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Background: The immune system significantly participates in the pathologic

process of atrial fibrillation (AF). However, the molecular mechanisms

underlying this participation are not completely explained. The current

research aimed to identify critical genes and immune cells that participate in

the pathologic process of AF.

Methods: CIBERSORT was utilized to reveal the immune cell infiltration

pattern in AF patients. Meanwhile, weighted gene coexpression network

analysis (WGCNA) was utilized to identify meaningful modules that were

significantly correlated with AF. The characteristic genes correlated with AF

were identified by the least absolute shrinkage and selection operator (LASSO)

logistic regression and support vector machine recursive feature elimination

(SVM-RFE) algorithm.

Results: In comparison to sinus rhythm (SR) individuals, we observed that

fewer activatedmast cells and regulatory T cells (Tregs), as well asmore gamma

delta T cells, resting mast cells, and M2 macrophages, were infiltrated in AF

patients. Three significant modules (pink, red, and magenta) were identified

to be significantly associated with AF. Gene enrichment analysis showed

that all 717 genes were associated with immunity- or inflammation-related

pathways and biological processes. Four hub genes (GALNT16, HTR2B, BEX2,

andRAB8A) were revealed to be significantly correlatedwith AF by the SVM-RFE

algorithm and LASSO logistic regression. qRT–PCR results suggested that

compared to the SR subjects, AF patients exhibited significantly reduced

BEX2 and GALNT16 expression, as well as dramatically elevated HTR2B

expression. The AUC measurement showed that the diagnostic e�ciency of

BEX2, HTR2B, and GALNT16 in the training set was 0.836, 0.883, and 0.893,

respectively, and 0.858, 0.861, and 0.915, respectively, in the validation set.
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Conclusions: Three novel genes, BEX2, HTR2B, and GALNT16,were identified

by WGCNA combined with machine learning, which provides potential new

therapeutic targets for the early diagnosis and prevention of AF.

KEYWORDS

weighted gene coexpression network analysis, atrial fibrillation, immune cell subtype

distribution pattern, machine learning, hub genes

Introduction

Characterized as rapid disordered atrial electrical activity,

atrial fibrillation (AF) was defined as a common persistent

arrhythmia in the clinic (1). Based on an existing report,

almost 1% of the population is affected by AF worldwide, and

its prevalence is positively correlated with age. The incidence

of AF in the population older than 80 years reaches 8%

(2). AF is significantly correlated with the occurrence of

myocardial infarction, stroke, and heart failure, which increases

the economic burden not only on the patients’ families but

also on society (3). Thus, clarifying the pathogenesis and

discovering effective therapeutic methods are urgent endeavors.

AF is a multifactorial complex disease and is commonly

associated with many factors, such as sex, smoking, age,

hypertension, diabetes, obesity, valvular heart disease, and

ischaemic heart disease (4). However, the exact changes in

etiology and pathology in AF are totally unknown. Increasing

evidence suggests that immune cells significantly participate in

the processes of AF pathogenesis (5). Additionally, a relatively

high production of inflammatory markers in the serum of AF

patients was observed, such as interleukin 6 (IL-6) and C-

reactive protein (CRP) (6, 7). However, to identify potential

targets for AF treatment, the connections between immune cells

and the molecular pathogenesis mechanisms of AF need to be

further explored.

In recent years, the use of CIBERSORT, as a widely used

analysis tool, has been applied to RNA-seq data or microarray

data to investigate the immune cell infiltration patterns and

evaluate the infiltrated immune cell proportions in samples

(8). With the continuous promotion of gene chip technology,

weighted gene coexpression network analysis (WGCNA), as

a powerful biological tool to analyze network relationships

and molecular mechanisms, is widely used for massive gene

profile analysis (9). WGCNA is often employed to identify

coexpressed gene modules and further explore the connections

of these identified gene modules with the features of the

sample (10). Recently, an increasing number of researchers

have applied machine learning to improve the prediction

and accuracy of these genes, which were identified through

traditional microarrays or next-generation sequencing data (11).

The SVM-RFE algorithm and LASSO regression are the most

widely used machine learning methods to identify key genes

(12). However, the combined application of WGCNA and

machine learning in the identification of AF-associated genes has

not been conducted.

