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Abstract

Many cellular structures are assembled from networks of actin filaments and the architecture of 

these networks depends on the mechanism by which the filaments are formed. Several classes of 

proteins are known to assemble new filaments, including the Arp2/3 complex, which creates 

branched filament networks, and Spire, which creates unbranched filaments1, 2. We find that 

JMY, a vertebrate protein first identified as a transcriptional co-activator of p53, combines these 

two nucleating activities by both activating Arp2/3 and assembling filaments directly using a 

Spire-like mechanism. Increased levels of JMY expression enhance motility while loss of JMY 

slows cell migration. When slowly migrating HL-60 cells are differentiated into highly motile 

neutrophil-like cells, JMY moves from the nucleus to the cytoplasm, and is concentrated at the 

leading edge. Thus, JMY represents a new class of multifunctional actin assembly factor whose 

activity is regulated, at least in part, by sequestration in the nucleus.

By searching genome databases for sequences related to the WASp Homology 2 (WH2) 

domain we discovered a potential Arp2/3-activating sequence, WWWCA, in the vertebrate 

protein JMY (Fig. 1a). This sequence is composed of three tandem repeats of the actin 

monomer-binding WH2 domain (WWW); an actin- and Arp2/3-binding central domain (C); 

and an Arp2/3-binding acidic domain (A). These sequence elements, first identified in 

WASp-family proteins1, 3, collaborate in activating Arp2/3. The identification of these 

elements in JMY was surprising, since JMY localizes primarily to the nucleus and was 

originally discovered as a binding partner of p300, a coactivator for many transcription 

factors, including the tumour-suppressor p534. In fibroblasts JMY accumulates in the 

nucleus in response to DNA damage, where it enhances p53-dependent transcription of pro-

apoptotic genes4, 5.
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To determine whether JMY also plays a role in assembly of the actin cytoskeleton we tested 

the effect of JMY expression on actin organization in vivo. Overexpression of JMY in 

human U2OS cells induces formation of elongated actin filament structures that colocalize 

with JMY (Fig. 1b), similar to overexpression of WASp-family proteins and the actin 

nucleation factor Spire 2, 6. Truncation mutants demonstrate that the WH2 cluster is 

required for this effect but, curiously, the Arp2/3-binding CA domain is not (Supplementary 

Fig. S1). Expression of the C-terminal region of JMY fused to GFP (GFP-PWWWCA) 

produces a linear, dose-dependent increase in the cellular concentration of filamentous actin 

(Fig. 1c) as judged by correlating Alexa-568 phalloidin staining with GFP fluorescence 

(n=457; Fig. 1d). In contrast, expressing GFP alone has no significant effect on cellular 

levels of filamentous actin (n=458; Fig. 1d, Supplementary Fig. S1).

To study how JMY affects actin assembly in vitro, we first verified that all three putative 

WH2 domains (Wa, Wb, and Wc, from N- to C-terminal) bind monomeric actin 

(Supplementary Fig. S2). JMY activates Arp2/3 in vitro, as determined by pyrene-actin 

polymerization assays using a C-terminal fragment of JMY (WWWCA) (Fig. 1e; t1/2 (JMY 

+ actin + Arp2/3) = 42.2 ± 2.3 s; versus t1/2 (actin + Arp2/3) = 1193 ± 28 s). JMY 

WWWCA also induces rapid actin polymerization in the absence of Arp2/3 (Fig. 1e; t1/2 = 

188.5 ± 4.4 s). The JMY-dependent increase in polymerization rate is dose-dependent, both 

with and without Arp2/3 (Fig. 1f). This result is quite surprising and distinguishes JMY 

from all other proteins known to activate Arp2/3. N-WASp WWCA, for example, activates 

Arp2/3 to a similar extent as JMY, but does not accelerate polymerization in the absence of 

Arp2/3 (Fig. 1e).

By itself JMY could accelerate actin assembly by: (1) nucleating new filaments, (2) 

increasing the rate of filament elongation, or (3) severing existing filaments to create new 

barbed ends2, 7. JMY does not affect elongation of preformed filaments, arguing that it 

neither accelerates elongation nor severs, but rather nucleates new filaments (Supplementary 

Fig. S3a–c). Indeed, we observe greater than 12-fold more filaments in the presence of JMY 

WWWCA compared to actin alone (Fig. 2a–b). In the presence of Arp2/3, JMY WWWCA 

produces branched filaments, consistent with nucleation by Arp2/3 (Fig. 2c, left panel), 

while, by itself, JMY nucleates unbranched filaments (Fig. 2a). In assembly reactions 

filament length is inversely proportional to the rate of nucleation, and filaments made in the 

presence of JMY are shorter than those made with actin alone. Arp2/3-nucleated filaments 

are even shorter (Fig. 2d). JMY produces twice as many branches per micron as Scar1/

WAVE1 (Fig. 2e), consistent with JMY inducing a faster rate of Arp2/3 activation than 

Scar.

