3'. 

Primers described previously were the following: L5' was adapted 
from L4/L5 (33); X 1 primers were derived from the germline X1 
leader and CX1 sequence reported in (34); similarly the C~,2-3 
primer was derived from sequence reported in (35); the VXX primer 
was reported by (36); the IgM and C'ycross primers were reported 
in (37); whereas the VH5'I primer was taken from (38). To verify 
the use of the VH3H9 tg with the "y constant region, cDNA was 
made using C3~cross, then a nested primer specific for CDR3 of 
VH3H9 was used with VH5'I to amplify. The VH3H9 CDR3 
primer is the same used in genotyping mice. 

Results and Discussion 
The VH3H9 tg paired with endogenous L chains generates 

a range of anti-DNA and non-DNA reactive antibodies. We 
have used this tg as a means of following the fate of anti- 
DNA B cells in nonautoimmune and autoimmune-prone mice 
to address whether the production of anti-DNA antibodies 
in SLE is the consequence of a breakdown in B cell tolerance. 
The tg has been backcrossed onto the nonautoimmune BALB/c 
and the SLE-prone MRL-Ipr/lpr backgrounds for the number 
of generations indicated in Table 1 and mice are referred to 
as "BALB/c" and "MRL-Ipr/lpr" to indicate the predominant 
genetic background. The~s gene in the BALB/c background 
is wild type (+/+) ,  whereas all the MRL- Ipr/tpr mice were 
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Table 1. Profiles of Mice Used To Generate B Cell Hybridomas 

Serum specificity 

Mouse Age Sex Backcross fas ssDNA ANA 

BALB/c VH3H9 tg 

MRL-Ipr/Ipr VH3H9 tg 

MRL-Ipr/Ipr non-tg 

wk 

BALB1 37 M 2 + / + 
BALB2 16 M 3 + / + 

MRL1 13 M 2 lpr/lpr + HN 
MRL2 14 F 3 Ipr/Ipr + HN 
MRL3 16 F 5 lpr/lpr + HN 

#2 24 F NA Ipr/lpr + HN 
#22 20 F NA lpr/Ipr + HN 
#31 36 M NA lpr/Ipr + HN 
#34 14 F NA lpr/lpr + HN 
#40 12 F NA lpr/Ipr + HN 
#51 16 M NA lpr/lpr + HN 

#108 16 M NA Ipr/tpr + HN 

Profiles of the VH3H9 tg mice and non-tg MRL-Ipr/Ipr mice used to generate B cell hybridomas are presented. Mice are either homozygous for 
the wild-typefas gene ( + / + ), or the mutatedfas gene (lpr/Ipr). Serum specificity for each mouse was determined using an ELISA assay for ssDNA 
binding and the HEP-2 immunofluoresence assay for detection of anti-HN antibodies as described in Fig. 1. The BALB2 mouse has been previously 
reported (25). 

selected for homozygosity of the lpr mutation. Each VH3H9 
tg mouse is at least backcross 2 which corresponds to having 
"~88% of a given genetic background. Features of the mice 
used in this study are listed in Table 1. 

Specificity of VHSH9 B Cells in BALB/c and Mgl.dpr/lpr 
Mice. The VH3H9 tg can pair with different L chains from 
the endogenous pool to produce three different specificities: 
non-DNA Igs, anti-ssDNA Igs, and anti-HN Igs (25, 26). 
To assess how BALB/c and MRL-lpr/Ipr mice regulate the 
production of different kinds of antibodies in their serum, 
individual mice were examined for the ability of their serum 
to bind ssDNA by ELISA, and to display anti-HN ANAs. 
Anti-HN Igs are a reliable indicator of SLE that distinguishes 
the sera of MRDlpr/Ipr mice from those of nonautoimmune 
strains (10, 39). In addition, the anti-HN subset of anti-DNA 
antibodies has been implicated in renal pathology (39). As 
was previously described, the serum from BALB/c VH3H9 
tg mice showed undetectable binding to ssDNA and lacked 
anti-HN Ig (26, and this report). In contrast, 24 of 27 MRL- 
Ipr/Ipr VH3H9 mice contain anti-ssDNA and anti-HN serum 
Igs, three of which are described in Table 1. A representative 
example of the HN staining pattern from an MR.blpr/lpr 
hybridoma is presented in Fig. 1. 

