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Abstract: Citrus melanose is a fungal disease caused by Diaporthe citri F.A. Wolf. It is found in
various citrus-growing locations across the world. The host range of D. citri is limited to plants
of the Citrus genus. The most economically important hosts are Citrus reticulata (mandarin), C.
sinensis (sweet orange), C. grandis or C. maxima (pumelo), and C. paradisi (grapefruit). In the life
cycle of D. citri throughout the citrus growing season, pycnidia can be seen in abundance on dead
branches, especially after rain, with conidia appearing as slimy masses discharged from the dead
twigs. Raindrops can transmit conidia to leaves, twigs, and fruits, resulting in disease dispersion
throughout small distances. Persistent rains and warm climatic conditions generally favor disease
onset and development. The melanose disease causes a decline in fruit quality, which lowers the value
of fruits during marketing and exportation. High rainfall areas should avoid planting susceptible
varieties. In this article, information about the disease symptoms, history, geographic distribution,
epidemiology, impact, and integrated management practices, as well as the pathogen morphology
and identification, was reviewed and discussed.

Keywords: citrus; melanose; Diaporthe citri; epidemiology; symptomatology

1. Introduction
1.1. Major Fungal Diseases on Citrus

Several citrus diseases are currently documented in China and around the world.
The generally occurring fungal diseases include melanose, gummosis, and stem-end rot
caused by Diaporthe spp.; branch cankers caused by Botryosphaeriaceae [1,2]; scab caused by
Elsinoë spp. [3–9]; black rot caused by Alternaria spp. [10–14]; greasy leaf spot caused by
Cercosporoid genus [15,16]; anthracnose caused by Colletotrichum spp. [17–25]; and blue and
green mold caused by Penicillium spp. [26–28]. Among these fungal diseases, melanose,
gummosis, and stem-end rot caused by Diaporthe spp. have a significant impact on citrus
production [29,30]. At the same time, some Diaporthe spp. have also been reported as
endophytes and/or saprobes on citrus [29–37].

Melanose disease was not a major problem in citrus crops prior to the 1990s. However,
the accumulation of a large number of dead branches or trees results in an increase in
fungal inocula in old citrus orchards worldwide. Currently, melanose has become the major
fungal disease of citrus in China, dramatically reducing the commercial value of citrus fruits
(Figure 1). Diaporthe spp., have been isolated from citrus hosts in many citrus-growing
regions of China, e.g., Jiangxi, Zhejiang, Guangxi, Guangdong, Shaanxi, Fujian, Hunan,
Chongqing, Yunnan, etc.
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Figure 1. The typical symptoms of melanose disease in the field with different citrus tissue causal
agents by Diaporthe species: (A) pumelo fruit (C. maxima) from Chongqing; (B,C) orange fruits
(C. sinensis) from Chongqing; (D) young orange leaf (C. sinensis var. Brasliliensis) from Guizhou;
(E) mandarin leaf (Citrus sp.) from Zhejiang; (F) orange fruits (C. sinensis) from Chongqing; (G) citrus
fruit (C. changshan-huyou) from Zhejiang; and (H) mandarin fruit (C. reticulata) from Zhejiang.

1.2. Diaporthe Species Associated with Citrus

Previous studies about Diaporthe spp. have largely concentrated on species identifi-
cation, especially the species associated with specific hosts. The molecular taxonomy of
the genus Diaporthe related to citrus and allied taxa has made great advances in recent
years. The phylogenies based on multiple loci provide a more robust and comprehensible
taxonomy and nomenclature for D. citri and will serve as a starting point for field study by
plant pathologists, breeders, and mycologists. Such information may be used to improve
disease management and the deployment of citrus cultivars with species-specific and/or
broad-spectrum resistance.

All citrus species, including grapefruit, clementine, lemon, lime, mandarin, orange,
satsuma, and tangerine, are susceptible to melanose. Phomopsis citri was first recorded
as a citrus parasitic fungus causing stem-end rot symptoms in Florida, USA [38]. Its
teleomorph (sexual stage) is D. citri [39]. In addition to D. citri, many other Diaporthe
species were also detected in citrus hosts. They could be pathogens, endophytes, or
saprobes on citrus [29,31,40–45]. The summary of the global distribution of Diaporthe
species associated with citrus hosts and their allied genera confirmed with DNA sequences
is shown in Table 1.
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Table 1. Summary of the global distribution of Diaporthe species associated with Citrus hosts and their allied genera confirmed with DNA sequences.

