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Abstract

With the desire to model population genetic processes under increasingly realistic scenarios, forward genetic simulations
have become a critical part of the toolbox of modern evolutionary biology. The SLiM forward genetic simulation
framework is one of the most powerful and widely used tools in this area. However, its foundation in the Wright-
Fisher model has been found to pose an obstacle to implementing many types of models; it is difficult to adapt the
Wright-Fisher model, with its many assumptions, to modeling ecologically realistic scenarios such as explicit space,
overlapping generations, individual variation in reproduction, density-dependent population regulation, individual var-
iation in dispersal or migration, local extinction and recolonization, mating between subpopulations, age structure,
fitness-based survival and hard selection, emergent sex ratios, and so forth. In response to this need, we here introduce
SLiM 3, which contains two key advancements aimed at abolishing these limitations. First, the new non-Wright-Fisher or
“nonWF” model type provides a much more flexible foundation that allows the easy implementation of all of the above
scenarios and many more. Second, SLiM 3 adds support for continuous space, including spatial interactions and spatial
maps of environmental variables. We provide a conceptual overview of these new features, and present several example
models to illustrate their use.
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Introduction

Forward genetic simulations are playing an increasingly im-
portant role in evolutionary biology due to their ability to
model a wide range of population genetic mechanisms and
include a high level of ecological detail in the simulated sce-
nario (Carvajal-Rodriguez 2010; Yuan et al. 2012; Bank et al.
2014; Hoban 2014; Thornton 2014; Haller and Messer 2017;
Haller et al. 2018). The SLIM forward genetic simulation
framework (Messer 2013; Haller and Messer 2017) has proved
to be a powerful tool for this purpose, and constitutes one of
the most widely used computational frameworks for imple-
menting such simulations at the present time.

The National Cancer Institute’s Genetic Simulation
Resources (GSR) website provides a comprehensive database
of genetic simulation software tools (NCI 2018). At the time
of writing, the GSR listed 42 packages supporting forward
simulation; this includes many tools that are specialized for
a particular type of model, as well as some tools that support
a wide variety of evolutionary scenarios. SLiM’s popularity
among these tools is based primarily upon three key attrib-
utes. First, it is highly scriptable, allowing the mechanics of the
SLiM framework to be fundamentally modified and extended
in many ways. At the same time, even fairly sophisticated
evolutionary models can often be expressed in a page of
code or less, since all of the core simulation code is provided
by SLiM, yielding tremendous benefits compared with writing

simulations from scratch in a language such as C++. Second,
SLiM includes a full-featured graphical modeling environ-
ment, SLiMgui, that makes interactive model development,
visual debugging, and hands-on exploration easy, with large
benefits throughout the modeling process (Grimm 2002).
And third, a great deal of work has been devoted to optimiz-
ing SLiM, making it run as efficiently as possible across a wide
variety of simulation scenarios; these speed benefits are inher-
ited for free by any model running within SLiM. The GSR does
not provide performance comparisons, so users with perfor-
mance concerns should run their own tests before settling
upon a particular package; for comparing the features avail-
able in different packages, however, the GSR can be a very
helpful resource.

In our contact with users of SLiM over the past years, one
category of questions has predominated: how can SLiM sim-
ulations be constructed that go beyond the standard
Wright—Fisher or “WF” model (Fisher 1922; Wright 1931)?
This model, which has provided the conceptual foundation
for all previous versions of SLIM (Messer 2013; Haller and
Messer 2017), is defined by a number of simplifying assump-
tions. For example, the model assumes that generations are
nonoverlapping and discrete, without any age structure or
age-based differentiation among individuals. Another critical
assumption of the model lies in the rules governing the gen-
eration of offspring from the parental population; in the

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Open Access

632 Mol. Biol. Evol. 36(3):632-637  doi:10.1093/molbev/msy228 Advance Access publication January 18, 2019



SLIM 3 - doi:10.1093/molbev/msy228

MBE

standard WF model, the parents for each child in the next
generation are drawn randomly from the previous generation
with a probability proportional to each individual’s fitness.
This makes it difficult to model variation in litter size, mo-
nogamous mating, and other such phenomena. Furthermore,
since population size is an externally determined parameter
in the WF model, it is often not clear how scenarios in which
population size is an emergent variable—depending, for in-
stance, on factors such as mean fitness, available habitat, and
colonization history—should be accurately modeled in a WF
framework.