In the current research, comprehensive bioinformatics

analysis was conducted to investigate the association of

immune-associated genes and cells with AF. The composition

of the immune cells infiltrated in the tissues was assessed

using CIBERSORT, the key gene modules were identified

by WGCNA, and the key genes correlated with AF were

identified via the SVM-RFE algorithm and LASSO regression.

Furthermore, the expression of key genes and their diagnostic

efficiency were further validated in the training set and

validation samples.

Materials and methods

Collection of datasets

Gene expression profiles of left atrial samples of GSE79768

(AF patients = 7, SR individuals = 6) and GSE115574 (AF

patients = 14, SR individuals = 15) were extracted from

the public Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo) database. The integrated expression profiles

of GSE79768 and GSE115574 were used as training sets.

Gene expression profiles were normalized using the normalize

Between Arrays function in the limma package (13). Probes that

detected more than one gene were excluded from this study. The

expression of genes detected by multiple probes was determined

as the average gene expression detected for all probes. Interbatch

differences between the GSE79768 andGSE115574 datasets were

eliminated using the “sva” package.

Construction of the WGCNA and
identification of modules significantly
associated with AF

A critical tool in the study of systems biology is WGCNA,

which can construct a gene expression data profile-based scale-

free network (14). TheWGCNAmethod was used to analyze the
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top 25% of genes with high expression variances. The reliability

of the constructed scale-free network is ensured by removing

outlier samples. First, before the power function was applied,

a standard-scale free network was used to approximate the

appropriate soft threshold power (soft power = 10) to obtain

adjacency values among genes with a variance more significant

than all the variance quartiles. Next, we transformed the

adjacency values into a topological overlap matrix (TOM) and

derived the dissimilarity (1-TOM) values. Finally, the dynamic

tree cut method was used to identify modules by hierarchically

clustering genes with the 1-TOM as the distance measure with

a deep split value of 2 and a minimum size cut-off of 100 for

the resulting dendrogram. To evaluate the relationships between

clinical shapes and modules for discerning modules of biological

significance, we conducted Pearson correlation analysis.

Enrichment analysis of interesting
modules

KEGG and GO enrichment analyses of genes in biologically

significant modules were carried out by clusterProfiler and the

DOSE package in R (15). The threshold was determined to be

FDR < 0.05.

Identification of key genes by LASSO
regression and SVM-RFE algorithm

The LASSO regression and SVM-RFE algorithm were used

to identify the key genes with the best prognostic value for

AF. LASSO regression (16) was carried out with the package

“glmnet”. As a technique for effective feature selection, SVM-

RFE can select the best variables by excluding the SVM-

generated feature vector (17). Based on the SVM function in

the e1071 package of R, the selected biomarkers in the diagnosis

of AF were classified and analyzed by the SVM classifier.

The common genes identified by these two machine learning

methods were defined as key genes for subsequent research.

Evaluation of immune cell subtype
distribution

The immune infiltration pattern in AF was explored using

a CIBERSORT R script (8). After downloading the immune cell

expression matrix, boxplot diagrams, heatmaps, and histograms

were generated using the package “ggplot2”. The histogram

shows the immune cell proportion infiltrated in AF patients,

and the heatmap and boxplot diagrams show the difference in

immune cell infiltration in control and AF subjects. The Pearson

correlation coefficient between each immune cell was calculated

using the package “corrplot”, and the results are shown in the

relevant heatmap.

Correlation between key genes and
immune cells and roc curve analysis in
training set

The “corrplot” software package was employed to generate

the Pearson correlation coefficient between each immune cell

and hub gene, and the results are shown in the relevant bar

graph. The diagnostic accuracy of the key genes was also tested

in the training set.

Study population

A total of 158 participants, including 82 persistent AF

patients and 76 SR subjects, were recruited from Hunan

Provincial People’s Hospital from June to December 2021. The

disease was continuously sustained for more than 7 days or

more than 7 days after cardioversion (automatic, electrical,

or drug cardioversion) and was defined as persistent AF

(18). Patients with a history of haematologic disease, type 1

diabetes, coronary artery disease, hypertension, autoimmune

disease, neoplasia, and renal or liver diseases were excluded.