Some proteins that cap barbed ends in vivo (e.g. capping protein) nucleate filaments that 

elongate from their pointed end in vitro8. To determine whether JMY caps barbed ends, we 

made filaments and depolymerized them in the presence of JMY WWCA. JMY does not 

inhibit disassembly, arguing that it does not cap barbed ends but promotes polymerization 

by nucleating new filaments that elongate from their barbed ends (Supplementary Fig. S3d, 

e). Direct nucleation appears to explain the unexpected ability of JMY to induce actin 

assembly in vivo in the absence of the Arp2/3-binding CA domain (Supplementary Fig. S1).
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We hypothesized that, similar to Spire2, JMY uses its tandem WH2 domains to nucleate 

new filaments. We tested the activity of constructs consisting of either all three WH2 

domains (JMY WWW), or the two C-terminal WH2 domains (JMY WbWc). JMY WWW 

nucleates actin as well as WWWCA, indicating that the CA region plays no role in direct 

nucleation (Fig. 2f). Moreover, addition of Arp2/3 to JMY WWW does not further increase 

the rate of polymerization (Fig. 2f). As with Spire, the two C-terminal WH2 domains (JMY 

WbWc ) are sufficient for nucleation, but all three JMY WH2 domains are required for 

maximal activity (Supplementary Fig. S3h, i).

In contrast, a fragment composed of a single WH2 domain (Wc) and the CA domains (JMY 

WCA) activates Arp2/3, but does not nucleate filaments on its own (Fig. 2g). JMY contains 

a conserved tryptophan residue known to be important for Arp2/3 binding in all WASp 

family proteins9. Replacing this tryptophan with an alanine in JMY decreases activation of 

Arp2/3 without affecting intrinsic nucleation activity (Supplementary Fig. S3j). These 

results argue that nucleation and Arp2/3 activation are separable activities, and that JMY 

activates Arp2/3 by the same mechanism as WASp-family proteins.

Similarities in the sequences and activities of JMY and Spire suggested that the two proteins 

nucleate filaments by a common mechanism. We compared the kinetics of nucleation by 

JMY and Spire over a range of actin concentrations. At all concentrations of actin tested, 

JMY and Spire display nearly identical kinetics (Supplementary Fig. S3k–l). Also, similar to 

Spire, high concentrations of JMY sequester actin monomers (Supplementary Fig. S3m–n). 

Unlike Spire, however, JMY WWCA does not prevent dissociation of monomers from the 

pointed end of filaments (Supplementary Fig. S3f–g). It is possible that the full-length JMY 

interacts with filament ends, but this is not required for nucleation.

Spire nucleates actin by stitching monomers together using tandem WH2 domains and a 

novel actin binding motif (previously called “Linker 3”2) that we designate the Monomer 

Binding Linker, or MBL. Spire-MBL, a short (~15 AA) sequence connecting the third and 

fourth WH2 domains, is sufficient to promote weak nucleation2. We compared the 

sequences of Spire-MBL with the region between the two C-terminal WH2 domains of JMY 

(Wb and Wc) and N-WASp. Most residues conserved between Spire homologs are also 

conserved in JMY, but not in N-WASp (Fig. 3a). Another WH2-containing nucleation 

factor, Cordon Bleu (Cobl), is thought to operate by a different mechanism10 and, consistent 

with this, we see no conservation between the linker regions of Cobl and Spire (Fig. 3a).

Do JMY and Spire nucleate actin by the same mechanism? We replaced the JMY linker with 

a set of glycine-serine repeats (JMY WbWc(gs5)), and compared it to a similar Spire mutant 

(Spire CD(gs5)). JMY WbWc(gs5) has a modest defect in nucleation, while replacing the 

linker in Spire has a more pronounced effect (Fig. 3b, d; Supplementary Fig. S3o). 

Interestingly, inserting either the JMY- or Spire-MBL between the N-WASp WH2 domains 

(NW WJW or WSW) converts N-WASp into a nucleator (Fig. 3c,d, Supplementary Fig. 