Given the scope of the simplifying assumptions underlying
the WF model, the desire among SLiM’s users to go beyond
this model takes many forms, but they might be said to unify
around the idea of more realistic spatial and ecological dy-
namics. For example, users have inquired whether it is possi-
ble to model the explicit movement of individuals over a
continuous landscape, life cycles with overlapping genera-
tions, individual variation in reproduction, density-
dependent population regulation, individual variation in
dispersal or migration, local extinction and recolonization,
mating between subpopulations, age structure, fitness-
based survival and hard selection, emergent sex ratios, and
more. Because SLiM 2 was already highly scriptable, and thus
many of its internal dynamics could be modified through
scripting, it was sometimes possible to work around the lim-
itations inherited from the WF model; but those work-
arounds are often clumsy and laborious, and some types of
models have simply proved difficult or impossible to imple-
ment in SLiM 2. Fundamentally, the Wright—Fisher model is
not an ecological model, and so if we are to progress toward
uniting genetics and evolutionary biology with ecology, the
need for a more flexible foundation is clear.

In response to this need, we here introduce SLiM 3, which
contains two major advances squarely aimed at these limita-
tions. First, in addition to the traditional Wright—Fisher or WF
model type of previous SLiM versions, SLiM 3 supports a new
non-Wright—Fisher or “nonWF” model type that provides
much greater flexibility in how key processes such as mate
choice and reproduction, migration, fitness evaluation, sur-
vival, population regulation, and other related areas are
implemented, allowing the explicit linking of evolutionary
dynamics with ecological patterns and processes. Second, in
addition to support for discrete subpopulations connected by
migration, SLiM 3 now supports models that occupy contin-
uous spatial landscapes, including built-in support for spatial
maps that describe environmental characteristics, and for lo-
cal spatial interactions such as spatial competition and mate
choice. (Support for spatial models was introduced in SLiM
2.3, in fact, but is previously unpublished.)

SLiM 3 contains many other important additions as well.
Most prominently, it adds support for “tree-sequence record-
ing” (also called “pedigree recording”), a method of recording
ancestry information in forward simulations (Kelleher et al.
2016, 2018). Tree-sequence recording can decrease simulation
runtimes by several orders of magnitude, by allowing neutral
mutations to be overlaid efficiently after forward simulation
has completed and by allowing neutral burn-in to be done

extremely efficiently with “recapitation”, and it provides sev-
eral other major benefits as well (Kelleher et al. 2018; Haller
et al. 2018). SLiM 3’s support for tree-sequence recording is
discussed further in Haller et al. (2018). Other important
changes in SLiM 3 since SLiM 2.0 (the last published version)
include many additions and improvements to the Eidos
scripting language (Haller 2016), many new methods pro-
vided by SLiM’s Eidos classes (Haller and Messer 2016), and
many improvements to the SLiMgui graphical modeling en-
vironment. SLiM 3 also contains a great deal of optimization
work to make simulations run faster. A few more specific
improvements are worth mentioning too: a new
Individual class representing simulated individuals, sup-
port for a variable mutation rate along the chromosome, a
new recombination() callback mechanism for modifying
recombination breakpoints at an individual level, and VCF
format output, among others (a complete change list may be
found in the SLiM manual).

Here, however, we will focus on what we believe to be the
most important new features in SLiM 3: nonWF models and
continuous space, the features that enable users to go beyond
the Wright—Fisher model in SLiM. We will provide a concep-
tual overview of these features, and will demonstrate them
with several examples.

The nonWF Simulation Model

Perhaps the easiest way to understand nonWF models is by
looking at how they differ from the standard WF model type.
The most important differences are in the following broad
areas:

® Age structure. In WF models, generations are discrete and
nonoverlapping all individuals live for a single generation,
during which they reproduce and then die. In nonWF
models, by contrast, generations can be overlapping indi-
viduals can live for multiple generations, until they die due
to some cause (typically selection, old age, or bad luck).
More fundamentally, the concept of a “generation” has
been broadened. In nonWF models, each generation rep-
resents an opportunity to reproduce and/or die—a dis-
cretization of those events in time, providing a temporal
structure to the model that could be based upon hours,
days, seasons, or decades, but that is not necessarily related
to the expected lifespan of individuals. Individuals in
nonWF models have an age (measured in generations),
the population thus has an age structure, and the model
can implement whatever age-related behaviors are desired.
The generation cycle in nonWF models is contrasted
against that of WF models in figure 1.

