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Abstract

In the past few years, a wealth of sample-specific network construction methods and struc-

tural network control methods has been proposed to identify sample-specific driver nodes

for supporting the Sample-Specific network Control (SSC) analysis of biological networked

systems. However, there is no comprehensive evaluation for these state-of-the-art meth-

ods. Here, we conducted a performance assessment for 16 SSC analysis workflows by

using the combination of 4 sample-specific network reconstruction methods and 4 represen-

tative structural control methods. This study includes simulation evaluation of representative

biological networks, personalized driver genes prioritization on multiple cancer bulk expres-

sion datasets with matched patient samples from TCGA, and cell marker genes and key

time point identification related to cell differentiation on single-cell RNA-seq datasets. By

widely comparing analysis of existing SSC analysis workflows, we provided the following

recommendations and banchmarking workflows. (i) The performance of a network control

method is strongly dependent on the up-stream sample-specific network method, and Cell-

Specific Network construction (CSN) method and Single-Sample Network (SSN) method

are the preferred sample-specific network construction methods. (ii) After constructing the

sample-specific networks, the undirected network-based control methods are more effective

than the directed network-based control methods. In addition, these data and evaluation

pipeline are freely available on https://github.com/WilfongGuo/Benchmark_control.

Author summary

Recently structural network control methods which exploit structural controllability of

complex networks have become a powerful analysis tool for identifying driver nodes (e.g.,

driver genes or drug targets) in biological networked systems. In fact, the key point to
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apply structural network control on biological networked systems is how to characterize

the state transition network (or interaction network) of these biological systems. The state

transition network is a graph in which nodes denote the system variables and edges denote

the significant interactions to trigger the state transition of system from one attractor (e.g.,

healthy state of individual patients) to another attractor (e.g., disease state of individual

patients). The state transition network characterizes the state transition of networked sys-

tem between any two attractors. Coincidentally, recently single sample network construc-

tion methods have been proposed to construct sample specific interaction network for

characterizing the state transition of sample-specific biological systems. Therefore it is

time to conduct a study to assess the performance of these state-of-the-art methods on the

real-world biological systems, including sample-specific network construction methods

and structural network control methods. Here we comprehensively provided a perfor-

mance evaluation of 16 analysis workflows based on the combination of four sample-spe-

cific network reconstruction methods and four representative structural network control

methods on a variety of real-world biological datasets. By this study, we have shed light on

the relative behavior and performance of different analysis frameworks for evaluating and

recommending these methods in particular biological application scenarios. In addition,

we would like to point a few challenges for current methods and suggest several develop-

ment directions of new SSC analysis workflows when more complex practice conditions

of control principles are faced.

Introduction

From dynamical system viewpoint, single samples can be modeled as sample-specific net-

worked systems, of which the state transitions are determined by the sample-specific driver

variables/nodes [1–6]. However, it is a big challenge for identifying sample-specific driver vari-

ables/nodes in dynamical biological processes called Sample-Specific network Control (SSC)

problem, as the true functional form of the underlying dynamics for sample-specific biological

systems are always unavailable. Recently structural network control approaches [7–11] which

aim to find a minimum set of driver nodes for steering the states of large-scale networks to the

desired states, may provide informative bioinformatics methods for solving the SSC problem

[12–17]. Meanwhile, the analysis of SSC problem is dependent on the prior given network

structure representing the topology of biological system. Indeed, how to obtain the network

representation of one sample (e.g., one cell in single-cell studies or one tumor sample in preci-

sion medicine applications) is currently widely investigated [18–20]. Thus, lots of sample-spe-

cific network reconstruction methods and structural network control approaches have already

been widely developed and are available for SSC analysis. Therefore, it is time to survey the

SSC analysis workflows for the identification of sample-specific driver variables related to het-

erogeneous biological processes.

Obviously, SSC analysis workflow in single samples consists of two key steps: (i) construct-

ing a sample-specific state transition network to characterize the state transition of each sam-

ple during dynamical biological processes; and (ii) designing network control methods based

on the topological structure of the sample-specific state transition network. On one hand, sev-

eral approaches have been proposed for constructing the sample-specific state transition net-

work, including Single Pearson Correlation Coefficient (SPCC) [1,2], Linear Interpolation to

Obtain Network Estimates for Single Samples (LIONESS) [3], Single-Sample Network (SSN)

[4], and Cell-Specific Network construction (CSN) methods [5]. These sample-specific state
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transition networks represent gene pairs are involved in the biological process for each sample,

and they are the key to applying follow-up structural network control methods. On the other

hand, many structural network control approaches have also been developed, including two

main categories. The first category as directed-network-based methods consists of Maximum

Matching Sets based control methods (MMS) [7] and Directed Feedback Vertex based control

method (DFVS) [21]. And the second category as undirected-network-based methods includes

Minimum Dominating Sets based control method (MDS) [9] and Nonlinear Control of Undi-

rected networks Algorithm (NCUA) [22].