S3p), while inserting a flexible linker (NW WW(gs5)) does not (Fig. 3b,d). NW WJW and 

WSW do not nucleate as well as JMY or Spire. Thus, nucleation by JMY and Spire requires 

unique properties of both the linker (MBL) and the WH2 domains (Fig. 3e).
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To investigate its role in actin assembly in vivo, we determined the localization of JMY in 

multiple cell types. JMY is primarily nuclear in mouse embryonic fibroblasts, B16-F10 

mouse melanoma cells, NIH 3T3 cells, and primary rat neurons (Supplementary Fig. S4 and 

data not shown). In ruffling B16-F10 cells, we observe a small fraction of JMY colocalized 

with actin filaments at the leading edge (Supplementary Fig. S4b). Interestingly, in highly 

motile, primary human neutrophils, JMY is almost entirely excluded from the nucleus, and 

colocalizes with filaments at the leading edge (Fig. 4d). JMY does not bind actin filaments 

in vitro, so this localization does not simply reflect direct interaction of JMY with filaments 

(Supplementary Fig. S4d).

Our localization studies suggest that JMY’s presence at the leading edge correlates with 

motility. To further test this we investigated JMY expression and localization in HL-60 

cells, which can exist as non-motile, relatively undifferentiated cells or be induced to 

differentiate into highly motile cells11. In undifferentiated HL-60 cells, JMY is primarily 

nuclear, and does not colocalize with filaments (primarily nuclear in 91% of cells, n=246; 

Fig. 4a, Supplementary Fig. 5). Addition of 1.3% DMSO to the culture medium induces 

differentiation into highly motile cells that polarize and undergo chemotaxis. During 

differentiation JMY localization shifts dramatically, becoming almost entirely cytoplasmic. 

This shift occurs approximately 2 days before cells are competent to polarize in response to 

chemoattractant (fMLP; Supplementary Fig. S5c). In differentiated cells JMY colocalizes 

with filamentous actin in the cell cortex (cytoplasmic in 94%, nuclear in 6%, n=212; Fig. 

4b), and upon addition of fMLP, JMY localizes strongly to the leading edge where it 

overlaps with filamentous actin (88% of polarized cells, n=311; Fig. 4c, Supplementary Fig. 

S5d). Comparing JMY staining to soluble GFP in polarized cells shows that enrichment of 

JMY at the leading edge is not a volume artefact (Supplementary Fig. S5e–g). These data 

suggest that translocation of JMY to the cytosol plays a role in building the leading edge. 

Interestingly, expression of JMY’s nuclear binding partner p300 disappears when HL-60 

cells are differentiated, suggesting that the nuclear (p300/p53-dependent transcription) and 

cytoplasmic (actin nucleation) roles of JMY are regulated by separate pathways (Fig. 4e).

To test JMY’s role in cell motility, we stably expressed GFP-JMY and GFP-JMYΔCA in 

U2OS cells, grew monolayers, scratched them, and monitored wound healing over time12. 

Cells expressing GFP-JMY migrate 17% faster than wild-type cells (n=3; p<0.003; Fig. 5a–

b, Supplementary Fig. S6). In contrast, cells expressing GFP-JMYΔCA migrate at the same 

rate as wild-type cells (GFP-JMY, 43.8 ± 1.6 µm/hr; GFP-JMYΔCA, 38.5 ± 1.7 µm/hr; 

wild-type, 37.5 ± 1.0 µm/hr), suggesting that JMY requires its Arp2/3-activating activity to 

enhance motility.

We next knocked-down JMY expression in cultured U2OS and HEK 293 cells by RNAi. 

Western blotting shows that RNAi was efficient (Fig. 5e, Supplementary Fig. S6). In both 

cell lines knock-down of JMY expression significantly slows the rate of wound healing (Fig. 

5c–d, Supplementary Fig. S6). In the first 6 hours, cells treated with JMY siRNA move 

38.0% slower than control U2OS cells (n=4; p<0.05). By 24 hours, control cells fully 

migrate into the wound, whereas cells treated with JMY siRNA migrate only 86 percent of 

the distance (Fig. 5a–b; n=4). Control HEK 293 cells migrate 92 percent of the distance by 
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24 hours, whereas cells treated with JMY siRNA migrate 60 percent (Supplementary Fig. 

S6; n=7).