® Offspring generation. In WF models, offspring are gen-
erated by drawing parents from the individuals in the
previous generation. The population size is a parameter
of the model, determining how many offspring are to be
generated in each generation; the selfing rate, cloning
rate, and sex ratio are, similarly, population-level param-
eters. In nonWF models, by contrast, the script is much
more directly in charge of the process of offspring gener-
ation; the script requests the generation of each offspring
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The sequence of events within one
generation in WF models.

The sequence of events within one
generation in nonWF models.

1. Execution of early() events

2. Generation of offspring:

2.1. Choose source subpop

2.2. Choose parent 1

2.3. Choose parent 2
(mateChoice() callbacks)

2.4. Generate the offspring
(recombination() callbacks)

2.5. Suppress/modify child
(modifyChild() callbacks)

3. Removal of fixed mutations

1. Generation of offspring:

1.1. Call reproduction()
callbacks for individuals

1.2. The callback(s) make
calls requesting offspring

1.3. Generate the offspring
(recombination() callbacks)

1.4. Suppress/modify child
(modifyChild() callbacks)

2. Execution of early() events

3. Fitness value recalculation
using fitness() callbacks

4. Offspring become parents

4. Viability/survival selection

5. Execution of late() events

5. Removal of fixed mutations

6. Fitness value recalculation
using fitness() callbacks

7. Generation count increment

6. Execution of late() events

7. Generation count increment,
individual age increments

Fic. 1. A comparison of the generation cycles in WF models (left) versus nonWF models (right). Note that nonWF models have a viability/survival
selection phase, immediately after fitness value recalculation, whereas in WF models fitness influences mating success and there is no concept of
mortality-based selection. Events and callbacks are shown in red; these are points in the generation cycle when SLiM will call out to the script to
provide custom behavior. So-called early () and late( ) events provide commonly used points in the generation cycle when the model script
can intervene in SLiM’s operation, toward the beginning and the end of each generation respectively, to do model-specific tasks—generate output,
handle interactions between individuals, move individuals in space, and so forth. As this figure illustrates, in WF models early () events come
before offspring generation and late() events come after; in nonWF models, early () events come after offspring generation, whereas
late() events, by virtue of being at the end of the generation cycle, in effect come before offspring generation (when it occurs at the beginning of
the next generation). Callbacks, on the other hand, allow the script to override specific aspects of SLiM’s behavior, such as choosing mates,
customizing generated offspring, calculating fitness effects, or generating custom recombination breakpoints. Most of these callbacks exist in both
WF and nonWF models, but mateChoice() callbacks exist only in WF models, whereas reproduction() callbacks are only in nonWF
models and handle mate choice as well as other reproduction-related duties.
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based upon individual state rather than population-level
parameters. Calls are made from SLiM to reproduc-
tion() callbacks defined in the model script, and those
callbacks determine which individuals reproduce, how
they choose a mate or mates (if any), how many offspring
they have, and so forth. The population size, selfing rate,
cloning rate, and sex ratio are therefore no longer
population-level parameters; instead, they are emergent
properties of the model, consequences of the rules speci-
fied in script for the individual-based reproduction dy-
namics. The population size, for example, becomes a
result of the balance between birth rates and death rates,

often (but not necessarily) regulated by density-
dependent viability selection implemented in the model.
Migration. In WF models, migration between popula-
tions is modeled by specifying the fraction of offspring
in a given target population that stem from parents in a
given source population. Since this model of migration
leads to offspring that occupy a different population from
their parents, it most closely resembles a model of juve-
nile migration. In nonWF models, by contrast, migration
is again handled more directly by the model script, which
may call the takeMigrants () method to move individ-
uals to a new population at any point in the generation
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cycle, enabling models where individuals migrate as juve-
niles, as adults, or at multiple times during their life. This
focus on individual-level migration, rather than
population-level migration rates, allows for the probabil-
ity that a given individual will migrate to depend much
more flexibly upon individual-level state. A wide range of
scenarios can be modeled this way, such as sex-
dependent migration, habitat choice, or condition-
dependent migration. In such models, the overall migra-
tion rate between two populations is again an emergent
property that depends on the specific composition of the
population and the migration rules specified in script,
rather than on a population-level rate.