Diaporthe Species Citrus Host and Allied Genera Locality Distribution Symptom/Tissue Reference(s)

D. apiculatum Citrus grandis cv. Tomentosa China non-symptom/twig [34]
D. aquatica C. grandis cv. Tomentosa China non-symptom/fruit [34]
D. arecae C. grandis China non-symptom/twig, leaf [31]

C. limon China non-symptom/branch [31]
C. reticulata China non-symptom/branch, twig [31]
C. sinensis China non-symptom/branch, twig [31]
C. sinensis Suriname Decaying/fruit [35]
C. unshiu China non-symptom/twig [31]

D. biconispora C. grandis China non-symptom/branch [31]
C. sinensis China non-symptom/branch [31]

Fortunella margarita China non-symptom/branch [31]
D. biguttulata C. limon China non-symptom/branch [31]

D. citri C. reticulata China Melanose, stem-end rot, dead wood/fruit, leaf [30,31,37,46]
C. reticulata New Zealand N.A./stem [37]
C. reticulata Portugal (Azores) Blight/shoot [47]

C. reticulata cv. Nanfengmiju China Melanose/fruit, leaf, twig [32]
C. sinensis Brazil N.A./fruit [37]
C. sinensis China Melanose/twig, leaf [32,46,48]
C. sinensis USA, Florida Stem-end rot/fruit [30]
C. unshiu China non-symptom/twig [31]

C. unshiu var. Juwadeun Korea N.A./fruit [37]
Citrus sp. USA, Florida N.A./leaf [37]

D. citriasiana C. grandis cv. Shatianyou China Anonymous spot/leaf [31]
C. reticulata cv. Nanfengmiju China Melanose-like/leaf [32]

C. sinensis China Melanose-like/leaf [32]
C. unshiu China Dead wood, non-symptom /branch, leaf [30,31]

D. citrichinensis C. grandis China non-symptom/branch [31]
C. unshiu China Dead wood, scab/branch, leaf [30,31]

Fortunella margarita China non-symptom/branch [31]
D. cytosporella C. limon Spain N.A./fruit [37]

C. limonia Italy N.A. [37]
C. sinensis USA, California N.A./twig [37]

D. discoidispora C. reticulata cv. Nanfengmiju China Melanose-like/fruit, leaf [32]
C. sinensis China non-symptom/twig [30,31]
C. unshiu China non-symptom/twig [31]

D. endocitricola C. grandis cv. Tomentosa China non-symptom/fruit [34]
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Table 1. Cont.

Diaporthe Species Citrus Host and Allied Genera Locality Distribution Symptom/Tissue Reference(s)

D. endophytica C. unshiu China Scab/leaf [31]
D. eres C. reticulata cv. Nanfengmiju China Melanose-like/twig, fruit, leaf [32]

C. unshiu China Non-symptom/twig [31]
Fortunella margarita China Non-symptom/branch [31]

Citrus sp. China Non-symptom/branch, fruit [31]
D. foeniculina C. aurantiifolia Greece Blight, canker/shoot, branch [49]

C. aurantiifolia-limon Greece Blight, canker/shoot, branch [49]
C. bergamia Greece Canker/branch [29]
C. japonica Malta Dieback/twig [29]
C. latifolia USA, California N.A./truck [37]
C. limon Greece Blight, canker/shoot, branch [29,49]
C. limon Italy Canker/trunk [29]
C. limon Malta Canker/trunk [29]
C. limon New Zealand N.A. [37]
C. limon Portugal Dieback/twig [29]
C. limon Spain Dieback/twig [29,37]
C. limon Turkey Rot/fruit [50]
C. limon USA, California N.A./branch [29,37]
C. limon Lebanon Blight/shoot [42]

C. maxima Greece Canker/branch [29]
C. maxima Italy Canker/branch [29]
C. medica Greece Blight, canker/shoot, branch [49]
C. mitis Italy Canker, dieback/branch, twig [29]

C. paradisi Italy Canker/branch [29]
C. paradisi Malta Canker/trunk [29]
C. paradisi Portugal Canker/branch [29]

C. reticulata Greece Dieback/twig [29]
C. reticulata Italy Dieback/twig [29]
C. reticulata Spain Dieback/twig [29]
C. sinensis Iran Non-symptom/leaf [51]
C. sinensis Italy Canker/branch, trunk [29]
C. sinensis Malta Canker/branch [29]
C. sinensis Portugal Canker, dieback/branch, twig [29]

Microcitrus australasica Italy Dieback/twig [29]
Poncirus trifoliate × C. paradisi Greece Blight, canker/shoot, branch [49]

D. foeniculina (D. baccae) C. limon Italy Blight, canker/shoot, branch [29]
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Table 1. Cont.

