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Abstract: The mammalian or mechanistic target of rapamycin (mTOR) pathway plays a crucial role
in regulation of cell survival, metabolism, growth and protein synthesis in response to upstream
signals in both normal physiological and pathological conditions, especially in cancer. Aberrant
mTOR signaling resulting from genetic alterations from different levels of the signal cascade is
commonly observed in various types of cancers. Upon hyperactivation, mTOR signaling promotes
cell proliferation and metabolism that contribute to tumor initiation and progression. In addition,
mTOR also negatively regulates autophagy via different ways. We discuss mTOR signaling and its
key upstream and downstream factors, the specific genetic changes in the mTOR pathway and the
inhibitors of mTOR applied as therapeutic strategies in eight solid tumors. Although monotherapy
and combination therapy with mTOR inhibitors have been extensively applied in preclinical and
clinical trials in various cancer types, innovative therapies with better efficacy and less drug resistance
are still in great need, and new biomarkers and deep sequencing technologies will facilitate these
mTOR targeting drugs benefit the cancer patients in personalized therapy.
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1. Introduction

The mammalian or mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that acts
through two structurally and functionally distinct protein complexes, mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2), to sense and integrate multiple intracellular and environmental signals [1,2].
mTOR signaling is generally involved in regulating cell survival, cell growth, cell metabolism, protein
synthesis and autophagy, as well as homeostasis [3]. The pathological relevance of dysregulation of
mTOR signal is illustrated in many human diseases, especially the multitude of different human cancers.
As reported, mTOR is aberrantly overactivated in more than 70% of cancers [4]. Over the past few years,
it has been extensively demonstrated in animal models and clinical patients of cancer that mTOR
dysfunction contributes to tumorigenesis [5].

Since the mTOR pathway regulates many basic biological and physiological processes such as cell
proliferation, survival and autophagy, it is logical that components in the mTOR pathway are among
the most frequently mutated genes in cancers [6]. The regulation of mTOR pathway is also influenced
by its positive and negative regulators that have cross talk with mTOR, such as the phosphoinositide
3-kinase (PI3K)/Akt, mitogen activated protein kinase (MAPK), vascular endothelial growth factor
(VEGF), nuclear factor-κB (NF-κB), and p53 etc., which comprise a much more complicated signaling
cascade [7].

Several types of mTOR inhibitors such as rapamycin, its rapalogs and mTORC1/2 kinase inhibitors
have been examined in various cancer models, including breast cancer, lung cancer, gastric carcinoma,
colorectal cancer, prostate cancer, head and neck cancer, gynecologic cancer, glioblastoma, lymphoma,
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urinary bladder cancer, renal cancer and medulloblastoma, etc. However, the effects of mTOR inhibitors
utilized as monotherapy in cancer are sometimes dampened by several resistance mechanisms [8].
Combined therapies with mTOR inhibitors and other pathway inhibitors or conventional therapies are
under investigation in preclinical and clinical trials in different tumor types. Hence, novel therapeutic
strategies based on mTOR inhibition still need to be developed.

2. mTOR (The mammalian or mechanistic target of rapamycin) Signaling in Cancer

2.1. mTORC1 and mTORC2

mTOR is a serine/threonine kinase, which is attributed to the phosphoinositide 3-kinase
related protein kinase (PIKK) super family, and was first discovered from a genetic screening for
rapamycin-resistant mutations in yeast Saccharomyces cerevisiase [9,10]. In mammalian cells, mTOR mainly
acts through its two evolutionarily conserved complexes, mTORC1 and mTORC2, which share some
common subunits, such as the mTOR kinase, the mammalian lethal with SEC13 protein 8 (mLST8),
dishevelled, EGL-10 and pleckstrin (DEP) domain-containing mTOR-interacting protein (DEPTOR),
telomere maintenance 2 (Tel2) and Tel2-interacting protein 1(Tti1) complex as shown in Figure 1.
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Figure 1. The mammalian or mechanistic target of rapamycin (mTOR) complexes and signaling
pathway of mTORC1 and mTORC2. mTORC1 is responsive to nutrients, hormones, amino acids,
hypoxia and growth factors, while mTORC2 responds to growth factors. mTORC1 and mTORC2 share
common subunits of mTOR kinase, mLST8, DEPTOR (DEP domain-containing mTOR-interacting
protein), Tel 2 and Tti 1. mTORC1 additionally binds with RAPTOR (Regulatory-associated
protein of mTOR) and PRAS40 (Proline-rich substrate of 40 kDa), and mTORC2 combines with
RICTOR and mSIN1 (Mammalian stress-activated protein kinase interacting protein 1) as well as
Protor and PRR5 (Proline-rich protein 5). mTORC1 is regulated by PI3K/Akt (Phosphoinositide
3-kinase/serine-threonine protein kinase) and Ras-MAPK (Mitogen activated protein kinase) signaling
pathways. mTORC1 regulates protein translation and synthesis of nucleotide lipid via 4E-BP1 and
S6K1 and downstream effectors. mTORC1 also activates STAT3 (Signal transducer and activator
of transcription), HIF-1α (Hypoxia-inducible factor 1α) and PP2A (Protein phosphatase 2A) in
tumorigenesis. mTORC2 regulates SGK (Serum glucose kinase) and PKC (Protein kinase C) to promote
cell survival, cytoskeleton reorganization and cell migration. mTORC2 is negatively modulated by
mTORC1 via different feedback loops mediated by IRS (insulin receptor substrate) or Grb10. mTORC1
and mTORC2 can both contribute to turmorigenesis through different mechanisms [7,11].
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mTORC1 and mTORC2 are different in the aspects of rapamycin sensitivity, specific binding
components, subcellular localization, downstream substrates, and regulation [12]. mTORC1 is sensitive
to rapamycin whereas mTORC2 is comparatively resistant to rapamycin [13]. In addition to the
common binding subunits, mTORC1 and mTORC2 respectively harbor distinct components that
contribute to the specificity of substrates, different subcellular localization, and specific regulation.
mTORC1 also contains the regulatory-associated protein of mTOR (RAPTOR), which is a significant
scaffolding protein in the mTORC1 assembly and its stability and regulation, and proline-rich substrate
of 40 kDa (PRAS40) is a negative regulator of mTORC1 by releasing mTORC1 inhibition upon the
activation of growth factors [14,15]. mTORC2 uniquely contains rapamycin-insensitive companion of
mTOR (RICTOR) and the mammalian stress-activated protein kinase interacting protein 1 (mSIN1),
both of which can mutually affect their protein levels and stabilize each other. Previous research
has demonstrated that RICTOR is a scaffolding protein essential for the assembly, stability, substrate
recognition, and subcellular localization activation of mTORC2. In addition, mSIN1, which is essential
for plasma membrane localization of mTORC2, negatively regulates mTORC2 kinase activity [16,17].
Newly discovered interactors include Protein observed with RICTOR 1/2 (Protor-1/2), which are
required for mTORC2 assembly and catalytic process, and Proline-Rich Protein (PRR) 5, which is
necessary for mTOR activity and mTOR–RICTOR binding [18,19].

mTORC1 and mTORC2 have differing subcellular localization binding with their own respective,
specific subunits, which also determine their distinct functions and independent regulations. mTORC1
is associated with endosomal and lysosomal membranes, where it interacts with its effectors. mTORC2
is affiliated with the plasma membrane, as well as ribosomal membranes, where it binds with its key
substracts, AGC family kinases (subgroup of Ser/Thr protein kinases named after 3 representative
families, the cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase (PKG) and
the protein kinase C (PKC) families), such as serum glucose kinase (SGK) isoforms and protein kinase
C (PKC), which are essential for mTORC2 activation [20]. Both mTORC1 and mTORC2 play significant
and differing roles in a variety of intracellular processes. They are regulated by various endogenous
and exogenous stimuli, such as nutrients, growth factors, energy, hormones and hypoxia, and they
can also affect glucose metabolism through different physiological mechanisms [1,21–23]. Generally,
mTORC1 can phosphorylate its downstream effectors, such as eukaryotic translation initiation factor
4E binding protein 1 (4EBP1), S6 kinase (S6K), and sterol regulatory element-binding protein (SREBP),
to motivate protein translation, synthesis of nucleotides and lipids, biogenesis of lysosomes, and to
suppress the process of autophagy [24]. On the other hand, mTORC2 is more sensitive to extracellular
growth factors though the molecular mechanism remains to be elucidated [25]. Upon activation,
mTORC2 phosphorylates its downstream targets SGK and PKC, as mentioned previously, to intensify
the signaling cascade [26]. mTORC2 mainly increases cytoskeletal rebuilding and cell migration,
inhibits apoptosis and affects metabolism [27] (as shown in Figure 1).