® Fitness. In WF models, fitness influences the probability
that an individual will be chosen as a parent for a child in
the next generation; there is no built-in concept of
selection-induced mortality. Fitness is therefore relative,
resulting in a model of so-called “soft” selection in which
greater success for some individuals necessarily comes at
the price of diminished success for others. The overall
population size is not affected by selection, since it is a
model parameter rather than an emergent property of the
underlying evolutionary and ecological dynamics. In
nonWF models, by contrast, fitness directly influences
the probability of survival for each individual during
each generation; individuals with low fitness are less likely
to survive. Fitness is therefore absolute, and selection is
“hard” in such a model by default; as a result, population
size will vary naturally with mean population fitness (al-
though this may be compensated for by density-
dependent selection or fecundity). Of course one may still
model the effects of genetics upon reproductive success or
fecundity, in a reproduction() callback, if desired.

These differences can be summarized by saying that
nonWF models are more individual-based, more script-
controlled, more emergent, and therefore more biologically
realistic. However, they are also often more complex in cer-
tain ways, primarily because of the need to implement a
reproduction() callback and to introduce some explicit
mechanism of population regulation. In effect, with the
power to more precisely control reproduction and popula-
tion regulation comes the responsibility to more explicitly
think about and specify those phenomena. Populations can
be regulated by any of a wide variety of mechanisms, from
density-dependent fecundity to resource competition to
predation to territorial behavior to natural disasters
(Hixon et al. 2002; Begon et al. 2006). Any of these mecha-
nisms can be implemented in a nonWF model, but it is not
done for you as it is in a WF model; the user must decide
what mechanism(s) of population regulation are desired
and implement them in the model’s script.

To provide an illustration of the relative ease with which
such nonWF models can be specified in SLiM, we have sup-
plied two example recipes (supplementary examples 1 and 2,
Supplementary Material online). The first example is a very
basic nonWF model in a population where viability depends
on the carrying capacity of the population; the second

example is a more sophisticated nonWF model with monog-
amous mating and effects of age on mating and fitness.

Continuous Space Models and Spatial Interactions
Continuous-space models in SLiM 3 are quite straightforward
at the conceptual level. Continuous space is enabled with a
call to initializeSLiMOptions() that provides a dimen-
sionality: "X" for one spatial dimension, "xy" for two, or "xyz"
for three; we will focus here on 2D models since that is prob-
ably the most common case. Individuals then have properties
representing their x and y coordinates in the continuous 2D
space, which can be accessed and set. The spatial boundaries
of each subpopulation can be configured by the user; by
default, the landscape will span the interval [0,1] in each di-
mension. Setting individual positions is the responsibility of
the model, and the model determines what use, if any, is
made of those positions; there is no automatic consequence
of spatiality upon model dynamics. However, since there are
common ways in which models often want spatiality to in-
fluence dynamics, two additional facilities are provided: inter-
action types, and spatial maps.

Interaction types are supported with a new Eidos class,
InteractionType. An interaction type is defined with a
call to initializeInteractionType(), and specifies
two things: a distance metric that determines the interaction
distance between two individuals, and an interaction formula
that determines how the strength of interaction between two
individuals varies with the distance between them. Once an
interaction type is set up and evaluated, spatial queries can be
made: what are the n closest neighbors to a given individual,
what is the strength of interaction between individuals i and j,
what is the total interaction strength exerted upon individual
i by all other individuals in its subpopulation, and so forth.
These queries are handled internally by highly optimized data
structures such as k-d trees (Bentley 1975) and sparse arrays
(Tewarson 1973), but those details are entirely hidden by
SLiM, providing a way of implementing spatial interactions
such as spatial competition and spatial mate choice that is
both simple and fast.

Spatial maps are not represented with a separate class;
instead, they are attached to subpopulations. A new spatial
map can be defined with a call to the defineSpatialMap()
method, and the value of a particular spatial map at a given
point can then be queried with spatialMapValue(). Any
number of spatial maps may be attached to a subpopulation;
multiple maps are distinguished from each other by name.
Each map defines a grid of values (of any resolution) that is
superimposed across the spatial bounds of the subpopula-
tion, either with or without interpolation of values between
grid points. The scale of the map values, and the meaning
attached to them, is entirely up to the model to define. One
map might define elevation across the landscape, another
temperature, and each of those maps might have consequen-
ces for survival, or fecundity, or movement, or any other as-
pect of the model.