Peripheral blood samples were collected and placed at −80◦C

for subsequent study. Study protocols were developed based

on the Ethics Committee of Hunan Provincial People’s

Hospital (No: LL-20210615-144) and the 2008 revision of

the Declaration of Helsinki of 1975 (http://www.wma.net/en/

30publications/10policies/b3/). All subjects provided written

and informed consent.

qRT-PCR

Total RNA was extracted from peripheral blood with an

RNeasyTM Mini Kit (QIAGEN, Frankfurt, Germany). cDNA

was then reverse-transcribed with the PrimeScriptTM RT reagent

Kit (Takara, Otsu, Japan). A Taq PCR Master Mix Kit (Takara,

Otsu, Japan) was used to perform qRT–PCR using an ABI 7500

instrument (Applied Biosystems, USA). The proprietary qPCR

primers used in the experiment were designed and validated by

Songon Biotech (Songon Biotech, Shanghai, China).

Statistical analyses

All the data displayed in this study were processed and

analyzed with SPSS (Version 22.0). GALNT16, HTR2B, RAB8A,

and BEX2 expression were assessed using independent sample

t tests. According to the concentrations of GALNT16, HTR2B,
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FIGURE 1

Weighted gene coexpression network analysis. (A) Analysis of network topology for various soft-thresholding powers. (B) Representative

heatmap representing the topological overlap of the gene network. (C) Correlations among the indicated modules are shown. (D) The gene

clustering dendrograms are shown.

RAB8A, and BEX2 in serum, we constructed receiver operating

characteristic (ROC) curves. A nonparametric method was

employed to evaluate the respective areas under the curves

(AUCs) with 95% CI by MedCalc (MedCalc Software,

Mariakerke, Belgium, version 19.7.4) software. R (version 4.1.0)

was used to perform the bioinformatics analysis. P < 0.05 was

considered statistically significant.

Results

Data preprocessing

First, the normalized gene expression profiles of the

GSE79768 and GSE115574 datasets were obtained after

standardizing the data format, adding missing values, and

removing outliers. Then, after data merging and eliminating

the interbatch differences between the GSE79768 and

GSE115574 datasets, the combined expression matrix

including 21,629 gene symbols was obtained from the 42

left atrial samples in the training set. After removing 1

outlier sample (Supplementary Figure S1), the top 25% of

genes with high expression variance in the remaining 41 left

atrial samples were selected for subsequent WGCNA and

are presented in Supplementary Table S1. In addition, disease

grouping information for 41 samples is also presented in

Supplementary Table S2.

Weighted gene co-expression networks

After calculation, we revealed that a correlation coefficient of

more than 0.8 (the soft threshold β is 10) was highly correlated

and suitable for constructing several gene modules (Figure 1A).

A TOM was constructed by calculating the correlation and

adjacency matrices of the gene expression profiles. The gene

cluster tree is depicted in Figure 1B. Next, to select each

gene network’s gene modules, both TOM and hierarchical

average linkage clustering were employed. Figure 1C depicts the
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FIGURE 2

Module-feature associations and associations between gene significance and module membership (MM). (A) The module genes are listed in

each row, and the clinical phenotype is listed in each column. The correlations and the p values for listed genes and clinical phenotypes are

shown in each cell. The di�erent correlations are represented as di�erent colors. A representative scatter plot displays the correlations between

MM and GS vs. module membership (MM) of AF in the pink (B), red (C) and magenta (D) modules.

heatmap. The dynamic tree cut algorithm depicted twelve gene

modules (Figure 1D).

Identification of modules of interest

Modules closely related to clinical features are often found

to carry important and specific biological significance. As shown

in Figure 2A, the pink (r2 = 0.52, P = 4E-04), red (r2 =

0.34, P = 0.03) and magenta (r2 = 0.34, P = 0.03) modules

appeared to be positively correlated with AF. An in-depth

calculation was performed to discern the association between

the color module and gene significance (GS). The association

between the pink module and gene significance was 0.46 (P =

5.1E-014) (Figure 2B), the association between the red module

and gene significance was 0.33 (P = 1.3E-10) (Figure 2C),

and the association between the magenta module and gene

significance was 0.36 (P = 4.5E-06) (Figure 2D). All gene

symbols in the pink, red, and magenta modules and their GS

values and corresponding P values are described in detail in

Supplementary Table S3.