2.2. Signaling of mTORC1

The mTOR signaling pathway is crucial in cell growth, proliferation and metabolism. mTORC1 is
regulated by several signaling pathways including the PI3K/Akt pathway, the Ras-MAPK pathway,
and some other intracellular factors (see Figure 1).

Activation of mTORC1 is primarily dependent on the PI3K/AKT pathway to respond to
oncogenic growth factors or insulin [28]. Even though the second messenger phosphatidylinositol
(3,4,5)-triphosphate (PIP3) binds and activates mTORC2 directly, mTORC1 can also be indirectly
activated by PI3K through Akt. Akt is activated by phosphorylation at Ser473 by mTORC2 and
at Thr308 by another serine-threonie kinase PDK1 (Phosphoinositide-dependent Kinase 1). Then,
phosphorylation of tuberous sclerosis complex 2 (TSC2) by active Akt results in blockage of TSC2
and TSC1 combination [29–31]. The activator of mTORC1, Ras homolog enriched in brain (RHEB),
which is negatively regulated by TSC1/2, is released by TSC to allow the activation of mTORC1 in
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lysosomes [32]. In addition, AKT can activate mTORC1 by phosphorylating and dissociating the
inhibitor PRAS40 from RAPTOR independent of TSC1/2 [33].

Moreover, TSC2 can also be phosphorylated by extracellular signal-regulated kinases (ERKs) and
ribosomal protein S6 kinase (RSK) from the Ras-MAPK signaling pathway, which results in inhibiting
TSC1/2 and promoting RHEB-mediated mTORC1 activation. In addition, similar to AKT, PRAS40 can
also be phosphorylated by RSK to release RAPTOR and activate mTORC1 [34–36].

mTORC1 is also responsive to fluctuations of cellular factors such as DNA damage, intracellular
adenosine triphosphate (ATP), glucose, amino acids, and oxygen. Several signaling pathways that
are responsive to DNA damage suppress mTORC1 via p53 target genes, leading to TSC2 activation:
for example, 5′-AMP activated protein kinase β (AMPKβ) and phosphatase and tensin homolog on
chromosome 10 (PTEN) [37]. Upon energy exhaustion, AMP kinase (AMPK), which is activated
by low ATP/high AMP levels, promotes TSC1/2 complex formation and phosphorylates RAPTOR,
leading to indirect inhibition of mTORC1 [38]. This outcome also implies that in a situation of energy
shortage, AMP accumulation will cover the growth factor signals and suppress cellular replication.
Through a sensing signal cascade of amino acids, mTORC1 can be positively regulated by amino acids,
activation of which motivates the Rag complex to combine with RAPTOR. Along with this process,
mTORC1 is recruited to the lysosomal surface [39,40]. Rag-GTPase, which is associated with RAPTOR
and localizes mTORC1 to lysosomal membranes, is especially activated by arginine in lysosomes or by
leucine in the cytoplasm [41–44].

Once activated, mTORC1 will transfer the signal to downstream effectors, such as 4EBP1 and
S6K1, both of which are essential modulators of cap-dependent and cap-independent translation.
After phosphorylation of 4EBP1 and S6K1 by mTORC1, the binding partners, eukaryotic initiation
factor (eIF)-4E and eukaryotic initiation factor-3 (eIF-3), will be respectively liberated, facilitating
initiating complex formation for translation and intensifying ribosome genesis [45]. In the following
signal cascade, eIF-4E will form the eIF-4F complex and increase protein translation, which is
significant for the G1-S phase transition. Upon low mTORC1 activity, 4E-BP1 is dephosphorylated,
and protein translation is inhibited [46]. On the other side, eIF-4B and S6 ribosomal protein
(S6RP) are phosphorylated by S6K1, which initiates protein translation and continues translation
elongation [47,48]. Actually, mTORC1-related signals seem to prefer to affect the translation of
oncogenic proteins involved in protein synthesis, invasion and metastasis [49]. Moreover, mTORC1
also regulates some other proteins such as hypoxia-inducible factor 1α (HIF-1α), protein phosphatase
2A (PP2A), glycogen synthase, and signal transducer and activator of transcription (STAT) 3, through
which mTORC1 promotes biosynthesis of proteins, lipids and nucleotides in aberrant cells, tissue and
organism growth in cancer [2,50–54].

In brief, mTORC1 activation induces cap-dependent translation that leads to increases in cell size
and proliferation, which are two typical characteristics of cancer [55,56].

2.3. Signaling of mTORC2

Although the regulatory mechanism of mTORC1 is well depicted, the regulators of mTORC2 are
much less characterized. This is partly due to the difficulties in teasing apart the functional differences
between mTORC1 and mTORC2 [13]. As we mentioned previously, through mSIN1, mTORC2 localizes
at the plasma membrane where it binds with its substrates Akt, SGK and PKC. Notably, the localization
of mTORC2 is significant for its regulation [16] (see Figure 1).

First, mSIN1 regulates mTORC2 depending on different mechanisms. mTORC2-Akt signaling
can be sustained by a positive feedback loop from mSIN1 phosphorylation of Akt, whereas mSIN 1
phosphorylation by S6K1 at the same site suppresses mTORC2 activity [57–59]. On the other hand,
recent research found that mSIN1 can also combine with Rb in the cytoplasm, which results in the
inhibition of mTORC2 complex formation and Akt signaling [60].

Likewise, mTORC2 is regulated by PI3K/Akt, as well as by mTORC1 itself. PI3K activates
mTORC2 to bind to ribosomes both in normal physiological and pathological conditions, such as
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cancer [61]. Akt, which is commonly found to be hyperactive in cancers, is an important substrate of
mTORC2. Akt aggregates signals from PI3K/mTORC2 and PI3K/PDK1 to accelerate cell proliferation.
Localization of Akt to the plasma membrane is regulated by PIP3, which is similar to mTORC2. Akt also
activates mTORC1 signaling in addition to mTORC2, leading to a more complicated signal network [29].
In addition, mTORC2 is negatively modulated by mTORC1 via feedback loops. For example, the S6K1
promotes insulin receptor substrate (IRS) 1/2 degradation resulting in inhibition of mTORC2 and the
PI3K/Akt pathway. Another feedback mechanism is through growth factor receptor-bound protein 10
(Grb10), which is positively modulated by mTORC1 [62–64].

For downstream effectors, serum and glucocorticoid kinase (SGK) and protein kinase C (PKC) are
two key phosphorylation substrates of mTORC2. SGK substrates include N-myc downstream-regulated
gene 1 protein (NDRG1) and Forkhead box family transcription factors (FoxO), which promote cell
survival under oxygen or nutrient depletion conditions or in response to PI3K inhibition [65,66]. Through
phosphorylation of different PKC family members, mTORC2 is reported to regulate cytoskeleton
reorganization and cell movements involved in tumorigenesis [17,25,67,68] (See Figure 1).

2.4. mTOR Signaling in Cancer

Since mTOR signaling regulates fundamental activities including cell cycle, proliferation, growth,
and survival, as well as protein synthesis and glucose metabolism, there is no doubt that mTOR has
a close association with cancer. As reported, mTOR signaling is enhanced in various types of cancers.
Data in solid tumors demonstrated that the mTOR signal is dysregulated in almost 30% of cancers and
is one of the most frequently affected cascades in human cancers [69].

Activation of mTOR signaling in cancer mainly depends on three different levels of mechanisms:
first, mutations in the mTOR gene lead to a constitutively hyperactive mTOR signaling cascade;
second, mutations in the components of mTORC1 and mTORC2 result in activation of mTOR signaling;
and lastly but most importantly, aberrant mTOR signaling can also result from mutations in upstream
genes, that is, loss-of- function mutations in suppressor genes and gain-of-function mutations in
oncogenes [7]. We discuss these mechanisms in the following text.

Mutation of mTOR, which is the core gene of the mTOR signaling and encodes the kinase,
will directly lead to hyperactivation of mTOR signaling. A study utilizing public tumor genome
sequencing data in 2014 reported that 33 mTOR mutations were found to contribute to the
hyperactivation of mTOR signaling in various cancer types. Most of these mutations assemble in
six different regions of the c-terminal region of mTOR in several cancer types, and one is specifically
abundant in kidney cancer, all of which maintain the sensitivity to mTOR inhibition by pharmacological
therapies [70].