To see whether MKl.dpr/lpr VH3H9 tg mice have higher 
titers of serum anti-HN antibodies than non-tg MRL-Ipr/Ipr 
mice, anti-HN titers were determined for 9 MRDlpr/Ipr 
VH3H9 tg and 10 age-matched MKL-lpr/Ipr non-tg mice. 

1159 Roark et al. 

All of these mice were previously typed as seropositive for 
anti-HN antibodies. As shown in Fig. 2, the total anti-HN 
Ig titers from the VH3H9 tg and non-tg MRL-Ipr/Ipr mice 
overlap. The tg, however, does dramatically increase the titers 
of anti-HN IgM: all of the MKL-Ipr/Ipr VH3H9 tg mice had 
serum titers of anti-HN IgM which approximate that of their 
anti-HN Ig titers whereas only three of the MRI:lpr/Ipr non-tg 
mice were seropositive for anti-HN IgM. Most of the anti- 
HN Ig in the VH3H9 tg MKL-Ipr/Ipr mice is IgM which 
is likely due to the constraints of the IgM VH3H9 tg. The 
presence of the VH3H9 tg increased the frequency of anti- 
HN B cells in the MRL-Ipr/lpr VH3H9 tg mice (see below) 
yet this is not reflected by an increase in anti-HN Ig in the 
serum, suggesting that other factors dictate serum expres- 
sion. The kinetics of anti-HN Ig serum expression is the sub- 
ject of another study. 

To analyze the B cell repertoires of these mice in greater 
detail, B cell hybridomas were generated from spleen cells 
from each of these VH3H9 tg mice (i.e., two BALB/c VH3H9 
tg and three MKL-Ipr/Ipr VH3H9 tg mice) as well as from 
seven MKL- Ipr/Ipr mice that do not bear the VH3H9 tg. 
The MRD Ipr/Ipr-derived hybridoma panels were all gener- 
ated with unmanipulated spleen cells. The BALB1 spleen cells 
were likewise not activated before fusion to facilitate com- 
parison to a large set of hybridomas that had been derived 
from spontaneous B cell fusions in various SLE-prone mice 
(for example, 24, 40, 41). The BALB2 VH3H9 tg hybridoma 



Figure 1. Anti-HN antibodies stain the nuclei 
of HEP-2 cells in a homogenous fashion. The 
MRLl-17 hybridoma supernatant was incubated 
with permeabilized HEP-2 cells and staining de- 
to=ted with goat anti-mouse ftuoresceinated sec- 
ondary antibodies. 

panel was generated using spleen cells that had been activated 
in vivo with LPS before fusion, as was described previously 
(25). All of the hybridomas that were retrieved from the 
BALB/c VH3H9 tg mice were of independent origin as de- 
termined by Southern blot analysis using the rearrangement 
patterns of both the Ig H and L chain loci (data not shown). 
Among the MKL-lpr/lpr VH3H9 tg hybridomas, however, 
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Figure 2, Serum titers of anti-HN ANAs from MKIr Ipr/lpr non-tg 
(Tg-) and VH3H9 tg (Tg +) mice. Sera from 10 MRL.Ipr/Ipr non-tg mice 
and 9 MRL-lpr/lpr VH3H9 tg mice which were seropositive for anti-HN 
ANAs were diluted in PBS/Azide and assayed for anti-HN titers by im- 
munofluorescence. ANA patterns were visualized with either goat 
anti-mouse Ig-FITC or goat anti-mouse IgM-FITC. The serum titer is 
defined as the reciprocal of the last dilution at which the anti-HN staining 
pattern is discernible, All mice were 15-30 wk of age, and had been back- 
crossed for at least seven generations onto the MRL- Ipr/lpr background. 

a total of three groups of clonally expanded B cells were re- 
trieved, two from MKL1 and one from MRL3 (Roark, J., 
C. L. Kuntz, K.-A. Nguyen, L. Mandik, M. Cattermole, 
and J. Erikson, manuscript submitted for publication). 