Enrichment analysis of genes in pink,
brown, and cyan modules

KEGG pathway and GO enrichment analyses of 717

genes in the pink, red, and magenta modules were carried

out to dissect their physiological purposes. Figure 3A shows

the top 10 KEGG signaling pathways as follows: hsa04640:

haematopoietic cell lineage; hsa05418: fluid shear stress

and atherosclerosis; hsa05417: lipid and atherosclerosis;

hsa04062: chemokine signaling pathway; hsa04061: viral

protein interaction with cytokine and cytokine receptor;

hsa05133: pertussis; hsa05150: Staphylococcus aureus infection;

hsa04670: leukocyte transendothelial migration; hsa04210:

apoptosis; hsa04610: complement and coagulation cascades.

Figure 3B shows the top 10 biological processes as follows:

GO:0042119: neutrophil activation; GO:0043312: neutrophil

degranulation; GO:0002283: neutrophil activation involved

in immune response; GO:0002446: neutrophil mediated

immunity; GO:0097529: myeloid leukocyte migration;

GO:0060326: cell chemotaxis; GO:0042110: T-cell activation;

GO:0030595: leukocyte chemotaxis; GO:0071621: granulocyte
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FIGURE 3

KEGG pathway and GO functional enrichment analyses for genes in the pink, brown and cyan modules. The gene number is represented on the

x-axis, and the KEGG pathway and GO terms are presented on the y-axis. (A) KEGG pathway. (B) Biological process. (C) Cytological

components. (D) Molecular function.

chemotaxis; GO:0002685: regulation of leukocyte migration.

These signaling pathways and biological processes are mainly

related to inflammation and the immune response. In addition,

cytological components and molecular functions are shown in

Figures 3C,D. The details of these analyses can also be found in

Supplementary Table S4.

Identification of hub genes

To explore reliable serum biomarkers significantly

associated with AF, LASSO regression and the SVM-RFE

algorithm were implemented to evaluate the characteristic

genes in AF according to the gene expression profile in the

key modules. The characteristic genes (n = 21) were identified

by LASSO regression (Figure 4A). Another 16 key genes were

identified by the SVM-RFE algorithm (Figure 4B). Then, for

subsequent investigations, a total of 4 overlapping genes (BEX2,

GALNT16, RAB8A, and HTR2B) were selected (Figure 4C).

In addition, other genes identified with the SVM-RFE

algorithm and LASSO regression are listed in Supplementary

Table S5.

Profile of immune cell subtype
distribution pattern

The CIBERSORT algorithm was utilized to evaluate

the differential expression of immune fractions between SR
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FIGURE 4

Identification of key genes of AF by machine learning. (A) The key genes identified by LASSO regression in AF patients. (B) The key genes

identified by the SVM-RFE algorithm in AF patients. (C) Representative Venn diagram showing the genes extracted using SVM-RFE and LASSO.

and AF samples. The cumulative histogram visually shows

the relative proportions of various immune cell subtypes

(Supplementary Figure S2). As shown in Figure 5A, significant

differences in the immune cell proportions were found between

the SR and AF groups of samples. A negative association

between activated and resting mast cells was observed using

a correlation matrix. Meanwhile, we also observed that Tregs

were negatively associated with M1 macrophages and positively

associated with activated NK cells; M2 macrophages were

negatively associated with resting dendritic cells, eosinophils,

monocytes, and resting memory CD4T cells; CD8T cells were

negatively associated with resting memory CD4T cells; memory

B cells were positively associated with plasma cells (Figure 5B).

Compared with SR subjects, AF patients generally exhibited

decreased infiltration of activated mast cells and regulatory T

cells (Tregs) and increased infiltration of resting mast cells,

M2 macrophages, and gamma delta T cells (Figure 5C) (P <

0.05-0.01, respectively). In addition, the immune cell infiltration

pattern in AF is also shown in Supplementary Table S6.