Moreover, genetic aberrations in components of mTOR complexes are reported to have a close
relationship with cancer. RICTOR, a component of mTORC2, was found to be amplified in beast cancer,
non-small cell lung cancer (NSCLC), and particularly in squamous cell lung carcinoma (SQCLC),
in which RICTOR amplification is significantly related to poor prognosis and short survival [71–73].
Overexpression of RICTOR was also observed in gliomas with high Akt activity in nearly 70% of
patients and HER2 (human epidermal growth factor receptor-2)-positive breast cancers, leading to Akt
hyperactivity and tumor aggravation [72,74].

Except for the above, mTOR signaling hyper-activation can commonly result from mutations of
upstream genes including oncogenes and tumor suppressor genes [75]. The PI3K signaling pathway,
which is upstream of both mTOR complexes, often has various kinds of mutations of its components
in cancer, such as mutation and amplification of Akt and of PIK3CA and amplification of growth factor
receptors, Epidermal Growth Factor Receptor (EGFR) and insulin growth factor receptor (IGFR) [76–78].
Since PI3K and RAS are two parallel pathways, amplification of growth factor receptors that are
upstream of either signal can also result in abnormal signal transduction on both mTOR complexes [6].
Furthermore, loss of functions in tumor suppressor genes, such as PTEN, p53, TSC1/TSC2 and
Serine Threonine Kinase 11 (STK11), all contribute to mTOR activation in the pathological state of
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cancer [79]. PTEN, which is the second most frequently mutated gene after p53 in human cancer, can
be downregulated through mutation, methylation, protein instability and intracellular localization [80].
Aberrations in the PTEN genes also influence cancer cells in myeloma, breast cancer and endometrium
cancer, which are sensitive to mTOR inhibitors [81–84]. Inactivation of TSC1 or TSC2, which are
negative regulators of mTORC1, is responsible for Tuberous Sclerosis and leads to benign tumor
genesis. This also demonstrates that mTORC1 serves as a potent driver of cell proliferation. Mutations
of TSC1 and TSC2 are reported in bladder cancer, urothelial carcinoma, clear cell renal carcinoma
and well-differentiated pancreatic neuroendocrine tumors [85–87]. Actually, mutations in TSC1,
TSC2 and mTOR are much less frequent than those in components that are higher upstream in the
signaling pathway.

mTOR signaling mainly regulates cell proliferation and metabolism involved in tumor initiation
and progression. As reported, at the level of 4E-BP1/eIF-4E, dysregulation of protein synthesis
downstream of mTORC1 play a central role in tumorigenesis. eIF-4E promotes the translation of
specific pro-oncogenic proteins that regulate cell survival, cell cycle progression, angiogenesis, energy
metabolism, and metastasis. Besides, mTOR activation also leads to increased ribosome biogenesis,
providing machinery to maintain high levels of cell growth [1]. In cancer cells, metabolism seems
to reprogram to sustain the demands of rapid cell growth. mTOR complex is recently depicted as
a nutrient sensor in metabolism of cancer, especially on glucose and amino acid, nucleotide, fatty acid
and lipid, growth factors and other stresses. Nutrient sensing mainly activates mTORC1 and the
metabolic changes in cancer cells sustain mTOC1 activation in turn [2,22,23,88]. In glucose metabolism,
mTORC1 can enhance the translation of two key transcription factors, hypoxia inducible factor (HIF)-1α
and Myc, which drive expression of a variety of glycolytic enzymes to regulate glycolysis [89–91].
mTORC2 can also increase glucose metabolism through its downstream effector AKT [92]. For lipid
synthesis, mTORC1 activates the critical transcription factor sterol regulatory element-binding protein
1 (SRE-BP1) driving gene transcription in lipid synthesis via Akt activation and phosphorylation
of Lipin1 and S6K1 [93,94]. The increased levels of SRE-BP mRNA and protein are associated with
mTORC1 upregulation in human breast cancer tissues [95]. In addition, purine and pyrimidine
synthesis, which is significant for cancer cell DNA replication, can also be promoted by mTORC1 via
S6K1 phosphorylation [96,97].

Moreover, mTOR is involved in the regulation of autophagy, a process that degrades and recycles
cytosolic components in response to a shortage of nutrients and energy. Autophagy is commonly
regarded as an inhibition process against tumorigenesis, and blockage of autophagy contributes to cancer
initiation [98]. However, some conflicting research results have demonstrated that autophagy may play
a dual role in cancer development under specific conditions: for example, it is dependent on different P53
status in pancreatic cancer [99–101]. mTORC1 is reported to inactivate UNC-5-like autophagy-activating
kinase 1 (ULK1) by phosphorylation resulting in failure to form ULK1-ATG13-FIP200 complex, which is
required for autophagy initiation [102–104], while mTORC2 can inhibit autophagy indirectly by activating
mTORC1. mTORC1 also regulates autophagy at the transcription level by modulating a key transcription
factor, Transcription Factor EB (TFEB), for genes in lysosomes and autophagy [105]. Moreover, mTORC1
is likely to affect autophagy through some other ways such as the death-associated protein 1 (DAP1)
which suppresses autophagy, WD repeat domain phophoinositide-interacting protein 2 (WIPI2) and
a mammalian ortholog of Atg18 [23].

3. mTOR Inhibitors in Therapies of Different Types of Cancer

As stated above, the mTOR signaling pathway plays a central role in cancer initiation and progression,
and is the second most frequently altered pathway after the p53 pathway in human cancers [106]. Therapies
utilizing mTOR inhibitors have been developed to reduce the high mTOR signaling levels in various
cancer types.

Rapamycin, which lead to mTOR discovery of mTOR in the target screening, is the original
inhibitor of mTOR. Rapamycin binds to FK506 Binding Protein 12 (FKBP12), resulting in the unbinding
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RAPTOR from mTORC1. In addition, the downstream effect is inactivation of S6K1 and 4E-BP1 by
inhibiting phosphorylation, which leads to a decrease in protein synthesis and cell cycle arrest in the
G1 phase [107]. Rapamycin also negatively regulates VEGF, platelet-derived growth factor (PDGF),
basic fibroblast growth factor (bFGF) and so on, which are transcriptional targets of hypoxia-inducible
factor 1α (HIF-1α) and contribute to vascular development and cancer progression [108]. Moreover,
rapamycin can act indirectly on mTORC2 also by binding FKBP12, leading to dissociation of RICTOR
from mTOR, thus decreasing the levels of mTORC2 and possibly in a specific cell type [13,109]. Due to
poor solubility and undeterminate kinetic and pharmacological properties of rapamycin, a series
of allosteric mTOR inhibitors (named rapalogs) have been developed to achieve better efficacy in
patients [110]. Four rapalogs of rapamycin: temsirolimus (by intravenous administration), everolimus
and ridaforolimus (by oral administration) and ABI-009 (nanoparticle albumin-bound-rapamycin)
have been applied in monotherapy or combination therapies in a variety of cancer types in different
phases of clinical trials [111]. Apart from rapalogs, ATP competitive inhibitors, such as vistusertib
(AZD2014), AZD8055, CC-223 and OSI027 that suppress mTORC1 and mTOR2 kinase simultaneously,
and PI3K/mTOR dual inhibitors might result in improved anticancer effect in preclinical and clinical
studies [112]. Several potential biomarkers, including PIK3CA and PTEN mutation status, AKT activity,
and other members of the mTOR pathway, have also been explored according to preclinical results
and clinical data.

In the following parts of our review, we focus on the alterations of mTOR signaling in eight
different types of solid tumors and applications of various mTOR inhibitors in therapeutic strategies
in these specific tumors.

3.1. Lung Cancer

In non-small cell carcinomas (NSCLC), PI3K pathway activation is found in 50–70% of patients
with AKT phosphorylation [113]. Mutations in EGFR, Kirsten rat sarcoma viral oncogene (KRAS), PI3K,
amplification of PIK3CA and loss of PTEN can lead to PI3K pathway activation [114]. As reported by The
Cancer Genome Atlas (TCGA) Research Group, alterations in the PI3K/Akt pathway, which is upstream
of mTOR signaling, were detected in 47% of squamous cancers (including PIK3CA alterations in 16%,
PTEN alterations in 15%, AKT3 alterations in 16%, AKT2 alterations in 4% and AKT1 alterations < 1% of
the total samples) [114]. Actually, genomic amplification is much more frequent than somatic mutations
in PI3KCA in lung cancers. In addition, PI3KCA was found to have copy number amplifications in
33% of squamous cell lung carcinomas, which occurred independently of the PI3KCA gene mutation,
demonstrating that each event is probably sufficient to initiate tumorigenesis. Besides, in a report
of 51 Japanese small cell lung cancinoma (SCLC) patients, 36% of the tumors had genetic mutations
related with mTOR pathway [115]. Phophorylated mTOR is demonstrated to contribute to SCLC
progression [116].