Although these state-of-the-art methods are applicable in cutting-edge studies, they indeed

have their pros and cons in solving detailed biological and biomedical problems due to the

complicate application scenarios (e.g., incomplete available biological networks, unavailable

reference samples, and non-determined association directions). However, no comprehensive

evaluation of these algorithms has appeared. Apparently, guidelines or recommendations are

required for biological and biomedical scientists to apply these workflows on SSC analysis effi-

ciently; and the in-depth evaluation of these SSC analysis workflows is necessary to reveal their

advantages and limitations on a variety of representative simulations and real-world datasets.

Thus, in this work, we compared and evaluated multiple solutions/workflows for SSC applica-

tions in detail. First, we summarized four sample-specific network construction methods (i.e.,

SPCC, LIONESS, SSN, and CSN) and four structural control approaches (i.e., MMS, DFVS,

MDS, and NCUA). Thus, we have included a total of 16 SSC analysis workflows based on the

combination of any two methods corresponding to the two steps of SSC. Then we evaluated

the usability of different analysis workflows on three kinds of datasets: (i) numerical simulation

on two real biological networks; (ii) cancer driver gene and drug target identification on nine

TCGA bulk gene expression datasets with matched normal and disease samples for individu-

als; and (iii) cell differentiation factor recognition on the temporal single-cell RNA-seq dataset.

In these analysis and comparisons, the diverse evaluation measurements were carried out by

using the F-measure for predicting cancer driver gene, the AUC for ranking drug combina-

tions, the Jaccard score for method consensus and robustness, functional enrichment for bio-

logical significance, and so on.

Through this study, we found the SSC analysis workflows towards the final outcomes signif-

icantly depend on the characteristics of the network structure. Particularly, we summarized

and provided several recommendations for these SSC analysis workflows. (i) The performance

of a down-stream network control method is strongly dependent on the up-stream sample-

specific network method, and CSN and SSN are two preferred sample-specific network con-

struction methods according to a serious of evaluations. (ii) Overall, the undirected-network-

based control methods (i.e., MDS and NCUA) are more effective than the directed-network-

based control methods (i.e., MMS and DFVS) on most TCGA bulk cancer data and temporal

single-cell RNA-seq data. These results demonstrate that the identified network driver nodes

may be dominantly affected by the network characteristics (i.e., directed or undirected). In

Table 1, we summarized all recommended methods in different evaluations. In addition, we

provided freely available data and an evaluation pipeline, supporting biological context-spe-

cific recommendations for custom usage and benchmark study.

Results

Sample-specific network control problem and analysis workflows

Given expression data of multiple samples, the goal of SSC analysis is to identify sample-spe-

cific driver variables for determining the sample state transition. The procedure of SSC analy-

sis consists of two steps (Fig 1A). The first step is to construct the sample-specific state
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Table 1. The summary of recommended methods in different biological application scenarios. � denotes that the method is recommended in the SSC analysis.

Categories Sample-specific network construction

methods

Network control methods Reference

network

Recommendations from which Figure

ID SPCC LIONESS SSN CSN MMS MDS DFVS NCUA Net-1 Net-2

Simulated network � � Fig 2

TCGA(driver genes) � � � � � Fig 3

TCGA(Drugs) � � � � � Fig 4

scRNA-seq � � � Figs 5–7

https://doi.org/10.1371/journal.pcbi.1008962.t001

Fig 1. Overview of the Sample-Specific Control problem (SSC). (A) The flowchart of SSC analysis. The process of SCC analysis consists of two steps. The first step is

to construct the sample-specific state transition network from the sample datasets. For constructing the sample-specific state transition network, several sample-

specific network construction techniques have been proposed, including the Single Pearson Correlation Coefficient (SPCC), Linear Interpolation to Obtain Network

Estimates for Single Samples (LIONESS), Single-Sample Network (SSN), and Cell-Specific Network construction (CSN) methods. Among them, the SSN method has

the requirement for reference samples for constructing the single-sample differential co-expression network. Note that to filter the noise of sample-specific network

reconstructions, the directed protein interaction information networks can be used for keeping the edge direction in the sample-specific state transition network. The

second step is to design the network control principles; several structural network control methods have been proposed for finding a minimum set of driver nodes to

control the whole network state dependent on adequate knowledge of the network structure, including the directed-network-based methods (MMS and DFVS) and

the undirected-network-based methods (MDS and NCUA). (B) Representative biological meaning of “network driver nodes” in the structural network control

principles. Assuming that biological samples can be represented as the sample-specific interaction network, the sample-specific network driver nodes can provide an

efficient resource of personalized driver genes and cell-specific markers that can be useful for understanding the tumor or cell heterogeneity.