As shown in Figure 6, we observed a positive association

between the BEX2 gene and activated mast cells; additionally,

the HTR2B gene was positively correlated with gamma delta

T cells, M2 macrophages, and M1 macrophages and negatively

associated with activated mast cells and resting NK cells. In

addition, negative correlations between the GALNT16 gene and

M2 macrophages and gamma delta T cells were also observed.

However, there was no significant correlation between the

RAB8A gene and immune cells (P < 0.05–0.01).

Validation of the key genes in AF patients

The predictive values of BEX2, HTR2B, GALNT16 and

RAB8A for the diagnosis of AF were investigated using ROC

curve analysis. The AUC values for BEX2 (Figure 7A), HTR2B

(Figure 7B), GALNT16 (Figure 7C) and RAB8A (Figure 7D)

were 0.836 (95% CI 0.709–0.962; P = 0.0002), 0.883 (95%

CI 0.781–0.986; P < 0.0001), 0.893 (95% CI 0.796–0.990; P

< 0.0001) and 0.841 (95% CI 0.714–0.968, P < 0.0001) in

the training set, respectively. Further verifying the expression

of these key genes in AF patients (Figure 8A), we noticed

that BEX2, GALNT16, and HTR2B expression levels were

significantly increased in AF patients compared with SR

subjects (P < 0.01). However, no significant difference in

RAB8A expression was found between AF patients and SR

subjects. Additionally, the AUC values for BEX2 (Figure 8B),

HTR2B (Figure 8C), and GALNT16 (Figure 8D) were 0.858

(95% CI 0.880–0.917; P < 0.0001), 0.861 (95% CI 0.803–

0.919; P < 0.0001) and 0.915 (95% CI 0.875–0.955; P <

0.0001), respectively.

Discussion

In the current research, GSE79768 combined with

GSE115574 as training datasets were downloaded from the GEO

database and analyzed using WGCNA. Then, three modules

(pink, red, and magenta) were identified to be significantly

associated with AF. Four hub genes (GALNT16, HTR2B,

RAB8A, and BEX2) were revealed to be significantly correlated

with AF by LASSO logistic regression and the SVM-RFE

algorithm. The CIBERSORT results suggested decreased

infiltration of regulatory T cells (Tregs) and activated mast cells

and increased infiltration of resting mast cells, M2macrophages,

and gamma delta T cells in AF patients. qRT–PCR results

revealed that BEX2 and GALNT16 expression levels were

significantly decreased and HTR2B expression was significantly

increased in AF patients compared with SR subjects. ROC

analyses based on the training set and our clinical samples

revealed that the HTR2B, BEX2, and GALNT16 genes remained

highly effective in distinguishing AF patients from normal

SR subjects. Gene enrichment analysis indicated that these
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FIGURE 5

Pattern of immune cell subtype infiltration in the training set. (A) Representative heatmap representing the proportions of di�erent immune cells.

(B) Representative heatmap showing the correlations of the indicated immune cells. (C) Representative violin plot showing the di�erent

fractions of infiltrated immune cells.

key genes were mainly involved in several inflammatory- or

immune-related signaling pathways and biological processes.

Through a comprehensive search of the NCBI GENE

database, we revealed that brain-expressed X-linked 2 (BEX2,

also known as BEX1; DJ79P11.1; HGNC: 30933, gene ID: 84707,

OMIM: 300691) acts as a member of the brain expressed X-

linked gene family. It has been reported that BEX proteins

are mainly involved in tumor growth, neurodegeneration,

the cell cycle, and transcriptional regulation (19). Kim

et al. suggested that the BEX2 gene is closely related to

the process and regulation of the immune response, and

the expression of BEX2 was significantly downregulated in

asthmatic mouse models induced by ovalbumin, while the

expression of BEX2 was significantly upregulated and could

significantly inhibit allergic airway inflammation after treatment

with mesenchymal stem cell-derived extracellular vesicles (20).