Defects in wound healing could be caused by: (1) reduced actin assembly, (2) altered 

transcription, (3) reduced cell division or increased apoptosis, or (4) off-target effects of the 

siRNA. Consistent with (1), we find that JMY-knockdown cells contain 11.4 ± 0.4% 

(n=396, p<0.03) less filamentous actin than wild-type cells (Fig. 5f). Loss of either p53 or 

p300, which are required for all JMY’s known transcriptional effects, leads to increased cell 

migration13–15, inconsistent with transcriptional effects on motility. In addition, less than 

5% of cells close to the wound divide in the first 6 hours of the assay, making it unlikely that 

cell division contributes to the observed defect. Knockdown of JMY was shown to decrease 

apoptosis5, ruling out explanation (3). To address possible off-target effects, we used three 

different siRNAs, from different regions of the human JMY gene, to knock down expression 

in HEK 293 cells. All three caused migration defects (Supplementary Fig. S6g), while a 

control siRNA had no effect.

We next tested whether JMY localizes to the leading edge of U2OS cells during migration in 

response to a wound, as seen in highly motile HL-60 cells. We fixed and stained U2OS cells 

15 minutes after wounding, as well as cells in a sub-confluent and non-wounded cultures. 

Although the majority of JMY is nuclear in these cells, we also observe both endogenous 

JMY and GFP-JMY colocalized with filamentous actin at the leading edge, (Fig. 5g, 

Supplementary Fig. S4c), both in cells adjacent to a wound and in ruffling edges of sub-

confluent cells (data not shown). Thus, even in cells where JMY is predominantly nuclear, a 

fraction of the protein can influence actin assembly at the leading edge and promote 

migration.

JMY combines an unusual set of activities. The combination of transcriptional coactivation 

and actin nucleation activities suggests that JMY might mediate cellular decisions involving 

apoptosis and migration. Alternatively, JMY might be a chimera whose transcriptional and 

cytoskeletal functions are more or less independent. More intriguing is JMY’s combination 

of Arp2/3-dependent and independent nucleation activities. A cell switching from a resting 

to a motile state must extensively remodel its cytoskeleton16. The leading edge of most 

migrating cells is characterized by a highly-branched dendritic arbour of actin filaments 

nucleated by Arp2/3, and one requirement for generating such a network is the pre-existence 

of “mother” filaments for Arp2/3 to bind and branch from17,18. Although resting cells 

contain some actin filaments (cortical actin, stress fibres, etc.) recent work suggests that not 

all filaments can serve as efficient substrates for Arp2/3-dependent nucleation19, 20. We 

hypothesize that JMY contributes to cell motility by nucleating filaments to jump-start 

Arp2/3-dependent nucleation and branching. By first nucleating new mother filaments and 

then activating Arp2/3 to branch off of these filaments, JMY could promote the rapid 

formation of a branched actin network. It is also possible that JMY has evolved to promote 

actin polymerization in different cellular contexts: (1) in the cytoplasm in the presence of 

Arp2/3, or (2) in the nucleus in the absence of Arp2/3 (see model in Fig. 5h). For example, it 

would be interesting to test whether inactivation of JMY's function in actin dynamics affects 

its role as a p300-dependent transcriptional coactivator for p53. Future work is aimed at 

testing these models.
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Methods

Molecular Biology and Biochemistry

Constructs were cloned from full length mouse JMY4, fly Spire2, and rat N-WASp using 

standard techniques. Primer sequences are available upon request. All constructs were 

sequenced to ensure no mutations were introduced during cloning. JMY fragments were 

expressed as GST-fusions in E. coli and purified using a combination of glutathione and 

cation chromatography. Except for individual WH2 domains (Supplementary Fig. S2), the 

GST was removed to prevent dimerization of the recombinant protein, which results in a 

marked increase in the rate of both intrinsic nucleation and activation of Arp2/3 (data not 

shown). To improve reproducibility of fluorimetry reactions, we mutated the non-conserved 

cysteine C978 to serine. This mutation does not change the kinetics of activation of Arp2/3 

(Supplementary Fig. S6h, i), but is more stable than wild-type peptide. JMY concentrations 

were calculated using predicted molar extinction coefficients for JMY peptides that 

contained tryptophan residues (ProtParam), or by quantitative SDS-PAGE with Sypro-Red 

staining (Invitrogen).