Diaporthe Species Citrus Host and Allied Genera Locality Distribution Symptom/Tissue Reference(s)

C. paradisi Italy Canker/branch [29]
C. reticulata Italy Canker/trunk [29]
C. sinensis Italy Canker, dieback/trunk, twig [29]

D. guangdongensis C. grandis cv. Tomentosa China non-symptom/fruit [34]
D. hongkongensis C. grandis China Non-symptom/twig [31]

C. reticulata China Scab/leaf [31]
C. reticulata cv. Nanfengmiju China Non-symptom/twig [31]

C. sinensis China Non-symptom/twig [31]
C. unshiu China Scab/leaf [31]

D. infertilis C. sinensis Suriname Decaying/fruit [29,35]
D. limonicola C. grandis cv. Tomentosa China non-symptom/fruit [34]

C. limon Malta Canker/branch, trunk [29]
D. masirevicii C. grandis cv. Tomentosa China non-symptom/fruit, twig [34]
D. melitensis C. limon Malta Canker/branch [29]

D. multigutullata C. grandis China Non-symptom/branch [31]
C. maxima China Symptomatic/branches [48]

D. novem C. aurantiifolia Italy Dieback/twig [29]
C. japonica Italy Dieback/twig [29]

D. ovalispora C. limon China non-symptom/twig [31]
D. passifloricola C. grandis cv. Tomentosa China non-symptom/fruit, twig [34]

C. reticulata cv. Nanfengmiju China Stem-end rot/fruit [52]
D. perseae C. grandis cv. Tomentosa China non-symptom/leaf [34]

D. phaseolorum C. limon Cameroon non-symptom/leaf [41]
D. sennae C. grandis cv. Tomentosa China non-symptom/fruit [34]

D. siamensis C. sinensis China Stem-end rot/fruit [53]
D. sojae C. limon China Non-symptom/twig [31]

C. limon Cameroon non-symptom/leaf [41]
C. reticulata China Non-symptom/twig [31]

C. reticulata cv. Nanfengmiju China Melanose-like, scab/twig, fruit, leaf [31,32]
C. unshiu China Non-symptom/twig [31]

D. subclavata C. grandis cv. Shatianyou China Unidentified symptom/fruit [31]
C. unshiu China Scab/leaf [31]

D. taoicola C. sinensis China Stem-end rot/fruit [53]
D. unshiuensis C. reticulata cv. Nanfengmiju China Melanose-like/fruit, twig [32]

C. sinensis China Melanose-like/twig, leaf [32]
C. unshiu China Unidentified symptom/fruit [31]
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Table 1. Cont.

Diaporthe Species Citrus Host and Allied Genera Locality Distribution Symptom/Tissue Reference(s)

Fortunella margarita China Non-symptom/branch [31]
Diaporthe sp. C. aurantium Taiwan non-symptom/N.A. [54]

C. limon India Dieback/shoot, branch [55]
C. limon Cameroon non-symptom/leaf [41]

C. reticulata Iran non-symptom/N.A. [56]
Fortunella margarita China Non-symptom/branch [31]

N.A.: not available.
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1.3. Identification and Molecular Diagnostics

Citrus melanose is caused by D. citri, which belongs to Kingdom Fungi; Ascomycota;
Sordariomycetes; Diaporthales; Diaporthaceae; Diaporthe [57–64]. The genus of Diaporthe
was established by Nitschke [65]. Phomopsis is the anamorphic (asexual stage) name of
Diaporthe [38,63,66–70]. The genus Diaporthe shows high species diversity; more than
1200 species named “Diaporthe” and about 1050 species named “Phomopsis” have been
recorded in MycoBank lists (http://www.mycobank.org; accessed on 9 June 2021).

1.3.1. Morphological Characteristics

For taxonomy of Diaporthe species, morphological characterization based on conidia
morphology, fruiting body structure, and culture characteristics has been the basis of this
study [71–74]. On PDA culture medium, mycelium is typically fan-shaped and white in
color [75]. Teleomorphic ascomata, which are usually immersed in the substrate erumpent
through pseudostromata mostly surrounding the ascomata, have more or less elongated
perithecial necks. The pseudostromata are distinct and often delimited by dark lines [76].
The perithecia are circular, flattened at the base, with long black beaks [39,77]. The perithe-
cia generally remain within the plant’s bark but protrude out of the stem surface, which
makes them easily visible under a dissecting microscope. Asci are unitunicate and clavate to
cylindrical, loosening from the ascogenous cells at an early stage and lying free in the asco-
carp. Ascospores are biseriate to uniseriate, and there are two oil droplets or guttulae within
each cell, which are fusoid, ellipsoid to cylindrical, septate, straightly constricted at the
septum, inequilateral or curved, hyaline, and sometimes with appendages [76,78]. Because
ascospores are forcibly ejected from the asci, they become windborne and are responsible
for the long-distance spread of the pathogen [39]. Upon finding a suitable substrate, spores
may germinate, producing hyphae that quickly become septate mycelium [77].