All Ig + hybridomas were analyzed by ELISA for binding 
to ssDNA and by immunofluorescence for the presence of 
anti-HN Ig (Table 2). The most striking difference between 
the BALB/c and the MRL-Ipr/lpr-derived hybridoma panels 
is that anti-HN hybridomas were recovered from the MKL- 
Ipr/Ipr VH3H9 tg mice, but not from the BALB/c VH3H9 
tg mice (Table 2). Anti-ssDNA hybridomas, on the other 
hand, were recovered from both sets of mice. It is noteworthy 
that the VH3H9 tg greatly augmented the frequency of both 
anti-ssDNA and anti-HN hybridomas in the MKL-IFr/Ipr 
background as compared with MKL.Ipr/IFr tg(-)  mice. 
Specificity for ssDNA was also increased among hybridomas 
from the BALB/c VH3H9 tg mouse as compared with fre- 
quencies reported for BALB/c tg(-)  mice (42, 43). The in- 
creased frequency of these specificities is consistent with 
previous observations (25, 26) that the VH3H9 tg paired with 
a variety of endogenous L chain genes give antibodies that 
can bind to DNA. 

Together, these specificity data support previous conclu- 
sions that normal mice actively regulate anti-DNA antibodies 
(18, 26, 44). The manifestations of this regulation in BALB/c 
VH3H9 tg mice appear to vary for ssDNA- versus HN-specific 
B calls. Anti-ssDNA B cells dominate the B cell repertoire 
of BALB/c VH3H9 tg mice, yet the tg mice do not have 
serum anti-DNA antibodies (26). As described previously (26), 
this suggests a functional block in their ability to differen- 
tiate into antibody-secreting cells. Anti-HN B cells, how- 
ever, were not rescued in hybridoma panels nor was their 
Ig present in the sera, suggesting that they are deleted from 
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Table 2. Specificity of Hrb, do,na Panets 

Total No. czssDNA ccHN 

BALB/c VH3H9 tg 

% 

BALB1 51 33 0 
BALB2 49 39 0 

MRL-Ipr/Ipr VH3H9 tg 

MRL1 167 76 39 

MRL2 90 53 13 

MRL3 13 69 46 

MRL-~r/~r non-tg 

#2 61 2 2 
#22 25 0 0 
#31 50 2 0 
#34 96 18 0 
#40 35 6 3 
#51 23 4 0 

#108 331 6 1 

The specificity was determined for hybridomas in each panel using an 
ELISA assay for ssDNA binding and the HEP-2 immunofluoresence as- 
say for detection of anti-HN antibodies as described in Fig. 1. Specificity 
of the total hybridoma panels for the VH3H9 tg mice and a panel of 
non-tg MRL-Ipr/Ipr mice is presented. The BALB2 mouse has been previ- 
ously reported (25). Both the BALB1- and BALB2-derived hybridomas 
have the same specificity profile as a third VH3H9 tg hybridoma panel 
from a nonautoimmune background described previously (26). 

the B cell repertoires. Additional sets of Ig trangenics sup- 
port this conclusion: no B cells with the transgene specificity 
were detected in the periphery in two examples where the 
pairing of the H and L chain transgenes generates anti-HN 
Igs in vitro: VH3H9/Vx4 and VH3H9 56R/VK8 (45, 46). 

In the autoimmune-prone MtLblpr/lpr VH3H9 tg genetic 
background, anti-HN hybridomas were recovered and serum 
anti-HN Igs were present (Tables 1 and 2). In view of the 
clear regulation of anti-DNA B cells from BALB/c VH3H9 
tg mice, this suggests that there is a defect in the regulation 
of anti-HN B cells in the MRLlpr/Ipr background. Anti- 
ssDNA B cells were also recovered from MRL.lpr/Ipr VH3H9 
tg mice, as they were from BALB/c VH3H9 tg mice. Unlike 
what was observed in the BALB/c background, however, 
serum anti-ssDNA Igs were detectable in the MRL-lpr/Ipr 
mice. It is unclear whether the anti-HN and anti-ssDNA Igs 
represent different sets of antibodies: we have found using 
monoclonal antibodies that anti-HN Igs are often also posi- 
tive in the anti-ssDNA assay, whereas there are anti-ssDNA 
Igs that are non-HN. Because the serum expression of anti- 
HN Igs also renders these mice seropositive for anti-ssDNA, 
the experiments described here do not address the fate ofanti- 
ssDNA (non-HN) B cells in the MRL-lpr/lpr background. 
They do clearly show, however, that the MRL-Ipr/Ipr mice 
are defective in the negative regulation of anti-HN B cells. 