Actin polymerization assays

Actin was purified from Acanthamoeba castellani as described21, labelled with pyrene 

iodoacetamide as described22, and stored on ice. Arp2/3 was purified from Acanthamoeba 

as described23 and flash frozen with 10% glycerol. For all assays, Arp2/3 was thawed daily 

and diluted with 1 mg/mL BSA in Buffer A (0.2 mM ATP, 0.5 mM TCEP, 0.1 mM CaCl2, 

0.02% w/v sodium azide, 2 mM Tris, pH 8.0 at 4°C). Actin polymerization assays were 

performed in 1x KMEI (50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10 mM imidazole, pH 

7.0). Ca2+-actin was converted into Mg2+-actin by incubation of actin in ME (50 mM 

MgCl2, 0.2mM EGTA) for two minutes prior to adding 10x KMEI and test components. 

Pyrene fluorescence was measured with an ISS PCI/K2 fluorimeter. Unless otherwise noted, 

polymerization reactions contained 2 µM actin (5% pyrene labelled), 2.5 nM Arp2/3 and 167 

nM JMY or N-WASp. JMY proteins were diluted with 10 mg/mL BSA in Buffer A to 

prevent loss of activity. To normalize fluorimetry data, we subtracted the offset from zero 

then divided by the plateau value of actin alone, so as to not mask the effects of 

sequestration by JMY. For half-time calculations, reactions were normalized by dividing by 

their own plateau and solving for time at half-maximal fluorescence (0.5 a.u.).

To visualize actin filaments we polymerized 2 µM actin under the same conditions used for 

fluorimetry, then arrested reactions at the time indicated with Alexa Fluor 488 phalloidin 

and Latrunculin B. This technique preserves the ratio of monomeric to filamentous actin at 

the moment of quenching24. To keep the concentration of F-actin constant we arrested 

reactions at their individual t9/10s:1 m 40 s for JMY+Arp2/3; 6 m 20 s for Scar+Arp2/3; 37 

m 0 s for actin alone. Filaments were diluted to low nanomolar concentrations and spotted 

on poly-L-lysine (Sigma) coverslips, using wide-bore pipette tips to minimize shearing.

Cell culture

U2OS (ATCC) and HEK 293 cells were cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% FBS, 2 mM L-glutamine, non-essential amino acids, and penicillin-
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streptomycin (UCSF Cell Culture facility). For transfection, cells were seeded onto glass 

coverslips and transfected with HA-JMY4 using GeneJuice (Merck), or GFP-JMY and GFP-

RNAi constructs using Lipofectamine LTX (Invitrogen), according to manufacturer’s 

protocol. HL-60 cells were cultured as described25, in RPMI-1640 with 25 mM HEPES, 2.0 

g/L NaHCO3, 10% FBS, 1% antibiotic-antimycotic (Fisher), and were passaged every 3–4 

days to a density of 0.2 ×106 cells/mL. Differentiation was in complete medium containing 

1.3% DMSO (Hybrimax, Sigma). All cells were grown at 37° with 5% CO2. Primary human 

neutrophils were obtained by finger pinprick as described26.

Immunofluorescence of HL-60 cells was performed as described25. Briefly, flamed 

coverslips were treated with 200 µg/mL bovine plasma fibronectin (Sigma) in PBS, washed 

with PBS, and blocked with 1.8% low endotoxin BSA (Sigma) in modified Hanks buffered 

saline solution (mHBSS: 150 mM NaCl, 4 mM KCl, 1 mM MgCl2, 10 mM glucose, 20 mM 

HEPES, pH 7.4 at 22° C) for 5 minutes prior to adhering cells. Cells were pelleted and 

resuspended in BSA/mHBSS, and adhered to coverslips for 30–60 minutes at 37° C, then 

washed to remove unbound cells. Stimulation or mock stimulation was in BSA/mHBSS with 

100 nM (HL-60s) or 20 nM (human neutrophils) fMLP, or DMSO (carrier), for 5 minutes at 

22° C. Cells were fixed in 3.2% formaldehyde in cytoskeletal buffer (138 mM KCl, 3 mM 

MgCl2, 2 mM EGTA, 320 mM sucrose, 10 mM HEPES, pH 7.2 at 22° C). For 

immunofluorescence of U2OS cells, cells were plated on flamed, fibronectin-coated 

coverslips, and fixed for 30 minutes in 3.2% formaldehyde in PBS. Cells were then 

permeabilized with 0.1% triton in PBS with 1.4 U/mL Alexa Fluor 568 phalloidin 

(Invitrogen) to stabilize and visualize filaments. For JMY immunolocalization, rabbit 

polyclonal JMY antibody 12895 or Anti-HA antibody HA11 (Babco) was used at a 1:500 

dilution. Alexa Fluor 488-labeled goat-anti-rabbit secondary (Invitrogen) was used at a 

1:500 dilution. DAPI (Sigma) was used at 0.5 µg/mL. Samples were mounted with 

fluorescent mounting medium (DakoCytomation).