Although some reports indicated that expression of mTOR/phosphorylated-mTOR (p-mTOR)
has no significant association with prognosis in NSCLC patients [117], mTOR inhibitors including
everolimus, temsirolimus, and ridaforolimus have been extensively applied in NSCLC patients in
clinical trials. Although both everolimus and ridaforolimus demonstrated promise in phase I studies,
neither of them achieved such promising results in phase II studies in NSCLC patients due to toxicity
of these traditional mTOR inhibitors [118–120]. Everolimus either combined with chemotherapy (CT)
or radiotherapy also showed non-significant results in NSCLC patients [121,122]. A phase II study in
advanced NSCLC patients treated with chemotherapy (CT) or CT and EGFR inhibitors demonstrated
that everolimus at a dose of 10 mg/day achieved a response rate of 4.7% and a disease control rate of
47.1% [123]. Another phase II clinical trial of everolimus (5 mg/day) combined with the EGFR inhibitor
gefitinib (250 mg/day) in 62 advanced NSCLC patients did not indicate a definite result because the
partial response rate did not meet the threshold to continue further investigation [124]. Temsirolimus
is reported to suppress cell proliferation in NSCLC cell lines relying on different doses [125]. A phase I
clinical trial of temsirolimus confirmed a partial response rate in one patient with NSCLC out of 63
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patients of various types of advanced cancer [126]. In a phase II study, 35% of NSCLC patients (n = 52)
benefited from temsirolimus, among which 8% patients had confirmed PR and 27% had a stable
disease [127]. On the other hand, both everolimus and temsirolimus have some adverse events (AEs),
such as fatigue, dyspnea, stomatitis, mucositis, asthenia, nausea and mucositis, and combination
therapies with other inhibitors, radiotherapy or chemotherapy are still under investigation. Sirolimus,
which is an allosteric inhibitor of mTORC1, was demonstrated to possibly inhibit the NSCLC cell
proliferation in a preclinical study [128]. Clinical trials are still under way in phase I or II of sirolimus
combined with other therapies in patients with NSCLC harboring specific gene mutations [121].
Reports on mTOR inhibitors in SCLC are relatively rare, and temsirolimus was shown to fail to benefit
SCLC patients [129].

3.2. Gastric Cancer (GC)

Researches demonstrated that PIK3CA, PIK3CB, AKT1 and mTOR are overexpressed in GC cell lines,
and mTOR pathway is active in almost 60% of gastric cancer patients [130]. PIK3CA is reported to be
commonly mutated and amplified at frequencies of around 18% and 5%, respectively [131]. Three mutation
hotspots that exist in almost 80% of PIK3CA mutations are E545K (exon 9), E542K (exon 9) and H1047R
(exon 20) [132]. As reported, PIK3CA mutation frequency in gastric cancer is associated with cancer stage
and Epstein–Barr virus (EBV) infection [131,133]. PTEN, which is a key inhibitor of the PI3K pathway,
is a significant tumor suppressor gene. According to the TCGA database of gastric cancer, deletion,
mutation and amplification of PTEN each occur in 0.3%, 3.1% and 4% of cases, respectively. The alteration
frequency of PIK3CA and PTEN varies significantly in different populations: for example, between Asian
and Caucasian GC patients, the rate is 7% compared to 15% for PIK3CA mutations, 21% compared to
4% for PTEN deletion, and 47% compared to 78% for PTEN loss, respectively [134]. Another research
found 19% PTEN mutations in GC patients in a Chinese population, including missense, nonsense,
deletion, and mutations in intron 6 [135]. PTEN tends to be mutated more frequently in advanced
stage or less differentiated GC [136]. Despite AKT overexpression in 74% of GC patients examined by
immunochemistry, the genetic alterations in AKT are very few at approximately 1% to 3% in GC [137,138].
Although the exact genomic changes that occur in mTOR signaling downstream of PI3K/Akt are not well
clarified, it is reported that phosphorylated-mTOR overexpression is related to some clinicopathological
features and poor prognosis in GC patients alone or combined with TSC1 downregulation [139,140].
In an Eastern Chinese population, mTORC1 polymorphisms contribute to the risk of GC [141]. Moreover,
an immunohistochemical study via GC tissue microarray demonstrated that aberrant S6K1 expression
may lead to cancer initiation, invasion and metastasis of GC [142].

The mTOR inhibitors have also been utilized in preclinical studies and clinical trials of GC.
Everolimus and sirolimus showed obvious G1 cell cycle arrest effects and suppressed proliferation
in gastric cancer cell lines [143,144]. Rapamycin was responded well in cancer cells harboring
PIK3CA and/or PTEN mutations (P = 0.0123) in a preclinical study, and inhibited tumor volume and
microvasculature growth when was applied in a mouse xenograft model [145,146]. Temsirolimus
demonstrated a favorable toxicity profile, pharmacokinetics features, and cancer resistant efficacy in
a phase I trial in advanced cancer including GC and is continuing to a phase II trial [126]. Everolimus
showed a good disease control rate (DCR) (56%), median progression-free survival (PFS; 2.7 months)
and overall survival (OS; 10.1 months) in advanced GC patients (n = 53) in phase II trails [147].
And biomarkers exploration has also been executed in a phase II study of everolimus in advanced
gastric cancer patients, and pS6 (Ser240/4) was found to be a potential predictive marker [148].
Although some side effects of everolimus (stomatitis, anorexia, fatigue, rash, nausea, peripheral edema,
diarrhea and pruritus) existed and improvements of the overall survival and primary endpoint were
not obvious, the PFS for six months and safety were significant in previously treated GC patients
in phase III trials, which also made everolimus the only drug to progress to phase III tirals for
advanced GC treatments [149,150]. Ridaforolimus, also an analog of rapamycin, demonstrated good
antitumor effects during preclinical and phase Ib clinical trials combined with capecitabine [151].



Int. J. Mol. Sci. 2019, 20, 755 9 of 34

mTORC1/2 kinase inhibitors other than rapalogs, such as PP242, AZD 2014, AZD8055, and OSI-027
have also attracted interests due to their competition with ATP in mTOR kinase activity. PP242 showed
outstanding antiproliferative and antiangiogenesis capabilities in GC cell lines, while there are no
future reports of other inhibitors on GC therapies so far and most of these inhibitors are still in phase I
trials [138,152].

3.3. Colorectal Cancer (CRC)

The PI3K/Akt pathway is genetically altered in many CRC cell lines [153]. Mutations of PI3K
and PTEN are dominant among those alterations in CRC patients. As reported, approximately 15% of
metastatic CRC patients carried PI3K3CA mutations, and loss of PTEN was found in 20% to 40% of CRC
patients [154,155]. In addition, PI3K subunit p85α and AKT1/2 were overexpressed, particularly in
advanced tumor stages, and the phosphorylation level of mTOR and S6K1 was increased in CRC [156].
Mutation of the p53 gene or deletion of the 17p chromosome is significant for tumor initiation,
especially from adenoma to carcinoma in CRC [157,158]. p53 inhibits mTOR activity via AMPK-β1
and TSC2 in CRC cell lines. p53 also regulates the mTOR pathway by a target gene, DNA damage
and development 1 (REDD1), which is essential for hypoxia activation of TSC1/2 and modulated
by oxidative stress [159,160]. Previous immunohistochemical studies demonstrated that mTORC1
signaling was involved in tumorigenesis at an early stage and contributed to progression from normal
cells to a neoplastic state in human colorectal adenoma and cancers [161]. mTORC1 and mTORC2 both
overexpress and play significant roles in CRC.