Genetic Basis.for Anti-DNA Antibodies in VH3H9 tg Mice. 
To address the genetic basis for the presence of anti-HN hy- 
bridomas in the MRblpr/Ipr VH3H9 tg pands and their ab- 
sence in the BALB/c VH3H9 tg panels, hybridomas were 
analyzed for the sequences of their H and L chain Ig V re- 
gion mRNAs. Sequence analysis of the LPS-activated hybrid- 
omas has been previously described and is not presented here 
(25). All of the hybridomas from the BALB1 and MRL3 fu- 
sions were analyzed. A subset of hybridomas from the larger 
MRL1 and MRL2 panels were sequenced, with an emphasis 
on those that gave anti-HN reactivity. A fraction of hybrid- 
omas from both BALB/c and MRL- Ipr/Ipr mice were found 
to express mixed L chain sequences, most likely due to the 
expression of out-of-frame transcripts that were amplified in 
the PCR reactions used for sequencing. In addition, whereas 
the BALB/c VH3H9 tg--derived hybridomas all exclusively 
expressed an unmodified VH3H9 tg-encoded H chain, ap- 
proximately half of the MRL-Ipr/lpr VH3H9 tg hybridomas 
coexpressed an additional H chain mRNA (data not shown). 
The hybridomas that coexpressed an endogenous H chain 
did not account for the HN specificity in the MR.L-Ipr/Ipr 
hybridoma panels, since subdoning experiments that segre- 
gate the endogenous VH from the VH3H9 tg have shown 
that the HN specificity associates with the VH3H9 tg (Roark, 
J. H., et al., manuscript submitted) and 61% of the anti-HN 
B cells recovered exclusively expressed the VH3H9 tg H chain. 
To definitively assign specificity to gene segment usage, we 
have confined our discussion of the sequence analysis to those 
hybridomas that only expressed one H chain gene and only 
one K and/or ~, L chain. Table 3 shows the hybridomas that 
fit these criteria. 

Substantial Overlap in V/c Gene Segment Use Between BALB/c 
and MRL.lpr/lpr Mice. L chain V and J gene sequences and 
specificity for K-expressing hybridomas are presented in Fig. 
3 A. All of these hybridomas express the VH3H9 tg H chain 
exclusively (data not shown). There is considerable overlap 
in V K gene usage in hybridomas from BALB/c and MRL- 
lpr/Ipr VH3H9 tg mice. The most striking example of this 
is the Vg12a gene: 54% of BALB1 VH3H9 tg and 14% of 

Table 3. Specificity of Sequenced VH3H9 tg Hybridomas 

No. of 
hybridomas olssDNA olHN 

% 

BALB/c VH3H9 tg 

BALB1 
MRL-l.pr/lpr VH3H9 tg 

38 26 0 

MRL1 11 100 91 

MLR2 20 70 30 

MRL3 5 80 60 

The specificity of the hybridomas that express the VH3H9 tg and a sin- 
gle VL (or in two cases the VH3H9 tg with a K and a h VL) are presented. 
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A.  V k a r m a  a m i n o  a c i d  s e o u e n c e s  f r o m  V H 3 H 9  t~ h v b r l d o m a s  