Epifluorescence and wide field images were acquired on a Nikon TE300 inverted 

microscope equipped with a Hamamatsu C4742-98 cooled CCD camera, with Simple PCI 

software (Compix), using 100x and 60x 1.4 NA Plan Apo objectives (Nikon), or with a 10x 

0.6 NA Phase objective, using MicroManager software27. For quantification of F-actin 

levels in cells expressing GFP-PWWWCA or GFP, micrographs were acquired with an IX 

Micro automated microscope, using identical illumination conditions. Cells were identified 

and outlined using ImageJ software, background was subtracted, and the average intensity in 

the red and green channels were measured. We used ImageJ (National Institutes of Health) 

and Adobe Photoshop (Adobe) for image analysis and contrast adjustment.

For wound healing experiments, cells were plated on marked coverslips at the same density, 

scratch wounded with a micropipette tip, washed to removed detached cells, and then given 

fresh medium and kept at 37°C during image acquisition. Stable lines of U2OS cells stably 

expressing GFP-JMY and variants were selected in 500 µg/mL G418 for at least 3 weeks, 

then enriched by FACS (UCSF Flow Cytometry Core). siRNA was used at a final 

concentration of 25nM (hJMY siRNA from Santa Cruz and control non-targeting 2 from 

Dharmacon) and transfected into cells with oligofectamine or Dharmafect 1 (both according 

to manufacturer’s protocols), and cells were grown for 72 hours prior to experiments. To 

Zuchero et al. Page 7

Nat Cell Biol. Author manuscript; available in PMC 2009 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discriminate between RNAied and non-RNAied cells, pL-UGIH plasmid (ATCC) was 

modified to contain a human JMY-specific hairpin based on the sequence of JMY-specific 

siRNA-3 by the method of Weiner et al. (2006)25. HEK 293 cells transiently transfected 

with this construct were grown for 7 days prior to fixation or immunoblotting.

Standard methods were used for Western blotting, using 1:500 1289 or 1:1000 L-16 (Santa 

Cruz Biotechnology) JMY primary antibodies and 1:5000 HRP-anti-rabbit secondary 

(Jackson ImmunoResearch). p300-CT primary antibody (Millipore) was used at 1:500, goat-

anti human GAPDH (Santa Cruz) was used at 1:10,000, and mouse anti-human actin 

(Sigma) was used at 1:20,000. HRP secondaries (Dako) were used at 1:10,000, and ECL 

reagent (SuperSignal West Pico, Pierce) was used according to the manufacturer’s 

instructions. All error values are standard error of the mean, s.e.m. We used two-tailed 

unpaired t-tests, assuming unequal variance, to calculate p-values (Microsoft Excel).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. JMY nucleates actin filaments and activates the Arp2/3 complex
(a) Domain structure of JMY. The C-terminus of JMY is homologous to activators of 

Arp2/3. A poly-proline (P) domain28 is followed by three tandem actin monomer-binding 

WH2 domains (Wa through Wc), an actin and Arp2/3-binding central domain (C), and an 

Arp2/3-binding acidic domain (A). Alignment shows individual WH2 domains of JMY, and 

compares the sequences of the WCA regions of JMY, Scar, and N-WASp. JMY WCA is 

28% identical to N-WASp WCA (ClustalW), and residues putatively involved in binding 

actin and Arp2/329, 30 are 100% conserved between all available JMY sequences.
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(b) Expression of HA-JMY (top panels; visualized by indirect immunofluorescence of HA, 

green) in U2OS cells induces the formation of filamentous actin structures (visualized with 

Alexa Fluor 568 phalloidin, red). These elongated actin structures colocalize with JMY and 

are not seen in untransfected cells (bottom panels). Nuclei were visualized with DAPI 

(blue). Scale bar, 10 µm.

(c) Expression of GFP-PWWWCA (green) in U2OS cells increases cellular F-actin (Alexa 

Fluor 568 phalloidin, red).