Previous reports documented that the remodeling of atrial

structure and electrical properties was significantly associated
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FIGURE 6

Correlation between key genes and infiltrated immune cells. Representative graphs showing the correlation between the infiltrated immune

cells and BEX2 (A), HTR2B (B), GALNT16 (C) and RAB8A (D). Correlation strength is shown by the dot size; the p values are expressed as the

changes in dot color. p < 0.05 represented a significant di�erence.

with the dysfunction and abnormal structure of mitochondria

(21, 22), that the dysfunction of mitochondria was also

involved in the altered cardiac electrical properties (23,

24), and that these biological processes ultimately contribute

to increased susceptibility to AF. Shao et al. proved that

empagliflozin can potentially be useful in the prevention of

type 2 diabetes mellitus (T2DM)-related AF by ameliorating

mitochondrial dysfunction and improving atrial structure and

electrical remodeling in T2DM patients (25). Furthermore,

Peng et al. noticed that soybean isoflavones can activate the

BNIP3/NIX pathway by upregulating the expression of BEX2,

thereby alleviating mitochondrial dysfunction by promoting

mitochondrial autophagy (26). This evidence suggests that BEX2

may reduce the incidence of AF by mitigating mitochondrial

dysfunction and inducing inflammatory or immune responses.

Herein, we found that AF patients exhibited significantly

reduced BEX2 expression in comparison with SR individuals,

and a positive correlation between BEX2 expression and

activated mast cells was also observed. However, these findings

need to be confirmed by proteomics studies in further research.

Previous studies have found that 5-hydroxytryptamine

receptor 2B (HTR2B) can be enriched in the calcium signaling

pathway, which plays a key role in the processes of myocardial

hypertrophy and remodeling (27). Due to excessive release

of 5-hydroxytryptamine (5-HT) in platelets or autonomic

nervous system activation, Ca2+ overloading may trigger AF
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FIGURE 7

The analysis of ROC curves in the training set. Representative plots showing the results of ROC curve analysis of BEX2 (A), HTR2B (B), GALNT16

(C) and RAB8A (D) in the training set.

(28, 29). As a 5-HT receptor, HTR2B activation significantly

participates in cardiac remodeling as well as heart failure

development and progression (30, 31). By impairing the

deposition of collagen, blockage of HTR2B can suppress

myocardial fibrosis (32). In addition, Nebigil et al. suggested

that the overexpression of Htr2b in the mouse heart could

lead to abnormal mitochondrial function of cardiac myocytes,

resulting in cardiac hypertrophy (33). Furthermore, dramatically

elevated expression of HTR2BmRNA and protein was observed

in 72-h rapid electric-stimulated atrial myocytes (34). This

evidence strongly suggests that HTR2B is significantly involved

in AF development, but its association with immune cells has

not been reported. In the present study, obviously increased

HTR2B expression was observed in AF patients, and we also

observed positive correlations between HTR2B expression and

gamma delta T cells, M1 macrophages, and M2 macrophages

and negative correlations with activated mast cells and resting

NK cells. However, these observations need to be confirmed by

further studies.

Glycosylation is an important posttranslational modification

involving N-glycosylation (35) and O-glycosylation (36) and

is significantly related to a variety of pathological and

physiological processes. Previous studies have found that N-

glycosylation is associated with the function of many ion

channels, and an association between the dysfunction of

glycosylation in potassium channels and long QT syndrome was

observed (37). Congenital glycosylation disorder, with effects

including defects in the synthesis, processing, or targeting

of glycans, is a rare autosomal genetic disease (38). Almost

all organs, arrhythmias, and cardiomyopathies are affected

by these disorders (39). Moreover, altered glycation patterns

in cardiac ion channels, such as hK2P17.1, may contribute

to the molecular mechanisms underlying the occurrence of

arrhythmogenesis correlated with glycosylation disorders (40).

Polypeptide N-acetylgalactosaminyltransferase 16 (GALNT16),

as a key gene mediating protein glycosylation, can catalyze the

initial reaction in the biosynthesis of O-linked oligosaccharides

and transfer N-acetyl-D-galactosamine residues to serine or
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FIGURE 8

Validation of the key genes in AF samples. (A) The relative expression levels of BEX2, HTR2B, GALNT16 and RAB8A in AF patients, *P < 0.01. ROC

curve analysis of BEX2 (B), HTR2B (C) and GALNT16 (D) in AF patients.

threonine residues on protein receptors (41). Therefore, we

surmise that the downregulation of GALNT16 expression might

lead to the occurrence of AF by causing glycosylation disorder.