https://doi.org/10.1371/journal.pcbi.1008962.g001
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transition network, including several techniques such as SPCC [1,2], LIONESS [3], SSN [4],

and CSN [5]. The state transition network is a graph in which nodes denote the system vari-

ables and edges denote the significant interactions to trigger the state transition of system from

one attractor (e.g., healthy state of individual patients) to another attractor (e.g., disease state

of individual patients). The state transition network characterizes the state transition potential

of networked system between any two attractors. The second step is to identify network driver

nodes (network drivers) in the network control principles, including directed-network-based

network control methods (MMS [7] and DFVS [21]) and undirected-network-based network

control methods (MDS [9] and NCUA [22]).

In this study, we constructed the sample-specific state transition networks by using sample-

specific network construction methods on the sample gene expression data and prior known

gene interaction data, thus they would also be called as sample-specific interaction networks in

below. The edges of sample-specific interaction networks consist of the significant sample-spe-

cific differential co-expressions and prior known gene interactions. In this study, we used two

prior-known biological directed gene/protein interaction networks. The first reference gene/

protein interaction network was constructed by Hou et al. [23] (denoted as Network-1), which

were integrated by a variety of recently curated database resources, such as MEMo [24,25],

Reactome [26], NCI-Nature Curated PID [27], and KEGG [28]. Network-1 consists of 11,648

genes and 211,794 interactions. These interactions consist of gene-interaction information

from multiple high-quality sources such as protein interactions, TF-target interactions, protein

domain interactions, text-mined interactions, etc. The second reference gene/protein interac-

tion network consists of 6339 genes/proteins and 34,813 directed edges (denoted as Network-

2), constructed by Vinayagam et al. [29]. Of note, we considered the gene co-expression net-

work as a bidirected network, where the directionality of one network edge denotes the con-

nection for which two genes in this edge are both highly or both lowly expressed. Thus, the

biological interpretation of sample-specific interaction networks indicates the significant

change of sample-specific gene interactions on co-expression level.

Actually, the sample-specific interaction network can reliably characterize the biological

system or sample state. In a biological context, the network drivers in such sample-specific net-

work (i.e., SSC solution) can be, for example, the driver genes underlying the cancer develop-

ment or cell marker genes underlying single cell identification (Fig 1B). Therefore, the

sample-specific network driver nodes can serve as an efficient resource of personalized driver

genes or cell type/state specific markers, which can deepen our understanding on tumor or cell

heterogeneity. Here we focused on the task of applying SSC workflow suitably which com-

bined sample-specific network construction and structural network control methods for the

identifications of sample-specific driver variables related to particular biological processes, in

the method comparison and evaluation manner. In this study, we defined the minimum driver

nodes to satisfy the controllable of networks as driver nodes in a network by using network

control methods. Indeed, driver node sets are usually not unique for network control methods

such as MMS, MDS, DFVS and NCUA. Generally, MDS and DFVS does not consider multiple

driver-node sets to control the network. In order to fairly compared these control methods, we

choose one minimum driver nodes set as the driver node set in a given sample specific network

for the following analysis.

Evaluation of network control methods by pinning control simulation on

biological networks

To evaluate the physical significance of structural network control methods on biological data

ahead of SSC workflow evaluation, we focused on the control efficiency, which measures the
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performance of structure network control methods on networked system. To avoid the influ-

ence of network completeness and confidence, we firstly synthetically applied a three-dimen-

sional stable nonlinear Lorentz oscillator system [30,31] with topological structures from two

biological directed protein interaction networks (i.e., Network-1 and Network-2). That is, all

nodes are considered as the nonlinear Lorentz oscillator systems and all nodes are connected

as those in the directed protein interaction networks. The Lorentz oscillator networked system

can be modeled mathematically as,

_xiðtÞ ¼

_xi1ðtÞ
_xi2ðtÞ
_xi3ðtÞ

2

6
6
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3

7
7
5 ¼
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; ð1Þ

where a = 10, b = 8/3, q = 28, A = (aij)n×n denotes the adjacency matrix of the network (i.e. sim-

ulated from Network-1 and Network-2) and such system has three stable attractors, i.e.,

(0,0,0), (8.484,8.484.27) and (-8.484,-8.484.27).