The anamorphic state of this fungus is the most important stage for the disease cycle.
The pycnidia (asexual fruiting bodies) of D. citri are scattered on the substratum and are
dark in color, ovoid, thick-walled, and erumpent. Conidiophores are hyaline and branched,
and occasionally, they are short and 1–2 septate. Conidiogenous cells were phialidic,
hyaline, and slightly tapering toward the apex [30,37]. Generally, they are multiseptate
and filiform with enteroblastic and monophiladic conidiogenesis [79,80]. It may produce
three types of hyaline, non-septate conidia, namely, alpha, beta conidia [81], as well as an
intermediate between these two conidial types, namely, gamma conidia [82–84]. The alpha
conidia are functional, aseptate, single-celled, hyaline, fusiform, and usually biguttulate
but sometimes lack guttula (lipid drop) or have more guttulae. The beta conidia tend to
be produced in older pycnidia and are also aseptate, hyaline, long, slender, rod-shaped
structures. They may be filiform and straight, but more often they are hooked at one end,
lack guttula, and do not germinate [85]. The gamma conidia are hyaline, multiguttulate,
fusiform to subcylindrical, with an acute or rounded apex, while the base is sometimes
truncate [73,82–84,86,87]. The asexual morphology and cultural characteristics of D. citri
are shown in Figure 2.

http://www.mycobank.org
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Figure 2. Asexual morphology and cultural characteristics of D. citri: (A,E) culture on PDA medium
after 7 days; (B,F) culture on potato dextrose agar (PDA) medium after 30 days; (C,G) culture on corn
meal agar (CMA) medium after 30 days; (D,H) culture on oatmeal agar (OMA) medium after 30 days;
(I–L) conidiomata sporulating on PDA medium after 30 days; (M–O) Alpha conidia; (P,Q) Beta
conidia; and (R) Alpha and Gamma conidia. Note: (A–D) surface and (E–H) reversed sides of colony
culture. Scale bar: (I–L) = 200 µm; (M–R) = 10 µm.

1.3.2. Molecular Identification

Currently, four nuclear genome sequences of D. citri have been deposited in GenBank
with the accession numbers JACTAD000000000, JADAZQ000000000, JADAZP000000000,
and JADAZO000000000 for strains NFHF-8-4, ZJUD2, ZJUD14, and Q7, respectively [88,89].
The genome assembly sizes of ZJUD2 (59.5 Mp) and ZJUD14 (52.0 Mp) were relatively
shorter, while NFHF-8-4 and Q7 contained longer assembly size (more than 63 Mp) [88,89].

Taylor et al. [90] proposed genealogical concordance phylogenetic species recognition
(GCPSR), which compares individual gene sequences to find inconsistencies, and it has
been shown to be very useful in defining species boundaries in morphologically conserved
fungi [91]. Although each cluster in combined trees is usually considered a separate
lineage, the common approach of concatenating sequenced data to delimit species without
using the GCPSR principle overestimates the real diversity of species placement [91–96].
Since the widespread use of DNA sequences [35], genus Diaporthe species identification
has progressed beyond host association and morphological characterization [73,81]. The
Diaporthe genus is commonly represented by using traditional molecular barcoding for
fungal species identification based on nuclear ribosomal internal transcribed spacer regions
(ITS) [70,97–99]. As a result, some Diaporthe species have been reported to be perplexing,
with contradictory findings when only the ITS sequence is used to produce a phylogenetic
tree [35,67,99–102].
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According to previous studies, multi-locus phylogenetic analysis has been proved
more efficient to identify isolates at the species level [29,35,102–105]. Several loci, including
large subunit of the ribosomal DNA (LSU), intergenic spacers of the ribosomal DNA
(IGS), ITS, translation elongation factor 1-α gene (TEF1-α), ß-tubulin gene (TUB2), histone
3 gene (HIS3), calmodulin gene (CAL), actin gene (ACT), DNA-lyase gene (APN2), 60S
ribosomal protein L37 gene (FG1093), and mating type genes (MAT-1-1-1 and MAT-1-2-
1), are demonstrated as efficient tools to determine Diaporthe species. Even molecular
sequences are already being used to identify species and rebuild phylogenies, complete
genome sequences for Diaporthe species are still in the future. Currently, the most frequently
used molecular loci in this genus are the ITS, TEF1-α, TUB2, HIS3, and CAL [35,58,98,104].
Among them, TEF1-α is the most efficient tool in resolving the phylogenetic signal of
the D. eres species complex [101,106]. Similarly, the highly variable TEF1-α was also
shown to be the most efficient locus in distinguishing Diaporthe species [99,101,104,106,107].
Although the ITS region showed the relatively limited delimitation of Diaporthe species in
phylogenetic analyses, it is still informative and should not be excluded from concatenation
analysis of multi-locus DNA sequences [58,94,98,104]. A summary of universal and species-
specific primers used for species determination within the Diaporthe genus is shown in
Table 2.