(d) Quantification of the increase in F-actin induced by GFP-PWWWCA expression. 

Phalloidin intensity was plotted as a function of GFP-PWWWCA intensity and shows a 

linear increase in F-actin content with increased expression of GFP-PWWWCA (n=457). In 

contrast, expressing GFP alone has only a minor effect on the red intensity detected, likely 

due to a small amount of bleed-through (n=458).

(e) Pyrene-actin polymerization assays show that JMY WWWCA both activates Arp2/3 (R) 

and nucleates actin in the absence of Arp2/3 (red and blue traces). N-WASp (NW) WWCA 

activates Arp2/3 (green), but does not nucleate actin on its own (grey).

(f) Intrinsic nucleation and activation of Arp2/3 by WWWCA are dose-dependent. Pyrene-

actin polymerization assays were conducted in the absence (blue) or presence (red) of 

Arp2/3, with increasing concentrations of JMY WWWCA. Time to half-maximal 

polymerization was plotted as a function of WWWCA concentration. Pyrene-actin 

polymerization assays were in 1x KMEI and contained 2 µM actin, 167 nM JMY or N-

WASp, and 2.5 nM Arp2/3, where noted.
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Figure 2. Mechanistic dissection of JMY
(a) JMY nucleates unbranched filaments, and increases the number of filaments over actin 

alone. Filaments made in the presence (left) or absence (right) of 167 nM JMY WWWCA 

were fixed with Alexa Fluor 488 phalloidin and Latrunculin B at 6 minutes (t9/10 of JMY 

WWWCA reaction) prior to dilution and spotting on poly-L-lysine coverslips24,2. Scale 

bars, 5 µm.
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(b) Quantification of filaments per field in images from a demonstrates that JMY nucleates 

new filaments (JMY, 42.7 ± 4.2 filaments per micron, n=35 fields; actin alone, 3.2 ± 0.5 

filaments per micron, n=30 fields).

(c) Filaments prepared as in a, in the presence of JMY plus Arp2/3 (left), Scar plus Arp2/3 

(centre), or actin alone (right). The concentration of filaments was kept constant by arresting 

reactions at their individual t9/10s (see Methods). Filaments nucleated in the presence of 

JMY and Arp2/3 are branched, consistent with JMY activating Arp2/3, as are filaments 

made in the presence of Scar and Arp2/3. The shorter, more abundant filaments seen here 

are due to Arp2/3 nucleating actin more rapidly than intrinsic nucleation by JMY.

(d) Quantification of filament length at t9/10. The rate of nucleation is inversely proportional 

to the length of filament (rate: JMY+Arp2/3 > JMY > Scar+Arp2/3 ≫ actin alone).

(e) Quantification of filament branching in each condition. n>300 filaments per condition.

(f) Tandem WH2 domains from JMY are sufficient for actin nucleation. Actin 

polymerization is as fast with WWW as it is with WWWCA. WWW lacks the Arp2/3 

binding CA domain, so adding Arp2/3 to WWW does not accelerate polymerization over 

WWW alone. N-WASp WW does not nucleate actin.

(g) JMY WCA is sufficient to activate Arp2/3, but does not nucleate actin. The rate of actin 

polymerization in the presence of JMY WCA and Arp2/3 is similar to reactions containing 

Scar WCA and Arp2/3. In the absence of Arp2/3, JMY WCA has no effect on actin 

polymerization. Experimental conditions as in Fig. 1.
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Figure 3. JMY nucleates actin by the same mechanism as Spire
(a) The region between JMY Wb and Wc is homologous to the short actin nucleation motif 

from Spire (monomer-binding linker, MBL). The figure shows an alignment between Spire-

MBL and the same region of JMY (mJMY AA 903–917) with homologous residues 

coloured grey. The MBL sequence is not homologous to the analogous position in N-WASp, 

WHAMM31, or Cordon Bleu10. The position of the glycine-serine repeats in b is 

underlined, and the sequences of N-WASp gain of function mutations (NW WJW and 

WSW) in c are shown.

(b) JMY-MBL is important for actin nucleation. Replacing the MBL in JMY WbWc and 

Spire CD (the two C-terminal WH2 domains in Spire) with a flexible linker of glycine-

serine repeats (gs5) causes a nucleation defect in both JMY and Spire. The analogous N-

WASp mutant does not promote nucleation, but inhibits spontaneous polymerization.