As for clinical trials of mTOR inhibitors, neither everolimus nor temsirolimus showed satisfactory
effects as monotherapies in treating metastatic CRC in several clinical trials. The effects of temsirolimus
were limited, especially in metastatic CRC patients with KRAS mutations [162,163]. Partial suppression
of the mTOR signaling pathway by rapamycin and rapalogs was found to be attributed to 4E-BP1 kinase,
which led to resistance in CRC [164]. Combination treatments of rapalogs and other drugs have
exhibited potential in CRC therapies. For example, combination of the VEGF inhibitor bevacizumab
and an mTOR inhibitor achieved fewer adverse effects and prolonged stable disease in metastatic CRC
patients [165]. Sorafenib was reported to improve the efficacy of rapamycin in CRC patients harboring
K-RAS and PIK3CA mutations [166]. Everolimus together with octreotide LAR (long-acting release)
achieved an obviously prolonged PFS in advanced colorectal neuroendocrine cancers in a phase III
study, while the combination of everlimus and irinotecan was well tolerated in a phase I study in mCRC
patients [167,168]. And everolimus and tivozanib, which inhibits angiogenesis, demonstrated a 50%
disease control in a phase II trial [165]. The combined therapies with mitogen-activated protein kinase
kinase (MEK) inhibitors and mTOR inhibitors also attracted more attention because these treatments can
overcome the resistance to MEK suppression in CRC [169]. Moreover, dual PI3K/mTOR inhibitors have
a reduced possibility to induce drug resistance than rapalogs, and mTOR kinase inhibitors can suppress
mTORC1 and mTORC2 simultaneously; thus, these drugs are introduced as the second generation
of mTOR inhibitor drugs in preclinical and clinical trials [170]. For instance, NVP-BEZ235, a dual
inhibitor of PI3K and mTOR signaling, inhibited tumor growth in a genetically engineered mouse model
of sporadic CRC [171]. mTORC1/2 inhibitors OSI-027 showed obvious antitumor activity in several
human xenograft models with various histologies [172,173]. In another study of human colon cancer
cell line xenograft, both the ATP competitive mTOR inhibitor PP242 and dual inhibitor of PI3K and
mTOR NVP-BEZ235 significantly suppressed the xenograft growth, and they achieved better efficacy
combined with a MEK inhibitor, implying a prosperous future for second generation mTOR inhibitors in
combination therapies for CRC [174].

3.4. Renal Cancer (RCC)

RCC is regarded as one of the most lethal cancers because of the rare available therapies and
lack of proper diagnosis biomarkers at early stages. RCC is mainly classified as clear cell renal cell
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carcinoma (ccRCC, 85%), papillary renal cell carcinoma (PRCC, 0–15%), chromophobe renal cell
carcinoma (chRCC, 5%) and collecting duct carcinoma and medullary carcinoma (1%).

Generally, mTOR signaling regulates cell metabolism, and RCC is also a cancer of metabolism
dysregulation [175]. Data from TCGA on a ccRCC study in 2013 demonstrated genetic alterations
in components of each level of the PI3K/Akt signaling pathway cascade (PIK3CA, PIK3R1, PIK3R2,
PTEN, PDPK1, AKT1, AKT2, AKT3, FOXO1, FOXO3, MTOR, RICTOR, TSC1, TSC2, RHEB, AKT1S1,
and PRTOR), mainly including GNB2L1 amplification (6%), PI3KCA amplifications or mutations (5%),
PTEN deletions or mutations (5%) or MTOR mutations (6%). Clustered MTOR mutations, as well as
mutations in AKT1, AKT3 and RHEB, contributed to PI3K/Akt and mTOR hyperactivation in
ccRCC [70,176,177]. In addition, the cross talk between VHL/HIF and the PI3K/Akt pathway via
a positive feedback mechanism contributes to the sustaining activation of PI3K/Akt signaling in
ccRCC [178,179]. The rate of genetic alterations in PI3K/Akt pathway components in pRCC is 28%
according to the TCGA database, including mutations of PTEN and PI3K subunits and amplifications
of GNB2L1, PDK1 and RPTOR amplifications. In chRCC, PTEN was mutated most frequently which
occurred in 11% of patients, and mutations of AKT1, TSC1/TSC2 and mTOR in the mTOR signaling
pathway have also been shown [180].

For targeted therapy towards the mTOR signal pathway in ccRCC, the treatment strategies are at
the leading edge, and many drugs have been authorized by the US Food and Drug Administration
(FDA). Among these approved drugs, temsirolimus and everolimus are rapalogs that partially inhibit
mTORC1 activation, leading to modest survival benefits in advanced ccRCC patients according to the
results of the phase III Global ARCC trial [69,181,182]. For metastatic renal cell carcinoma (mRCC),
temsirolimus and everolimus are the only mTOR inhibitors authoried by the US FDA. The clinical
data demonstrated that mTOR inhibitors can treat mRCC effectively as long as the adverse events
were appropriately handled [183]. As reported, ccRCC patients harboring TSC1 mutation tended
to respond to mTOR inhibitors [184]. In a study of 79 patients with mRCC, when treated by mTOR
inhibitors, those with mTOR, TSC1, or TSC2 mutations were found to benefit more than others who
progressed [185]. Some studies found that resistance to temsirolimus was related to low levels of
phosphorylated protein kinase B (p-Akt) and p70 ribosomal S6 Kinase (p-S6K1) in RCC, suggesting
that patients with these features should be eliminated from temsirolimus treatments in the future [108].
These data also imply that predicative biomarkers are especially in great need for selecting therapies in
future personalized management of RCC [186]. Besides, combination therapy of everolimus together
with lenvatinib was regarded to be the first strategy for mRCC, and cabozantinib and nibolumab are
subsequent choices, all of which achieved a better efficacy than everolimus alone [187]. mTORC1/2
inhibitors including AZD8055, LN0128 and OSI-027, seem to have potential for greater efficacy than
rapalogs in clinical trials of ccRCC [188]. A combination of MAPK- and mTOR-targeted therapies was
reported to utilize temsirolimus and tivozanib, which achieved better efficacy in RCC patients [189].

3.5. Urinary Bladder Cancer (UBC)

Urinary bladder cancer (UBC), the malignancy that occurs in the urinary system, ranks as the
ninth most common cancer [190]. UBC is classified into non-muscle-invasive UBC (NMIUBC) and
muscle-invasive UBC (MIUBC) according to the invasion status into the urinary bladder wall and
nearby structures. Genetic alterations of the mTOR pathway occur in over 40% of UBC patients,
including deletion or mutations of PTEN, TSC1 or TSC2 and mutations or amplifications of PI3KCA
or AKT1 according to the TCGA database [191–194]. These alterations in the mTOR pathway are
reported to be associated with progression and mortality in bladder cancers (n = 887) and are valuable
for prognosis [195]. UBC patients with a higher grade often harbor mutations that hyperactivate
the mTOR pathway or KRAS genes and decrease expression of tumor suppressor genes compared
to lower grade UBC patients in whom the FGFR3 mutation dominates [195,196]. Loss of PTEN is
common in MIUBC, while is hardly found in NMIUBC [197,198]. In a research composed of both
NMIUBC and MIUBC patients, mTOR was expressed in NMIUBC and had a poor prognosis in
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MIUBC [199]. Another case study (n = 208) indicated that mTOR activation evaluated by 4E-BP1 or
S6K1 phosphorylation contributed to tumorigenesis and was an indicator of recurrence and poor
survival of UBC patients [200].

Research on UBC cell lines 5637, T24, and HT1376 indicated that everolimus and temsirolimus applied
as single agent only showed limited efficacy in these experimental trials [201,202]. In ICR mice induced by
N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), sirolimus decreased tumor incidence and proliferation,
as implied by histopathological and immunohistochemical results, while everolimus demonstrated little
effects on bladder tumors [203,204]. In addition, sirolimus also showed benefits in a genetically engineered
mouse model of invasive UBC [205]. As reported from a phase II study, everolimus demonstrated mild
antitumor effects in metastatic UBC patients resistant to chemotherapy [206]. In another phase II study,
only a small portion of patients with advanced UBC responded to everolimus [207]. It seems that
rapalogs utilized as monotherapy are not as effctive as expected in the treatment of UBC. For combination
therapies, the results from 5637 and T24 cell lines were much more exciting because either everolimus or
temsirolimus combined with gemcitabine showed a better response, and cisplatin together with everolimus
or temsirolimus also achieved a promising results in 5637 and HT1376 cell lines [208]. A synergistic
combination of mTOR inhibitors and EGFR/HER2 inhibitors in UBC cell lines implied a potential efficacy
in NMIUBC and MIUBC treatments [209]. A study in patient-derived xenograft models with dual inhibition
of mTOR and MEK suggested potential clinical efficacy in UBC [210]. Application of mTOR inhibitors
in UBC treatments should depend on careful selection of the tumor type: NMIUBC seems to respond to
combination of rapalogs and other drugs, while only those MIUBC patients with phosphorylated mTOR
are suitable to accept mTOR inhibitors treatments.