Table 2. Summary of published universal primers and species-specific primers used for species
determination within Diaporthe spp.

Gene/Locus 1 Primer Name Primer Sequences (5′ to 3′) Reference

ACT ACT-512F ATGTGCAAGGCCGGTTTCGC [108]
ACT-783R TACGAGTCCTTCTGGCCCAT [108]
ACT878R ATCTTCTCC ATGTCGTCCCAG [37]

APN2 apn2fw2 GCMATGTTYGAMATYCTGGAG [101]
apn2rw2 CTTGGTCTCCCAGCAGGTGAAC [101]

CAL CAL-228F GAGTTCAAGGAGGCCTTCTCCC [108]
CAL-737R CATCTTCTGGCCATCATGG [108]

CL1 GARTWCAAGGAGGCCTTCTC [109]
CL2A TTTTTGCATCATGAGTTGGAC [109]

CAL563F GACAAATCA CCACCAARGAGC [37]
FG1093 FG1093 E1F1 GCGCCACAMCAAGWCSCACRC [110]

FG1093 E3R1 TTCTBCGCTTGGCCTTCTCRS [110]
GAPDH Gpd1-LM ATTGGCCGCATCGTCTTCCGCAA [111]

Gpd2-LM CCCACTCGTTGTCGTACCA [111]
HIS3 CYLH3F AGGTCCACTGGTGGCAAG [112]

H3-1b GCGGGCGAGCTGGATGTCCTT [113]
IGS IGS-12a AGTCTGTGGATTAGTGGCCG [114]

NS1R GAGACAAGCATATGACTAC [114]
ITS ITS1 TCCGTAGGTGAACCTGCGG [115]

ITS-1F CTTGGTCATTTAGAGGAAGTAA [116]
ITS4 TCCTCCGCTTATTGATATGC [115]

DcitriF GTTTAACTACTGCGCTCGGGGTCCTG [117]
DcitriR CTTACTGTTGCCTCGGCGCAGG [117]

LSU LSU1Fd GRATCAGGTAGGRATACCCG [118]
LR5 TCCTGAGGGAAACTTCG [119]

MAT1-1-1 MAT1-1-1FW GCAAMIGTKTIKACTCACA [99]
MAT1-1-1RV GTCTMTGACCARGACCATG [99]
MAT1 141F GGTCAAGAAGAAGAAGTCC [120]

MAT1-2-1 MAT1-2-1FW GCCCKCCYAAYCCATTCATC [99]
MAT1-2-1RV TTGACYTCAGAAGACTTGCGTG [99]
MAT2 188F CCAGCTCCATCACAAC [120]

MS204 MS204 E1F1 AAGGGCACCCTGGAGGGCCAC [110]
MS204 E5R1 GATGGTGACGGYGTTGATGTA [110]

SSU NMS1 CAGCAGTGAGGAATATTGGTCAATG [121]
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Table 2. Cont.

Gene/Locus 1 Primer Name Primer Sequences (5′ to 3′) Reference

NMS2 GCGGATCATCGAATTAAATAACAT [121]
TEF-α EF1-728F CATCGAGAAGTTCGAGAAGG [108]

EF1-986R TACTTGAAGGAACCCTTACC [108]
EF-2 GGARGTACCAGTSATCATGTT [122]

TUB2 Bt2a GGTAACCAAATCGGTGCTGCTTTC [113]
Bt2b ACCCTCAGTGTAGTGACCCTTGGC [113]

TUBDcitri-F1 CCATTTGACCATCTGCAACAT [32]
TUBD-R1 CCTTGGCCCAGTTGTTTCC [32]

Dc-F CCCTCGAGGCATCATTAC [46]
Dc-R ATGTTGCAGATGGTCAAATGG [46]

Tub2FD GTBCACCTYCARACCGGYCARTG [123]
T22 TCTGGATGTTGTTGGGAATCC [124]
T1 AACATGCGTGAGATTGTAAGT [124]

1 ACT: actin gene, APN2: DNA-lyase gene, CAL: calmodulin gene, FG1093: 60s ribosomal protein L37 gene,
GAPDH: glyceraldehyde-3-phosphate dehydrogenase, HIS3: histone 3 gene, IGS: intergenic spacers of the
ribosomal DNA, ITS: nuclear ribosomal internal transcribed spacer, LSU: large subunit of the ribosomal DNA,
MAT-1-1-1/MAT-1-2-1: mating type genes, MS204: guanine nucleotide-binding protein subunit beta-like protein
gene, SSU: small subunit 18S ribosomal RNA, TEF1-α: translation elongation factor 1-α gene, and TUB2: ß-tubulin
gene.