Then we identified minimum driver node sets by using network control methods (i.e.,

MMS, MDS, DFVS and NCUA), and we applied feedback controllers on the driver nodes to

control the state of all nodes in the gene interaction networks from any initial state towards the

desired attractor. The feedback controllers are defined as follows,

ui ¼ � kðxiðtÞ � �xÞ; i 2 D � G ð2Þ

where k is the control strength (here we set k = 1000); xi(t) is the sate of node i at time t; �x is

the desired attractor; D denotes the set of driver nodes, G represents the gene interaction net-

work. If the error between the final state and the desired state for given nodes is less than a tol-

erance error ε0, i.e., ε ¼ kxiðTÞ � �xk � ε0; i 2 G (T is the final time), we considered these

nodes as efficiently controlled nodes. The control efficiency on whole network can be defined

as Efficiency = kEk/kDk, where E is a set of efficiently controlled nodes and D is a set of net-

work driver nodes. The bigger the efficiency score is, the better the network control method

performs.

Finally, we chose three attractors as the desired attractor respectively and conducted our

network control methods as above procession to evaluate the effect of different desired attrac-

tors on the control efficiency of network control methods. The control efficiency results of dif-

ferent network control methods on Network-1 and Network-2 respectively were shown in Fig

2, where the results are obtained under different error tolerances being 0.1:0.1:1. It was found

that NCUA performs better than other methods on control efficiency for attractor (8,484,

8.484, 27) and attractor (-8,484, -8.484, 27). For attractor (0, 0, 0), NCUA, MMS and DFVS

perform better than MDS. Overall, NCUA has stable performance for different desired attrac-

tors no regardless of sample specific network construction methods and prior know interac-

tion networks were used. Furthermore when Network-1 were used, the performance of NCUA

is robust for different desired attractors no regardless of sample specific network construction

methods networks were used. Therefore, NCUA would be recommended for pinning control

analysis on these two biological networks. And the total recommendations were summarized

as shown in Table 1.
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Evaluation of SSC by cancer driver gene and drug target identification on

TCGA bulk gene expression data

To demonstrate the usefulness of SSC analysis, we applied 16 SSC analysis workflows on 9

TCGA cancer datasets to discover the personalized driver genes and personalized drug targets.

They are the datasets for breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD),

kidney chromophobe (KICH) and kidney renal clear cell carcinoma (KIRC), kidney renal

Fig 2. The evaluation of structural network control methods by simulation of biological networks. The goal is to evaluate the control efficiency by synthetically

achieving control of the networked nonlinear Lorentz oscillator system towards desired attractors on two biological directed protein interaction networks from different

resources (i.e. Network-1 and Network-2). (A-B) Desired attractor (8,484, 8.484, 27); (C-D) Desired attractor (-8,484, -8.484, 27); (E-F) Desired attractor (0, 0, 0). The

efficiency of a given network is measured by the average value for different tolerance errors from 0.1 to 1.

https://doi.org/10.1371/journal.pcbi.1008962.g002
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papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma

(UCEC). The paired or matched samples for each individual patient (i.e., a normal sample and

a tumor sample from the same patient) were obtained from the TCGA data portal. The

detailed information of cancer samples used in this study is summarized in Table A in S1 File.

For each individual patient, we applied the CSN, SSN, SPCC, and LIONESS models to

obtain the personalized gene state transition network (i.e. sample-specific gene interaction net-

work). Of note, SSN uses a paired version by using both tumor sample and normal sample

information, but CSN, SPCC, and LIONESS only use tumor sample information for construct-

ing the personalized state transition network (Materials and Methods). To filter the noise of

sample-specific co-expression networks, we used two directed gene/protein interaction infor-

mation networks (i.e., the references from Network-1 and Network-2) to keep the edge direc-

tion, namely, CSN_Net1, CSN_Net2, SSN_Net1, SSN_Net2, SPCC_Net1, SPCC_Net2,

LIONESS_Net1, and LIONESS_Net1. Then, using these eight personalized state transition net-

works constructed in the first step of SSC, the structural network control methods, i.e., the

MMS-based control method (full control), MDS-based control method, and FVS-based con-

trol methods (DFVS and NCUA), further identified sets of key genes as the potential personal-

ized driver genes or drug targets.