A BALBI-I 

A BALBI-12 

A BALBI-22 

A BALBl-85 

A BALBl-35 

A ~.L2-4 i 

A P~L2-5 i* 

B BALB]-26 

C BALBI-19 

E BALBI-32 

F BALBl-53 

F BALBI-54 

F MRL2-186 

G 5~.L I-29 

G PL~,L 1-46 

G ~RLI-50 

G MRLI-56 

V Ka*~ma 9 

A BALBl-67 

C MRL2-17 

C ~RL2-169 

D M~{L2-11 l 

A BALBI-3 

A BALB1-6 

A BALBI-I 3 

A BALBI- 17 

A BALBI-36 

A BALBI-38 

A BALBI-39 

A BALB1-45 

A BALBI-52 

A BALBI-57 

A BALBI-59 

A BALBI-60 

A BALBI-68 

A BALBI-71 

A BALBI-72* 

A BALBI-77 

A BALBI-86 

A BALBI-88 

A N~2-14 

A 5Z~L2-I 8 

A N~LL2-75 

A ~2-146 

A MIqL2-162 
C BALB I -8  

D BALBI-62 

D N~qL2-154 

D N~L3-14 

D 5ZqL3-34 

D ~ERL 3-41 

E M R L 1 - 2 0  
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Figure 3. Correlation of Ig gene segment use with specificity. VH3H9 tg antibodies were sequenced for L chain VJ and H chain VDJ genes and 
their specificity determined by ELISA for ssDNA binding and by immunofluorescence for HN staining. Only hybridomas that expressed the VH3H9 
tg alone with a single L chain gene are presented, unless otherwise indicated. K L chain sequences (A) and k L chain sequences (B) are presented. 
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Figure 4. Summary of endoge- 
nous V K and V ~ gene use by 
VH3H9 tg hybridomas. Gene desig- 
nations and specificity were deter- 
mined as described in the legend to 
Fig. 3. L chain genes which pair 
with the VH3H9 tg to generate 
non-DNA (open boxes), anti-ssDNA 
(hatched boxes), or anti-HN (filled 
boxes) Igs are compared. (~p) Sum- 
marizes the V genes used by the 
BALB/c VH3H9 tg-derived hybrid- 
omas; (bottom) summarizes the V 
genes used by MRL-Ipr/Ipr VH3H9 
tg-derived hybridomas expressing 
the VH3H9 tg with a single L chain 
gene, except for the g/X coex- 
pressing hybridomas BALB-72 and 
MRL2-51. BALB-72 and MRL2-51 
are therefore included in both the 
appropriate g and ~, columns. 

the MRDIpr/lpr V H 3 H 9  tg  sequences use the same V~c12a 
gene. The  frequency of  VIc12a in the  MRL-Ipr/lpr V H 3 H 9  
tg hybridomas may actually be an underestimate of  its represen- 
ta t ion in the total  hyb r idoma  panel since we biased our  se- 
quence analysis toward  a n t i - H N  hybr idomas .  The  over- 
representat ion of  Vg12a was also evident  in the LPS-induced 
BALB/c  V H 3 H 9  tg  h y b r i d o m a  panels (25). W h y  this gene 
segment is overrepresented is unclear. Reports  of  overrepresen- 

ta t ion of  L chain gene segments  include the observat ion that  
there is an increased frequency of  Vg4 family rear rangements  
in pre-B cell lines (47), and that particular VK4 members wi th in  
the V~c4 family are preferential ly employed  (48). The  Vg12a 
overrepresentat ion we observe may be the consequence of  
specif ici ty-independent  mechanisms such as the frequency of  
rearrangements  of  this par t icular  L chain gene, or  the conse- 
quence of  specif ici ty-dependent  (positive) selection in associ- 

A sequence was designated the same gene and given the same lowercase letter suffix if there were seven or fewer nucleotide differences (97.5% nucleotide 
similarity), with no more than four of these in framework regions. Although an arbitrary definition, for the most part sequences either fell into this 
definition or were quite clearly outside it. Framework (FW) and complementarity determining regions (CDRs) are shown above the sequences and 
separated by a space. The Vg12d sequences discussed in the text are boxed. Gene families were assigned based upon homology to published sequences 
(32). The lowercase letter designation is used to distinguish among individual genes (e.g., Vg12a), and are the same as those used previously in the 
RALB/c VH3H9 tg mice, where appropriate (25). Several sequences which were observed in the previous report of BALB/c VH3H9 tg mice (25) 
were not observed in the current study, such as VIc4a. JKs are assigned to the known BALB/c JK germline gene segments (55). MRL-lpr/I F" mice have 
the JK2' allelic variant of Jg2 which has a serine at position 100 and a methionine at position 106 compared with the glycine and isoleucine of Jg2. 
Note that JK2 and Jg2' occupy the same chromosomal position relative to the other JKs (56). The backcross 2 BALB/c VH3H9 tg mouse used in 
this study carries both the BALB/c JK2 locus and a J locus containing the same allelic variant found in the MILL- lpr/Ipr mice which was most likely 
contributed by the SJL allele of the (C57Blx SJL)F1 VH3H9 tg founder (56). In the case of BALB-70 and MRL1-219, insufficient sequence was obtained 
for assignment of the J gene used, so ND (not determined) is listed. (*) MRL2-51 and BALB-72 coexpress g and X L chains and are therefore presented 
in both A and B. (*) MRL2-57 uses a y constant region associated with the VH3H9 tg. Nucleotide sequence for these L chains are available from 
EMBL/GenBank/DDBJ under accession numbers U18561-U18599; U19308-U19343. 
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ation with the VH3H9 tg. In addition to the VK12a, several 
other V K genes (e.g., 2a, 4f, 9c, 34a) are also present in both 
hybridoma panels (Figs. 3 A and 4). That several L chain 
genes are shared argues for a similar available repertoire of 
L chain genes between BALB/c and MRblpr/Ipr mice. 