Moreover,GALNT16 has been found to be significantly enriched

in specific biological functions associated with protein and

lipid metabolism, the AMPK signaling pathway, the prolactin

signaling pathway, and the insulin/IGF pathway-protein kinase

B signaling cascade (42), but the association of GALNT16 with

immune cells and AF susceptibility remains poorly understood.

In the current research, we revealed that GALNT16 expression

in AF patients was dramatically decreased compared with that

in normal subjects with SR, and the expression ofGALNT16 was

also significantly negatively correlated with gamma delta T cells

and M2 macrophages.

Recently, many studies have indicated that the inflammatory

response also participates in many cardiac pathophysiological

processes, such as postinfarction repair and ischaemic

injury, which are characterized by immune regulation,

cytokine expression, intracellular signaling pathways, and

neuroendocrine system activation. Monocyte subsets are

also involved in the inflammatory cascade and atherogenesis

in cardiovascular disease. Elevated monocyte counts and

activities are significantly related to clinical indices of chronic

kidney disease (CKD) and atherosclerosis (43). In addition,

the participation of other immune cells, such as neutrophils

(44) and mast cells (45), was also identified in the processes

of cardiovascular disease occurrence and development. A

significantly increased number of CD8+ T cells in AF patients

was identified by Wu et al. (46). Liu et al. showed that mast cells

and neutrophils were increased in AF atrial tissue in comparison

to matched SR atrial tissue (47). In addition, Liu et al. suggested

that resting memory CD4T cells and follicular helper T cells

were decreased and that plasma cells, monocytes, resting

dendritic cells, and neutrophils were increased in AF samples

compared with SR samples (48). Nevertheless, different patterns

of immune cell infiltration in AF were observed in the current

study compared with previous studies. Our results suggested

decreased infiltration of regulatory T cells (Tregs) and activated
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mast cells and increased infiltration of gamma delta T cells, M2

macrophages, and resting mast cells in AF patients compared

with SR subjects. In addition, we also revealed the interactions

among these 22 types of infiltrated immune cells in AF. We

noticed that activated mast cells were negatively associated

with resting mast cells; Tregs were negatively associated with

M1 macrophages and positively associated with activated

NK cells; M2 macrophages were negatively associated with

resting dendritic cells, eosinophils, resting memory CD4T cells,

and monocytes; CD8T cells were negatively associated with

resting memory CD4T cells; memory B cells were positively

associated with plasma cells. These results suggested that there

may be complex immune regulation mechanisms governing

the occurrence and development of AF. However, the potential

mechanisms of these correlations between infiltrated immune

cells need to be verified by experiments in vivo and in vitro.

This research had several limitations. First, the validation

samples included in the current research were recruited from

only a single center with small sample sizes. It is unclear whether

the expression levels of the key genes differ among individuals

in different regions or races. Therefore, the results of this study

need to be further tested in multicentre studies and using larger

sample sizes. Second, although we found that the expression

trends of key genes in blood samples of patients with AF were

consistent with the bioinformatics prediction results based on

left atrial samples, the expression trends of key genes still need

to be further verified in other left atrial samples. Third, more

in vivo and in vitro studies are needed to clarify the underlying

mechanisms of these correlations between GALNT16, HTR2B,

RAB8A, and BEX2 as well as infiltrating immune cells in AF.

Conclusions

In summary, we determined that BEX2, HTR2B, and

GALNT16 may become potential diagnostic markers or novel

therapeutic targets in AF. We noticed that resting mast cells,

M2 macrophages, and gamma delta T cells might be involved

in AF initiation; however, activated mast cells, CD8T cells,

and regulatory T cells (Tregs) may serve protective roles in

AF. The interaction mechanisms between BEX2, HTR2B, and

GALNT16 and immune cells may be of great significance to the

pathogenesis and progression of AF.
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