(c) Gain of function. Replacing the linker region between the WH2 domains of N-WASp 

WW with JMY- or Spire-MBL (NW WJW or WSW) converts N-WASp into a weak actin 

nucleator. This shows that JMY- and Spire-MBL are sufficient for nucleation. Mutated 

amino acids of WJW and WSW are shown in a. Reactions in b and c contained 4 µM actin. 

Experimental conditions as in Fig. 1.

(d) t/12s of reactions from b–c. Reactions were repeated > 3 times each. Error bars, s.e.m.
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(e) Actin nucleation and activation of Arp2/3 are distinct activities of JMY that overlap 

spatially. Tandem JMY WH2 domains and the MBL (star in figure) nucleate actin, similar to 

Spire, and JMY WCA activates Arp2/3, similar to N-WASp and Scar.
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Figure 4. JMY localizes to the leading edge of motile cells
(a–c) Redistribution of JMY from the nucleus to the leading edge in HL-60 cells. (a) JMY is 

primarily nuclear in undifferentiated HL-60 cells. (b) Following differentiation into motile 

cells by culturing in 1.3% DMSO for 5–7 days, JMY colocalizes with filamentous actin in 

the cytoplasm. (c) Differentiated HL-60 cells were polarized by exposure to 100 nM fMLP, 

a chemoattractant. JMY is distributed throughout the cytoplasm, where it colocalizes 

strongly with filamentous actin at the leading edge. Cells were fixed and stained with Alexa 

Fluor 568 phalloidin (red), anti-JMY (green), and DAPI (blue). Scale bars, 10 µm.
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(d) Human primary neutrophils were obtained by finger pinprick26, stimulated with 20 nM 

fMLP, and fixed and stained as above. JMY (green) colocalizes with filamentous actin (red) 

at the leading edge. Scale bar, 5 µm.

(e) Western blots of JMY and binding partner p300 in undifferentiated (U) and differentiated 

(D) HL-60 cells. p300 is expressed in undifferentiated, but not differentiated, HL-60 cells.
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Figure 5. JMY contributes to cell motility
(a–b) Expressing GFP-JMY in U2OS cells significantly increases their motility in wound 

healing assays. Stable lines of GFP-JMY and GFP-JMYΔCA were wounded by scraping 

with micropipette tips. Images were acquired at 0, 2, 4, 6, and 12 hours after wounding. (b) 

Migration rate from 0–6 hours was averaged from a minimum of 4 replicates on each of 3 

days. GFP-JMY expression induces cells to migrate 16.6% faster than wild-type cells (n=3, 

p<0.003). Cells expressing a truncation of JMY lacking the Arp2/3-interacting CA domain 

migrate at the same rate as wild-type cells. Scale bars, 100 µm.

Zuchero et al. Page 18

Nat Cell Biol. Author manuscript; available in PMC 2009 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(c–e) Wound healing assays in U2OS cells indicate that knocking-down JMY by RNAi 

impairs cell migration. Cells were transfected with JMY or control non-targeting 2 

(Dharmacon) siRNA (C) and wounded (red dashed line) as in a. Images were taken at the 

same position 0, 3, 6, and 24 h after wounding. (d) Wound size at each time point for all 

conditions. (n=4). (e) Western blots show RNAi efficiency in U2OS cells.

(f) Knocking down JMY expression decreases cellular levels of F-actin. HEK 293 cells were 

transfected with a vector encoding both GFP and a JMY-specific shRNA25 and fixed and 

stained with Alexa Fluor 568-phalloidin. Average phalloidin intensity in GFP-negative (non-

RNAied) and GFP-positive (RNAied) cells is plotted (n=396, p<0.03, see Methods). Error 

bars, s.e.m.

(g) JMY localizes to the leading edge of U2OS cells. Cells were grown as above, and fixed 

and stained for JMY 15 minutes after wounding. JMY is primarily nuclear, but it is also 

enriched at the leading edge (indirect immunofluorescence, green) where it colocalizes with 

a subset of actin filaments (Alexa Fluor 568-phalloidin, red). Inset: leading edge, contrast 

enhanced to show actin filaments and JMY. Scale bar, 10 µm.

(h) Models of in vivo role of JMY. Top, Model 1: JMY nucleates filaments that then serve 

as substrates for dendritic nucleation by Arp2/3. Bottom, Model 2: JMY evolved to nucleate 

actin in different cellular contexts. In the nucleus it nucleates unbranched filaments, and in 

the cytoplasm it both nucleates filaments and activates Arp2/3.
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