Anti-HN lgs from Ipr/lpr Mice Use Distinct L Chain Gene 
Segments. In general, the anti-HN Igs from the MRDlpr/lpr 
VH3H9 tg hybridomas use L chain V gene segments not 
used in the BALB/c VH3H9 tg hybridomas (Figs. 3 and 4). 
Many of the L chains used in the HN set have been previously 
identified, paired with a variety of H chains, in anti-DNA 
Igs from several murine SLE models (Fig. 5). This suggests 
that these L chains, like the VH3H9 H chain, have inherent 
DNA-binding ability. The fact that we can rescue VH3H9 
tg plus endogenous L chain pairs that generate anti-HN Igs 
from MRL-Ipr/lpr VH3H9 tg mice rules out the trivial ex- 
planation that their absence in the BALB/c VH3H9 tg pands 
is the consequence of the inability of these H + L chain pairs 
to form. Instead, the absence of particular L chains from the 
BALB/c VH3H9 tg hybridomas suggests that B calls bearing 
these L chains with the VH3H9 tg are negatively selected 
as a consequence of their self-reactivity. 

Analysis of the usage of the VA1 L chain gene segment 
in the hybridoma panels provides dear evidence that VL genes 
that can pair with VH3H9 to give anti-HN Igs are selected 
against in BALB/c mice but not in MRblpr/lpr mice. Trans- 
fection experiments using the VH3H9 H chain into a BALB/c- 
derived cell line that expresses a germline Vkl have shown 
that VM/VH3H9 Igs are anti-HN (49). Eight of nine A1- 
expressing hybridomas from the MRL-lt, r/lpr VH3H9 tg mice 
express a VA1/VH3H9 combination, and the hybridomas 
are anti-HN. In contrast, there is only one example of a 
VM/VH3H9 tg hybridoma retrieved from BALB/c VH3H9 
tg mice. This hybridoma does not display HN reactivity, ap- 
parently due to coexpression of a K protein (Fig. 3 B). One 
of the VM MRL-Ipr/1pr VH3H9 tg-derived hybridomas also 
coexpresses a K protein and is likewise not anti-HN (Fig. 3 
B). Although the mechanism by which coexpression of an 
additional L chain interferes with the anti-HN specificity of 
hybridomas that also contain the VM/VH3H9 combination 
has not been established, this example underscores that BALB/c 
VH3H9 tg mice can rearrange at least one anti-HN-associated 

gene (VM). However, its expression appears to be limited 
to B cells that coexpress an additional L chain that disrupts 
its specificity for DNA. 

J K Gene Use in VH3H9 tg Hybridomas. A second example 
that highlights that BALB/c VH3H9 tg mice have the genetic 
capacity to produce anti-HN Igs is the use of the VK12d gene 
segment. A set of hybridomas from both BALB/c and MRL- 
1pr/llor VH3H9 tg mice use the same VK12d V gene segment 
but differ in their specifidty for DNA (Fig. 3 A). Three of 
the four VK12d/VH3H9 tg hybridomas derived from the 
MRblpr/Ipr background are anti-HN. In contrast, the single 
VK12d/VH3H9 tg hybridoma derived from the BALB/c back- 
ground only binds ssDNA, as does the fourth MRblpr/Ipr 
hybridoma. Although the VK12d V gene segments for all 
of these hybridomas are 100% identical at the nudeotide level 
over the region sequenced (compare VK12d sequences from 
Fig. 3 A), there are differences in theJ K gene segments used. 
The three anti-HN MRL-Ipr/llor VH3H9 tg hybridomas use 
JK2'. The ssDNA binding hybridoma from the BALB1 
VH3H9 tg mouse uses VK12d recombined to a JK1, as does 
the ssDNA binding MRL3 hybridoma. As shown in Fig. 
3 A, the BALB1 VH3H9 tg mouse can and does use JK2' 
with other VLs, but does not with VK12d, further under- 
scoring the negative selection of B cells bearing the anti-HN 
specificity in nonautoimmune mice. 