1.3.3. Molecular Diagnosis

A conventional species-specific PCR method has been developed to distinguish D. citri
from other Diaporthe species [32,46,117]. The PCR-based technique showed outstanding
specificity and sensitivity, indicating that it may be used to effectively detect D. citri in
practice. Effective PCR with citrus tissues infected by D. citri, as well as modern PCR,
isothermal amplification, or any technique that is fast, low-cost, and accurate for alternative
detection of certain diseases, should be developed, because such methods may also be
applied for phytosanitary detection in plant quarantine.

1.3.4. Genetic Populations

Although D. citri and other Diaporthe infections are well-known, information about
their diversity, population genetics, reproductive methods, and pathogenicity is lim-
ited [125,126]. Our understanding of the infection process, host range, and fungicide
resistance of D. citri would improve if we understood its population genetics in nature.
Such information is also useful for making long-term management strategies for this
disease [127–129]. In China, the population genetics of D. citri was analyzed by using
polymorphic simple sequence repeat (SSR) markers and the mating type idiomorphs. The
majority of the analyzed samples came from southern China, including Fujian, Zhejiang,
Jiangxi, Hunan, and Guizhou provinces. It was shown that alleles at the 14 SSR loci were
not substantially different from linkage equilibrium, and most subpopulations exhibited
equal frequencies of the two mating types. The findings suggest that teleomorphic repro-
duction is important in D. citri populations in southern China, and the ascospores seem to
be a major contributor to citrus disease [46]. The presence of significant genetic differences
among different geographical populations, however, does not eliminate the possibility
of migration. Closely related strains were detected from many geographically diverse
regions. They also found signs of genetic mixing between two extremely distinct genetic
populations. These findings imply that D. citri populations are evolving, which might be
accelerated by either increasing human impacts through frequent citrus seedling exchange
or by global climate change [46].

2. Epidemiology, Life Cycle, and Symptomatology

Citrus melanose is caused by D. citri, which attacks foliage, fruits, and twigs when
they are immature. Since mature tissues are more immune to pathogen attack, the first 8 to
9 weeks of the citrus growing season are the most vulnerable to pathogen attack. Melanose
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signs can differ depending on the severity of the infection. At the end of the susceptibility
cycle, the flyspeck melanose symptoms appear [130,131].

The fungal inocula can be scattered over a wide range since ascospores are released
forcefully and can be spread over a long distance. D. citri is primarily a saprophyte that
feeds on and receives its nutrition from dead wood [44,132]. Perithecia and pycnidia
are only found on dead and dying twigs and fruits showing stem-end rot. The conidia
provided by pycnidia are the primary source of inoculum [133]. Ascospores are ejected
forcibly and play a significant role in long-distance dispersal [132]. As a result of the
widespread dissemination of a vast number of ascospores, the number of cases of infection
is rising [134]. When ascospores or conidia of Diaporthe land on the surface of a plant, the
disease will be triggered. Pathogens thrive in dry environments with temperatures ranging
from 17 to 35 ◦C [44].

The germination of spores requires approximately 10 to 24 h of moisture, depending
on the temperature [44,134], and the germination and formation of a germ tube takes 36
to 48 h [133]. After that, the citrus melanose pathogen directly penetrates the cuticle layer
tissue and infects the plant.

D. citri could overwinter on debris, e.g., mummy fruits, dead stems, branches, and dry
leaves. Perithecia could form on debris next year. Ascospores are produced in proportion
to the amount of dead wood present in a canopy. These spores contribute slightly to the
disease severity of an orchard, but they are carried by the wind and spread across long
distances. Conidia, developed in mature pycnidia, can continuously infect citrus during
the growing season. Conidia can be dispersed to nearby citrus trees with raindrops, which
most probably cause the majority of fruit infections (Figure 3). Nevertheless, conidia can
also be transmitted through the air over long distances when rainfall is scarce.