3.6. Prostate Cancer (PCa)

The mTOR pathway is reported to be significantly active in prostate cancer [211,212]. The PI3K/Akt
pathway is found aberrant in PCa cell lines, xenograft models, and 30–50% primary PCa tissue
samples [213]. Genetic alterations of the mTOR pathway were detected in 42% of primary prostate tumors
and all metastatic tumors [211]. Aberrant PTEN/Akt expression was found in 42% of PCa tissues [214].
As PTEN loss was demonstrated to be associated with a high Gleason score, PCa pathological stages and
promoted the progression of lymph node metastasis, PTEN may serve as a potential early prognostic
marker in prostate cancers [215–219]. High levels of phosphorylated-4EBP1 and eIF-4E are significantly
related to increased mortality in PCa patients, implying that downstream effectors of the mTOR pathway
may be a potential prognostic indicator for PCa progression [220]. Studies in PCa cell lines indicated that
the PI3K/Akt/mTOR pathway contributed to PCa radioresistance (RR) through mechanisms of intrinsic
radioresistance, cancer cell proliferation and hypoxia, and in those PCa RR cell lines, the PI3K/Akt/mTOR
pathway was the most active [221,222]. Moreover, activation of the PI3K/Akt/mTOR pathway was also
reported to be involved in epithelial mesenchymal transition (EMT) and cancer stem cells (CSCs) in prostate
cancer radioresistance [223].

Despite the antitumor efficacy demonstrated by the mTOR inhibitors (rapalogs) rapamycin and
everolimus in murine models of Pca [90,224,225], the performances of rapalogs in phase I and II clinical
trials were not so satisfactory, leading to application of second generation mTOR inhibitors or further
combination therapies in Pca [226–229]. As reported, the ATP competitive mTOR inhibitor MLN0128
showed better efficacy in reducing tumor size and invasion in cell lines and Pca mouse models [49].
These ATP competitive mTOR inhibitors, such as MLN0128, AZD2014, ZAD8055, CC-223, DS-378a
and OSI-027, are in early clinical trials. In preclinical studies, the dual PI3K/mTOR inhibitors BEZ235
and GDC-0980 demonstrated effective inhibition of cell proliferation in prostate cancer cells [230,231].
BEZ235 was also reported to reduce tumor volume in a mouse model harboring PTEN loss, and the
effects were enhanced when combined with AR antagonist enzalutamide, implying a potential prospect
in synergy treatments cotargeting the AR, PI3K and mTOR signaling pathways in PCa [232]. BEZ235
and GDC-0980 are currently being tested as single agents or combination therapies with abiraterone
acetate in the process of phase I/II clinical trials in castration-resistance prostate cancer (CRPC).
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3.7. Breast Cancer

In breast cancer, most genetic alterations and mutations lie upstream of mTOR resulting in
hyperactivation of mTOR signaling. PIK3CA is frequently mutated in breast cancer in three “hotspots”:
E545K, E542K in exon 9 (helical domain) and H1047R in exon 20 (kinase domain) [233]. As reported,
PIK3CA mutations occurred in 20–50% of breast cancers, especially including 35% of hormone receptor
(HR)-positive breast cancers, 23% of human epidermal growth factor receptor 2 (HER2)-positive breast
cancers and less than 10% in triple-negative breast cancer (TNBC) [234]. PTEN mutations occur in less
than 3% of breast cancers, while PTEN loss occurs in approximately 30% of breast cancers [234,235].
Although Akt mutations in the catalytic domains have not been detected, E17K substitution occurred
in the pleckstrin homology domain of AKT1 resulting in constitutive activation in 3% of HR-positive
breast cancers [236]. Studies also found mutations in mTOR itself in various cancer types with FAT
and FATC domains frequently mutated [237,238]. Moreover, mTOR expression is correlated with poor
prognosis in breast cancer, and phosphor-mTOR was more common in TNBC [239–241].

Everolimus has been proved by the FDA in treating hormone receptor-positive, HER2-negative
breast cancer. And the mTOR inhibitors have been utilized in many clinical trials in beast cancer
treatments, such as HORIZON, BOLERO-1, BOLERO-2, BOLERO-3 and TAMRAD, which are all
Phase III or II randomized clinical practices evaluating the combination therapies with different mTOR
inhibitors in different settings. The HORIZON trial was executed in first-line patients of Hormone
Receptor (HR) positive advanced breast cancer to compare the combined therapy of temsiroliumus
with letrozole to therapy of placebo with letrozole. Analysis of the HORIZON trial demonstrated
the combination therapy failed to improve PFS and may be account for more grade 3 or 4 adverse
effects (37% vs. 24%) [242]. The BOLERO-1 trial was another randomized phase III evaluating
everolimus (10 mg) with paclitaxel and trastuzumab in patients of HER2 positive advance breast
cancer. PFS was not obviously increased in the group of everolimus (14.9 months) compared to
the group of placebo (P = 0.1167), while in the HR-negative subgroup, the PFS was prolonged 7.2
months with everolimus administration (P = 0.049) [243]. A high rate of adverse events correlated
with deaths in everolimus treatments of BOLERO-1 was also reported indicating the necessity to
monitor the adverse events in early stage. The object of BOLERO-2 trial is to evaluating combination
of mTOR inhibitor everolimus with aromatase inhibitor (AI) in HR positive advanced breast cancers.
Application of everolimus increased the PFS to 10.6 months compared to 4.1 months originally with
single exemestane administration (P < 0.0001) [244], which directly led to the permission of FDA for
everolimus with exemestane in advanced breast cancer patients with HR positive and HER2 negative
following unsuccessful therapy with letrozole or anastrozole. A recently reported study of BOLERO-2
demonstrated an improvement in overall survival in combination therapy group (31.0 months)
compared to the control group with exemestane and placebo (26.6 months) [245]. The TAMRAD
trial compared the combination of everolimus with tamoxifen to single tamosifen application in 111
HR positive/HER2 negative, AI resistant metastatic breast cancer patients, implying a significant
increase of clinical benefit rate (CBR), time to progression (TTP) and OS by everolimus addition [246].
Analysis of results from HORIZON and BOLERO-2 illuminated that endocrine-resistant patients may
gain more benefits from temsirolimus administration. So far, researches have mainly focused on
clinical efficacy in HR positive and HER2 negative breast cancer patients, in which everolimus has
been approved for combined application with exemestane. Ridaforolimus was reported to benefit
HER2 positive metastatic breast cancer patients when applied with trastuzumab in a phase II trial,
indicating ridaforolimus may improve the efficacy of trastuzumab [247].

Aside from the rapalogs, other mTOR inhibitors, such as ATP competitive inhibitors and PI3K
/mTOR dual inhibitors, have also been studied in breast cancer. ATP competitive inhibitors, AZD2014,
which showed better anti-proliferative capabilities in breast cancer cell lines, xenograft and primary
explant models, is now in process of phase II clinical trials designed to be combined with other
compounds or therapies [112,248,249]. MLN0128 inhibited cell viability in five breast cell lines (HR−/+,
HER2−/+) and acted synergistically with TSA [250]. In a phase I trial, CC223 was reported to be
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tolerated well and achieved partial response in breast cancer patients, implying its promising potential
in the future [251]. Dual inhibitors of PI3K and mTOR, BEZ235 and PF-04691502, both demonstrated
antitumor efficacy in breast cancer cells and xenograft models [252,253], but were also inclined to cause
serious side effects in clinical practices. More combination therapies with mTOR inhibitors are still
underway in different settings [254].

3.8. Head and Neck Squamous Cell Carcinoma (HNSCC)

Head and neck squamous cell carcinoma (HNSCC) accounts for almost 90% of human head and
neck cancers, including cancers in the oral cavity, oropharynx, nasopharynx, hypopharynx, and larynx.

A whole-exome sequencing research in 151 HNSCC patients demonstrated that PI3K pathway
was frequently mutated in 30.5% of HNSCC [255]. The genes with genetic alterations in HNSCC mainly
include PIK3CA, PIK3CD, PTEN, PDK1, Akt, RICTOR, RAPTOR, TSC1, TSC2 and mTOR [256–260].
Especially, PI3KCA amplifications and PTEN mutation are prevalent in human papilloma virus (HPV)
infected HNSCC [261]. Another separate study indicated that HPV positive HNSCC had a different
mutated gene cluster from HPV negative HNSCC [262]. PI3KCA amplification was observed in
early stage in the carcinogenesis as well as in the malignancies, implying PI3K pathway contributes
to the oncogenic process of HNSCC [263]. In addition, advanced HNSCC patients often harbor
multiple aberrations including mutations in PIK3CA and mTOR or PIK3CA and PTEN, suggesting
these simultaneously existing mutations are also associated with HNSCC progression [264]. A phase
II clinical trial showed that the single-nucleotide polymorphisms (SNP) in PTEN (rs12569998) and
AKT2 (rs8100018) are related with the progression risk and PFS in metastatic HNSCC treated with
combination of docetaxel and cetuximab [265]. mTOR is reported to be activated in 80–90% HNSCC,
particularly those with HPV infection [266,267]. As reported, mTOR and its downstream effectors,
eIF-4E, 4EBP1, S6K1, and S6 are all biomarkers for diagnosis and prognosis in head and neck cancer,
demonstrating the promising prospect for mTOR inhibitors in HNSCC treatments [268].