Several studies have proposed that developing B cells that 
are autoreactive can be rescued from deletion by revising their 
Ig receptors. The uncoupling of the fate of the B cell from 
its antigen receptor has been termed receptor editing (25, 
45, 50). We have evaluated the BALB1 VH3H9 tg hybrid- 
omas described in this study for evidence of receptor editing. 
Replacement of a primary K rearrangement with a secondary 
rearrangement on the same allele would predict the accumu- 
lation of 3' J KS in the nonantoreactive B cells (25, 50). In- 
deed, a bias in the 3' JK5 gene segment usage was observed 
in an earlier examination of BALB/c VH3H9 tg-derived hy- 
bridomas and was, therefore, interpreted as evidence for 
receptor editing (25). However, no 3' J K bias was observed 
in this current examination of K gene segment usage in BALB1 
VH3H9 tg-derived hybridomas (Fig. 3). It is possible that 
the different protocols used to generate the hybridoma panels 
may be responsible for this difference in J K gene segment 
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Figure 5. Anti-HN Igs from VH3H9 tg MRL-Ipr/Ipr mice use a set of L chains previously described in nontransgenic anti-DNA antibodies from 
MRI;lpr/Ipr and (NZB x NZW) mice. The anti-HN V L/VH3H9 tg sequences are compared with similar anti-DNA antibody sequences from autoimrnune- 
prone nontransgenic mice. Reference sequences were as follows: DNA22 (40); 3H9 (24, 49); DPT, DP12 (24); and 185-cl, 165.33 (41). 
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usage: the earlier hybridomas were generated from LPS- 
activated B cells (25), whereas the hybridomas reported here 
were derived from unmanipulated spleen cells. The data pre- 
sented here do not suggest a role for receptor editing in the 
elimination of anti-HN cells from BALB/c mice. 

Is the Fas-defect in MRL-Ipr/Ipr Mice Responsible for the Break- 
down in B Cell Tolerance? The Ipr mutation in theJ~s gene 
is an obvious candidate for mediating the breakdown in B 
cell tolerance observed in MRL-1pr/Ipr mice. A number of 
different strains homozygous for the lpr mutation develop 
anti-DNA antibodies (51). In addition we detected anti-HN 
B cells in our earliest backcross mice (backcross 2 onto MILL- 
Ipr/lpr, Tables 1 and 2). The role of Fas in murine lupus is 
unclear; it could be exerting its effects via the "auto-antigen" 
and/or directly in the autoreactive B cell. Recently, it was 
reported that the majority of auto-antigens targeted in SLE 
are found reorganized and clustered within distinct cell sur- 
face structures during cell death by apoptosis (52). Given Fas' 
link to apoptosis (53), a defective Fas may manifest itself as 
a defect in apoptosis. It has been proposed that failure of Fas- 
mediated T cell apoptosis within the thymus of lpr/lpr mice 
may facilitate the persistence of autoreactive cells and may 
at the same time also deprive the animal of the "apoptotic" 
auto-antigens that serve as tolerogens (52). 

We would extend this model to include an effect of the 
Ipr mutation on B cell negative selection. If apoptotic bodies 
are the tolerogen responsible for mediating B cell deletion 
in normal mice, MRIApr/Ipr mice may exhibit altered tolero- 
gen expression due to the Fas defect which may in turn in- 
terfere with anti-HN B cell deletion. At the same time, how- 
ever, elegant experiments using aUophenic mice strongly argue 
for an intrinsic defect in Ipr/Ipr B cells. In these studies, where 
the B cells were either of the Ipr/lpr or non-Ipr/lpr genotype 
and the antigenic environment was shared, only the lpr/Ipr 
B cells contributed to serum autoantibodies (2, 3, 6). It has 
also been reported that MRL/MpJ-+/+ mice, which are iden- 
tical to MKL-Ipr/Ipr mice except for the 1pr mutation, de- 
velop anti-DNA Igs and other symptoms of lupus, but with 
a delayed onset relative to MRLlpr/Ipr mice (54). To help 
resolve this issue, we are extending our analysis to include 
MKL/MpJ-+/+ VH3H9 tg mice. 

In conclusion, we hypothesize that the Ipr mutation may 
disrupt both the B cell's susceptibility to negative selection 
and the quality and quantity of the tolerogen. Both of these 
alterations may be required for the production of the specific 
set of autoantibodies found in MKL-Ipr/lpr mice. 
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