Figure 3. Representative Diaporthe disease cycle: melanose disease cycle on citrus caused by D. citri.
Revised and redrawn from Burnett [135], Timmer et al. [75], and Udayanga et al. [63].
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Symptoms appear as discrete small, sunken, brown spots about one week after in-
fection, which later become raised and filled with reddish-brown gum. The leaf pustules
are initially surrounded by a yellow halo. Diseased areas regreen later and create corky
pustules. On fruits, pustules can grow relatively large and can crack, creating a pattern of
mudcake. The severity of the disease is determined mainly by the amount of inoculum-
bearing dead wood in the canopy of the tree and the duration of the wetting period
following rainfall or sprinkler irrigation. Wet, rainy conditions, especially when rain show-
ers occur late in the day, and fruits staying continuously wet on warm nights are conducive
to infection.

3. Geographic Distribution and Host Associations

The USDA’s Agricultural Research Service’s Systematic Mycology and Microbiology
Laboratory (SMML database: https://nt.ars-grin.gov/fungaldatabases/, accessed on 10
December 2021) and the Centre for Agriculture and Bioscience International (CABI database:
https://www.cabi.org/isc/, accessed on 15 January 2022) obtained some information
about D. citri, including the geographic distribution and host associations. According to
the SMML and CABI databases, D. citri has been discovered on citrus hosts and related
species all over the world. The D. citri is the most predominant species in the Diaporthe
genus, which occurs widely in citrus-growing countries, e.g., China, Philippines, Japan,
Korea, Thailand, Myanmar, Cambodia, Fiji, Mauritius, United States, Mexico, Haiti, Cuba,
Dominican Republic, Panama, Puerto Rico, Venezuela, Trinidad and Tobago, Brazil, Cyprus,
Portugal (Azores Islands), New Zealand, Niue, Samoa, Tonga, Cook Islands, Cote d’Ivoire,
and Zimbabwe, which has also been summarized previously [32]. A global geographic
distribution map of D. citri associated with the citrus hosts is available on the CABI database
(accessed and last modified on 16 November 2021) and is shown in Figure 4. The green
disease-free areas may mean that no data is in the CABI database, but this does not
necessarily mean that the disease is absent.

Figure 4. A global geographic distribution map of D. citri associated with the citrus-host plant is
available on the CABI database.

4. Main Management Approaches of Melanose Disease

The yield is almost unaffected by melanose disease, and the juice processing is un-
affected as well. However, the quality of the fruit for marketing and exportation suffers
the consequences. In order to avoid poor quality and fruit deterioration caused by citrus
melanose, integrated management practices should be implemented. Integrated pest man-
agement (IPM) is now largely recognized as the most effective way to protect plants. Its
ultimate objective will be to maintain pest populations below economically injurious levels

https://nt.ars-grin.gov/fungaldatabases/
https://www.cabi.org/isc/
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without or just with minimal pesticides. Although IPM must rely on pesticides currently,
minimizing chemical inputs while maintaining crop quality at an economically viable level
is a basic requirement for plant protection. To achieve this goal, it is critical to understand
the disease epidemiology at various points in time while performing pest control [132,136].

Currently, no resistance cultivars are available for melanose control in practice. The
removal of dead wood to reduce the pressure of melanose fungus is both time-consuming
and labor-intensive. Nevertheless, pruning dead branches should be performed on a regular
basis. Proper pruning enhances air circulation within the canopy of the plant, keeping it
dry and reducing opportunities for pathogens to survive and cause infections. It will also
improve the effectiveness of fungicide infiltration into the foliage [43,137]. Furthermore,
avoid planting sensitive citrus cultivars or species in high-rainfall zones, such as sweet
orange, grapefruit, and pumelo [137,138]. Other management practices, such as citrus
plantations in low-rainfall and sunny zones, should be implemented. Interplanting citrus
with non-susceptible hosts is also a feasible measure [137,139].