In preclinical studies of mTOR inhibitors, rapamycin and its rapalog temsirolimus, everolimus
all showed efficacy in xenograft HNSCC models [268,269]. An in vivo retroinhibition approach
applied in HNSCC cells demonstrated that rapamycin and its rapalogs can prevent angiogenesis,
and another study in xenograft model implied that rapamycin and rapalog everolimus also inhibit
lymphangiogenesis and lymph node metastasis in HNSCC [270,271]. Besides, mTOR inhibition can
also act synergistically with radiation therapy to reinforce the anti-angiogenic effects and suppress
HNSCC tumor growth in xenograft models [272,273]. Besides, several reports demonstrated the
promising results of mTOR inhibitors in HNSCC patient-derived tumorgraft (PDX) models [274–276].

Rapamycin, originally regarded as a specific inhibitor of mTORC1, was found to supress both
mTORC1 and mTORC2 in HNSCC cells [267]. And in a study of newly diagnosed HNSCC patients,
rapamycin (NCT01995922) achieved improved effectiveness, as most patients responded and one
patient got complete response [260]. Everolimus has been utilized in combination with cisplatin and
radiation therapy or with erlotinib or with cisplatin and docetaxel in HNSCC treatment, and was
tolerated well in these phase I or II clinical trials [277–279]. Another combination therapy in a phase
I study with temsirolimus, carboplatin and paclitaxel in HNSCC achieved a partial response rate
of 22%, while temsirolimus combined with erlotinib was poorly tolerated with common adverse effects
including fatigue, hyperglycemia, diarrhea and peritonitis in recurrent or metastatic HNSCC patients
in a phase II strudy [280,281]. Actually, most clinical practices of mTOR inhibitors as single agent in
HNSCC have been applied in those patients that failed in other therapies or general patients without
selection. Clinical trails focusing on mTOR inhibitors in HPV+ HNSCC patients have seldom been
conducted yet, although previous researches confirmed the potential of this strategy. Dual PI3K/mTOR
inhibitors like BEZ235 showed anti-tumor effects in HNSCC cell lines and tumorgrafts with PIK3CA
mutations, its efficacy in HNSCC patients remained unknown [255]. Besides, combination therapies of
mTOR inhibitors with other molecular-targeted therapies (EGFR, VEGFR, MEK, MAPK and MET) or
conventional therapies may shed lights in HNSCC clinical success.
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4. Discussions and Future Prospects

Among these eight solid tumor types we discussed, it seems that mTOR inhibitors achieved
better efficacy and relatively more attentions in treatments of renal cancer and breast cancer. Although
these tumors originate from different primary organs, they share similar genetic alterations in PI3K or
mTOR signal pathway (as summarized in Table 1), which imply that genetical and molecular biological
methods should be applied to classify cancer subtypes in addition to those organs affected especially
before targeted therapy application. Then we can get some related clues from clinical trials about
which specific mTOR inhibitors or combinations may benefit cancer patients with what kind of genetic
alterations in mTOR signaling [112]. We also summarize mTOR inhibitors that are under preclinical
and clinical trials in these eight solid cancer types (as shown in Table 2). Apart from those eight types
of solid tumors we mentioned, mTOR inhibitors have also been utilized in the therapies of gynecologic
cancer, osteosarcoma, leukemia, lymphoma, thyroid carcinoma, glioblastoma, neuroendocrine tumors
and medulloblastoma, and we won’t go into details here [282–289].

To summarize, mTOR inhibitors can be classified into three generations: the first generation
inhibitors, mainly include rapamycin and its rapalogs temsirolimus (CCI-779), everolimus (RAD001)
and ridaforolimus; second generation inhibitors refer to ATP-competitive inhibitor of mTOR kinase which
inhibit both mTORC1 and mTORC2 simutaneously (MLN0128, AZD2014, AZD8055, CC223, etc.) as well as
some dual PI3K/mTOR inhibitors (PP242, MLN0128, KU-0063794, BEZ235, etc.); Third generation inhibitor,
which has been seldom reported in clinical trials yet, has a bivalent structure to take advantage of the
two docking sites and avoid resistance against the original compounds. Better efficacy with less toxicity
in large individual variability is always the ultimate aim for designing targeting drugs. Rapalogs, as the
first generation mTOR inhibitors, have been tested in many clinical trials, but they achieved only modest
efficacy applied as monotherapies in cancer treatments due to multiple mechanisms: First, rapalogs
partially inhibit mTORC1 activity, and a negative feed back loop will arouse the PI3K and Akt signal via
PI3K/mTORC2/Akt cascade, leading to increased cell growth and enhanced cell survival [290,291]. mTOR
signal pathway is a complicated system which has various cross-talks with other signaling pathways that
can counteract rapalogs’ functions [292]. Second, although phosphorylation of S6K1 is totally blocked
by rapalogs, 4EBP1 phosphorylation is modestly suppressed. Thus, proteins translation regulated by
4EBP1 in tumorigenesis can still be translated to promote cancer progression. Also, rapalogs decrease the
inhibition of IRS-1 by S6K1 phosphorylation, inducing Akt signaling and downstream pathways [291].
Besides, mTORC1 inhibition can also promote cell proliferation by catabolism of extracellular proteins in
nutrient deprived conditions, and enhance cell survival via autophagy [293,294]. Therefore, new focuses
are turned to the second generation mTOR inhibitors with dual inhibition on PI3K and mTOR signaling or
mTOR kinase inhibitors, which are less possible to induce drug resistance than rapalogs alone and already
have been introduced in preclinical study or entered the clinical practices [170]. Combination therapies
with rapalogs and other signal pathway inhibitors as well as conventional therapies are more prosperous,
and many clinical trials have already confirmed the benefits of this treating strategy in various cancer types
as we discussed above. However, whether these therapy strategies will offer improved benefits need to be
verified in further clinical trials.

For future directions of mTOR targeting therapy, we should clarify the following issues: first,
we need to establish appropriate dose schedules of mTOR inhibitors that ensure the efficacy and better
toleration in patients; second, all the mTOR inhibitors related treatments no matter monotherapies or
combination therapies should continue to be carefully optimized and evaluated to achieve the best
effectiveness in clinical trials; third, we should improve the ability to predict who will respond to
a certain targeted therapy of mTOR according to the analysis of genetic variations from the patients;
fourth, molecular biomarkers for the prognosis and prediction need to be explored to help selecting
suitable therapy plans and monitoring the treatment response to mTOR inhibitors in patients.
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Table 1. The incidence of genetic variations in mTOR (The mammalian or mechanistic target of
rapamycin) signal pathway components in 8 types of solid human cancers summarized in this review.