Since much of this may seem rather abstract, we
have again supplied two concrete examples (supplementary
examples 3 and 4, Supplementary Material online). The first
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model is of a basic spatial population with local mate choice
and competition; the second model introduces a heteroge-
nous landscape and spatial extinction/recolonization
dynamics.

Discussion

We have presented SLiM 3, a new major release of the SLiM
forward genetic simulation framework. SLiM 3 provides many
improvements over previous versions of SLiM, which are de-
scribed in detail in the comprehensive documentation. Here
we have focused on the two major features that enable SLiM
3 models to go beyond the limitations and assumptions of
the Wright—Fisher model upon which all previous versions
were based: the nonWF model type, and support for contin-
uous space.

The nonWF model type affords the model control over
each individual mating event. This makes it easy to control
model characteristics such as mate-choice behavior, fecun-
dity, and individual variation in reproduction. In nonWF
models, fitness influences survival, not mating probability,
by default, which allows more natural and realistic population
dynamics. Other important model features that are relevant
for realistic ecology, such as overlapping generations, age
structure, and realistic migration/dispersal behavior, also
emerge naturally in this design. However, the option to con-
struct a WF model, as in previous SLiM versions, remains; this
can be useful particularly when one wishes to compare a
forward simulation model to an analytical model based
upon Wright—Fisher assumptions.

Similarly, SLiM 3 provides the option of incorporating
continuous space into a model, but models of discrete
subpopulations connected by migration are also still sup-
ported. When continuous space is enabled, SLiM 3 provides
a variety of useful tools for spatial modeling, such as spatial
maps, which can define landscape characteristics that in-
fluence model dynamics, and a spatial interaction engine
that can efficiently calculate interaction strengths between
individuals and find nearby neighbors of an individual.
SLiMgui also provides helpful visualizations for such mod-
els, making it easy to observe the dynamics that emerge
from spatiality.

It should be emphasized that these features really dovetail
with each other; in particular, ecologically realistic models
involving continuous space should almost always be
nonWF models. This is because the WF model imposes global
population regulation upon the simulation; an overall size is
set for each subpopulation, such that if density increases in
one area of space (due to immigration, for example), absolute
fitness will effectively decrease across the whole landscape. It
is possible to compensate for this with appropriate fitness
scaling, but it becomes quite complex if there is variation in
local carrying capacity, immigration and emigration rates,
variation in fecundity, etc; the externally imposed population
size of WF models is simply not designed to accommodate
locally determined population density. The emergent popu-
lation size and density in nonWF models, on the other hand,
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automatically accounts for whatever factors influence birth
and death in the model. This is the reason that both of the
continuous-space examples we presented are nonWF models;
the influence upon local density of the sweep of a beneficial
mutation in Example 3, or of the occasional disasters of
Example 4, would be extremely difficult to model in a WF
framework.

Many other new features of SLiM 3 have not been sub-
stantially discussed here. We urge all users to read about tree-
sequence recording, which we believe to be a revolutionary
new method that will considerably extend the horizon of
what is possible in forward simulation (Haller et al. 2018).
The SLIM manual (Haller and Messer 2016) now contains
recipes and reference documentation for other new features,
and the Eidos manual (Haller 2016) now documents new
additions to the Eidos language. It is worth noting particularly
that a great deal of optimization work has gone into SLiM 3,
and it is generally much faster than previous versions, espe-
cially for large models with long chromosomes, which can be
orders of magnitude faster than in previous versions. We have
provided a performance comparison (supplementary results,
Supplementary Material online) that illustrates these benefits
and the performance tradeoffs involved with nonWF models
and continuous space.

SLiM 3 is free, licensed under the GNU GPL, and is available
on GitHub. Most users, however, will wish to download the
release version from https://messerlab.org/slim/; the extensive
manuals, with many examples, can be downloaded from the
same website. We also encourage SLiM users to subscribe to
the slim-discuss list at http://bitly/slim-discuss, where new
versions are announced and users can ask questions and
get help. The features that we have focused on here,
nonWF models and continuous space, will enable many
modeling scenarios that would have been difficult or impos-
sible to model in previous versions of SLiM. We hope this will
open up new frontiers in both applied and theoretical
research.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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