4.1. Chemical Control

Application of fungicides is still the most commonly used method to control melanose
disease on citrus. Many fungicides have been tested for melanose control. Copper is a pro-
tective compound, which forms a layer on the surface of plant tissue, e.g., fruit, protecting
it from infection. The gap in the protective copper layer, however, grows larger as the fruit
grows and expands. If conditions are favorable for the pathogen infection, the copper layer
needs to be renewed through another spray. The melanose fungus stored in dead wood is
slightly affected by copper spraying. The use of copper fungicides before flowering will not
reduce infection. A copper fungicide must be applied on the fruit surface to provide efficient
melanose control. In the case of serious infection in late summer, additional protectant spray
should be applied [140]. Applications of pyraclostrobin to the spring flush growth of citrus
trees are much more efficient for controlling melanose, scab, and Alternaria brown spot
than those of famoxadone or copper hydroxide [44,141–144]. Bushong and Timmer [145]
demonstrated that azoxystrobin was a highly effective preventative spray for melanose,
whereas benomyl and fenbuconazole were not. As post-infection treatments for melanose,
none of the fungicides are successful. In Japan, dithianon and mancozeb were used to spray
alternately from June to August to control this disease [146]. In Pakistan, five chemicals
were tested at recommended doses, including penflufen, copper hydroxide, tebuconazole
plus trifloxystrobin, and difenoconazole, for controlling melanose disease. When used as a
protectant, copper hydroxide was found to be the most effective for the management of
citrus melanose [147]. Whereas Anwar et al. [148] evaluated six different fungicides for
citrus melanose control, the use of mancozeb led to a significant inhibition of fungal growth.
Similarly, several chemicals, including mancozeb and fenbuconazole, were found to be
effective in controlling citrus melanose in China and other countries [40,43,148–150].

4.2. Biological Control

Although chemical control plays an important role in managing plant diseases, overuse
of chemical pesticides has raised severe issues about food contamination, environmental
pollution, and phytotoxicity. Biocontrol is a viable option as it is friendly to the environment.
Biological control of plant diseases with antagonistic bacteria is a viable alternative to
chemical control. Many antagonistic bacteria are known to play important roles in the
sustainability of natural ecosystems, and some of them can be employed as inoculants to
stimulate plant growth and resistance.

For melanose control, more and more biocontrol candidates have been developed,
e.g., Burkholderia gladioli: TRH423-3, MRL408-3, Pseudomonas pudia: THJ609-3, and P. flu-
orescens: TRH415-2, and selected for their antifungal effectiveness against D. citri using
dual-culture testing. Disease suppression was observed after pretreatment with the rhi-
zobacterial strains, with varying degrees of protection rates for each rhizobacterial strain.
Following the pathogen inoculation, subsequent treatment with the rhizobacterial strains



Plants 2022, 11, 1600 14 of 20

also enhanced protection rates. The rhizobacterial strains might be especially useful in
organic citrus production where chemicals are strictly forbidden [151]. Similarly, pre-
treatment with P. putida strain THJ609-3 resulted in a decreased disease incidence. When
the infection behaviors of D. citri and necrosis deposits on plant tissues were examined
using a fluorescent microscope, it was shown that the process of disease development was
reduced after being treated with the bacterial strain, especially the conidia germination
rates, which were significantly lower after being pretreated with the strain THJ609-3. Fur-
thermore, morphological abnormalities of the germ tubes were also observed. These results
pointed to the bacterial-direct antifungal action on the leaf surfaces as a potential cause of
disease reduction [152]. Thiobacillus species were used to generate bio-sulfur, which was
investigated as an alternative to managing citrus melanose. It was found that melanose
disease severity was lower on bio-sulfur pretreated citrus leaves than on untreated leaves,
suggesting that bio-sulfur might be applied as an environmentally friendly alternative to
control citrus melanose [153]. Bacillus velezensis CE 100, an effective biocontrol agent, has
been used to control D. citri. In dual culture plates, D. citri mycelial growth was significantly
suppressed by strain CE 100, suggesting that some volatile substances inhibited the growth
of D. citri. It was also observed that the bacterial culture filtrate (BCF) of strain CE 100
inhibited D. citri growth. Microscopic examination indicated that BCF had a substantial
impact on the pathogen hyphal shape, most probably the result of numerous cell-wall
disintegrating enzymes and metabolites generated by strain CE 100. Interestingly, D. citri
conidial germination was decreased by approximately 80% when 50% BCF of strain CE 100
was used [154].

5. Conclusions

In this paper, the history of citrus melanose, pathogen morphology, molecular iden-
tification, population studies, epidemiology of disease symptoms and life cycle, global
distribution, and integrated disease management are documented. At present, there are
no cases of plants bred or engineered specifically for resistance to diseases caused by D.
citri. Does the teleomorph D. citri have higher opportunities for surviving on different
hosts? Does genetic recombination play an important role in survival or in variability in
this species? Are teleomorph ascospores spread differently from anamorphic conidia? Do
ascospores and conidia infect citrus tissues in the same way? Which defense reactions occur
in infected plants? At what level is the pathogen D. citri recognized by the plant? Are signal
cascades of defensive reactions known? These are some of the questions about pathogen
epidemiology that still need to be answered as they directly impact disease management.
However, more understanding of the molecular mechanisms that confer virulence on D.
citri is helpful in the development of alternative disease management strategies, especially
when it is urgent to develop environmentally friendly approaches or tools to maintain the
plant health in the future.
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