Cancer Type Refs Type of Genetic Variation Gene (Incidence)

Lung cancer
Squamous cancer [114] genetic alterations PI3CA (16%), PTEN (15%),

AKT3 (16%), AKT2 (4%),
AKT1(<1%)

amplifications PI3CA (33%)
SCLC [115] genetic alterations PI3CA (6%), PTEN (4%), AKT3

(4%), AKT2 (9%), RICTOR
(9%), mTOR (4%)

Gastric cancer
[131,132] mutations PI3CA (18%) (E545K,

E542K-exon9, H1047R-exon20)
amplifications PI3CA (5%)

TCGA deletions, mutations,
amplifications

PTEN (0.3%, 3.1%, 4% )

[135] deletions and mutations PTEN (19%, Chinese
population

[137,138] genetic alterations AKT (1–3%)

Colorectal cancer
[154,155] mutations PI3CA (15%)

deletions PTEN (20–40%)

Renal cancer
ccRcc [70,176,177] amplifications GNB2L1 (6%)

amplifications or mutations PI3KCA (5%)
deletions or mutations PTEN (5%)
mutations mTOR (6%)

pRcc TCGA mutations PTEN, PI3K
amplifications GNB2L1, PDK1, RPTOR ( total:

28%)
chRCC [180] mutations PTEN (11%)

Urinary bladder cancer
[192] activating point mutations PI3KCA (17%)

mutations or deletions TSC1 or TSC2 (9%)
mutations AKT3 (10%)

Prostate cancer
[211] genetic alterations mTOR pathway (42% primary

PCa, 100% metastatic PCa)
mutations PTEN (4% primary PCa, 42%

metastatic PCa); PIK3CA (6%
primary PCa, 16% metastatic
PCa)

Breast cancer
[233–235] mutations PIK3CA (20–50%)

(E545K, E542K-exon9,
H1047R-exon20)

mutations, loss PTEN (<3%, 30%)
HR-positive [234] mutations PIK3CA (35%)

[236] E17K substitution AKT1 (3%)
HER2-positive [234] mutations PIK3CA (23%)
TNBC [234] mutations PIK3CA (<10%)

Head and neck squamous cell carcinoma
[255,257,258,260] mutations PIK3CA (12.6%, 11–40%)

(E545K, E542K-exon9,
H1047R-exon20)
TSC1 (11%), TSC2 (13%)

amplifications PIK3CA (24.4% )
loss PTEN (8.16%, 10–15%)
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Table 2. mTOR inhibitors that are under preclinical and clinical trials in eight solid cancer types
summerized in this review.

Cancer Type Drug Class Drugs Refs

Lung cancer
NSCLC mTORC1 inhibitors everolimus [118–124]

temsirolimus [125–127]
sirolimus [128]

Gastric cancer
mTORC1 inhibitors rapamycin [145,146]

temsirolimus [126]
everolimus [143,144,148–150]

ridaforolimus [151]
mTORC1 and mTORC2 inhibitors PP242 [138,152]

Colorectal cancer
mTORC1 inhibitor temsirolimus [162,163]

rapamycin [164,166]
everolimus [165,167,168]

PI3K and mTOR inhibitors NVP-BEZ235 [171,174]
mTORC1 and mTORC2 inhibitors OSI-027 [172,173]

PP242 [174]

Renal cancer
ccRCC mTORC1 inhibitor temsirolimus [108,181,189]

everolimus [182,187]

mTORC1 and mTORC2 inhibitors AZD8055,
IN-0128, OSI-027 [188]

mRCC rapamycin [184,185]

Urinary bladder cancer
mTORC1 inhibitor rapamycin [201,205]

everolimus [202,204,206–208]
sirolimus [203,205]

temsirolimus [208]
mTORC1 and mTORC2 inhibitors PP242 or OSI-027 [209]

Prostate cancer
mTORC1 inhibitor rapamycin [225,227]

everolimus [226,228,229]
mTORC1 and mTORC2 inhibitors MLN0128 [49]

PI3K and mTOR inhibitors NVP-BEZ235,
GDC-0980 [230,231]

Breast cancer
mTORC1 inhibitor rapamycin [242]

everolimus [243–246]
ridaforolimus [247]

mTORC1 and mTORC2 inhibitors AZD2014 [112,248,249]
MLN0128 [250]

CC-223 [251]
PI3K and mTOR inhibitors PF-04691502 [252]

NVP-BEZ235 [253]

Head and neck squamous cell carcinoma
mTORC1 inhibitor rapamycin [267–271]

temsirolimus [268,273,280,281]

everolimus [268,270,274,277–
279]

PI3K and mTOR inhibitors PF-05212384 [272]

In the present review, we discuss the mTOR components of mTORC1 and mTORC2 and the
upstream and downstream effectors of mTOR signaling pathway in physiological and pathological status.
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Genetic alterations occurred in eight solid tumors and preclinical as well as clinical trials targeting mTOR
in these tumor types. As we know, most tumors are heterogeneous and caused by multiple genetic and
environmental factors, so it is difficult to have one single drug to fit all patients with the same tumor
type. More thorough realization of genetic profile and molecular characterization of different cancer
subtypes will surely help us select the most appropriate drugs in targeting mTOR signaling in cancer
therapy. With the rapid development of biomarkers and deep sequencing technology, personalized
therapy utilizing more specific mTOR targeting drugs that have better efficacy and more safety, will be
translated into clinical cancer treatments in the near future.
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Abbreviations

4EBP1 Eukaryotic translation initiation factor 4E binding protein 1
AEs Adverse events
AMPK AMP kinase
AMPKβ AMP activated protein kinaseβ
ATP Adenosine Tri-Phosphate
BBN N-butyl-N-(4-hydroxybutyl) nitrosamine
Bgff Basic fibroblast growth factor
CBR Clinical benefit rate
ccRCC Clear cell renal cell carcinoma
chRCC Chromophobe renal cell carcinoma
CRC Colorectal cancer
CRPC Castration-resistance prostate cancer
CSC Cancer stem cells
CT Chemotherapy
DAP1 Death-associated protein 1
DCR Disease control rate
DEP EGL-10 and Pleckstrin
DEPTOR DEP domain-containing mTOR-interacting protein
EBV Epstein-Barr virus
EGFR Epidermal Growth Factor Receptor
eIF-3 Eukaryotic initiation factor-3
eIF-4E Eukaryotic translation Initiation Factor
EMT Epithelial mesenchymal transition
ERKs Extracellular signal-regulated kinases
FDA Food and Drug Administration
FKBP12 FK506 Binding Protein 12
FoxO Forkhead box family transcription factors
GC Gastric cancer
Grb10 Growth factor receptor-bound protein 10
HER2 Human epidermal growth factor receptor 2
HIF-1α Hypoxia-inducible factor 1α
HNSCC Head and neck squamous cell carcinoma
HPV Papilloma virus
HR Hormone Receptor
IGFR Insulin growth factor receptor
IRS Insulin receptor substrate
LAR Long-acting release
MAPK Mitogen activated protein kinase
MEK Mitogen-activated protein kinase kinase



Int. J. Mol. Sci. 2019, 20, 755 18 of 34

MIUBCs Muscle-invasive UBCs
mLST8 Mammalian lethal with SEC13 protein 8
mRCC Metastatic renal cell carcinoma
mSIN1 Mammalian stress-activated protein kinase interacting protein 1
mTOR The mammalian or mechanistic target of rapamycin
mTORC mTOR complex
NDRG1 N-myc Downstream-Regulated Gene 1 protein
NF-κB Nuclear factor-κB
NMIUBCs Non-muscle-invasive UBCs
NSCLC Non-small cell lung cancer
OS Overall survival
p-Akt Phosphor-protein kinase B
PCa Prostate cancer
PDGF Platelet-derived growth factor
PDK1 Phosphoinositide-dependent Kinase 1
PFS Progression free survival
PI3K Phosphoinositide 3-kinase
PIKK Phosphoinositide 3-kinase related protein kinase
PIP3 Phosphatidylinositol (3, 4, 5)-triphosphate
PKA cAMP-dependent protein kinase
PKC Protein kinase C
PKG cGMP-dependent protein kinase
p-mTOR Phosphorylated-mTOR
PP2A Protein phosphatase 2A
PRAS40 Proline-rich substrate of 40 kDa
PRCC Papillary renal cell carcinoma
Protor-1/2 Protein observed with RICTOR 1/2
PRR 5 Proline-rich protein 5
p-S6K1 p70 ribosomal S6 Kinase
PTEN Phosphatase and tensin homolog on chromosome 10
RAPTOR Regulatory-associated protein of mTOR
RCC Renal cancer
REDD1 DNA damage and development 1
RHEB Ras homolog enriched in brain
RICTOR Rapamycin-insensitive companion of mTOR
RR Radioresistance
RSK Ribosomal protein S6 kinase
S6K S6 kinase
S6RP S6 ribosomal protein
SCLC Small cell lung cancinoma
SGK Serum glucose kinase
SNP Single-nucleotide polymorphisms
SQCLC Squamous cell lung carcinoma
SREBP Sterol regulatory element-binding protein
SRE-BP1 Sterol regulatory element-binding protein 1
STAT Signal transducer and activator of transcription
STK11 Serine threonine kinase 11
TCGA The cancer genome atlas
Tel2 Telomere maintenance 2
TFEB Transcription factor transcription factor EB
TNBC Triple-negative breast cancer
TSC Tuberous sclerosis complex
Tti1 Tel2-interacting protein 1
TTP Time to progression
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UBC Urinary bladder cancer
ULK1 UNC-5 Like autophagy activating Kinase 1
VEGF Vascular endothelial growth factor
WIPI2 WD repeat domain phophoinositide-interacting protein 2
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