On one hand, to verify the effectiveness of these SSC solutions based on different structural

network control methods, the prior-known cancer genes annotated in the list of Cancer Cen-

sus Genes (CCGs) were applied to assess the F-measure of the predicted personalized driver

genes (see Materials and Methods) considering both the precision and the recall). The results

in terms of F-measure are listed in Fig 3, while the results in terms of precision and recall were

listed in Figs A and B of S1 File, respectively. On the other hand, to evaluate the efficiency of

sample-specific network drivers recognition for personalized drug target discovery, the num-

ber of sample-specific network drivers/genes targeted by drug combinations were calculated,

and anti-cancer drug combinations were ranked for each patient based on the combinational

drug target network (S2 File). The drug combinations annotated in the Clinical Anti-cancer

Combinational (CAC) drugs (S3 File) were applied to assess the AUC of the top-ranked anti-

cancer drug combinations recommended by different SSC workflows (see Materials and

Methods), and the representative results of LUSC and LUAD are shown in Fig 4.

From these results shown in Figs 3 and 4, we have several observations and conclusions. (i)

Compared to the traditional Differential Expressed Gene (DEG) method, CSN and SSN would

be more effective to support follow-up network structure control methods for discovering per-

sonalized driver genes (Fig 3) and predicting personalized combinational drug targets (Fig 4).

And the undirected-network-based control methods (MDS and NCUA) are more effective

than the directed-network-based control methods (MMS and DFVS) regardless of the sample-

specific network construction method used. These results matched well with the experimental

results in our above synthetic pinning control evaluations (Fig 2). (ii) Actually, the choice of

proper prior-given network structure is also an important factor for SSC analysis. For example,

in Fig 3, the F-measure of NCUA for SSN_Net2 is larger than that for SSN_Net1; and in Fig 4,

the AUC of four network control methods based on CSN and SSN indeed exhibit better per-

formance for the prediction of personalized combinational drug targets when Network-2 was

used than those when Network-1 was used. These results matched well again with our syn-

thetic pinning control evaluations (Fig 2), demonstrating that the choice of a proper prior-

given interaction network structure is a key for applying SSC analysis in research and applica-

tions. By summarizing these results, CSN and SSN and reference Network-2 are recommended

for supplying a sample-specific network; and MDS and NCUA are recommended as network

control methods for discovering (targeted) network drivers, which were also listed in Table 1.
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Fig 3. Evaluation of SSC workflows for driver gene identification on nine TCGA bulk cancer gene expression datasets. By using dissimilar combinations of sample-

specific network and reference network, different sample-specific state transition networks can be obtained, e.g., (A) CSN_Net1, (B) CSN_Net2, (C) SSN_Net1, (D)

SSN_Net2, (E) SPCC_Net1, (F) SPCC_Net2, (G) LIONESS_Net1, and (H) LIONESS_Net2. Then the performance of four network structural control methods based on

these sample-specific state transition networks were evaluated, representing the performances of different SSC analysis workflows.

https://doi.org/10.1371/journal.pcbi.1008962.g003

Fig 4. Evaluation of SSC workflows for drug target identification on LUSC and LUAD cancer datasets from TCGA. To evaluate the usage efficiency of sample-specific

network drivers for personalized drug target discovery, the number of targeted sample-specific network drivers matching with drug combinations are calculated and anti-

cancer drug target combinations are ranked for each patient. The drug combinations annotated in the Clinical Anti-cancer Combinational drugs (CAC) were applied to

assess the AUC of the top-ranked/predicted anti-cancer drug combinations from different SSC workflows using (A) LUSC and (B) LUAD cancer datasets.

https://doi.org/10.1371/journal.pcbi.1008962.g004
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To evaluate the effect of number of reference samples on the performance of these sample-

specific network construction methods on TCGA cancer data, we have randomly chosen 10%,

30% and 50% patients with paired normal and disease samples, and re-conducted the CSN,

SSN, LIONESS and SPCC on these selected patients for each disease with similar procedure as

above analysis and discussion, where this procedure was repeated 100 times. Comparing these

average rates of F-scores from new SSC analysis on selected samples and those from original

SSC analysis on all samples, it was found that the size of reference samples has smaller effect

on the performance of CSN, compared with other network construction methods (Figs C and

D in S1 File).

To evaluate whether network deconvolution [32] benefits for the performance improve-

ment on SSC analysis, we firstly chose BRCA cancer data with relatively large number of

patients (>100 paired samples of patients) among above nine TCGA cancer datasets for the

further SSC analysis. Then we compared the results of SSC analysis with network deconvolu-

tion and without network deconvolution on BRCA cancer dataset, where network deconvolu-

tion can help identify and remove spurious transitive edges from co-expression network due

to indirect effects. Comparing the average rates of F-scores of new SSC analysis with network

deconvolution and those of original SSC analysis without network deconvolution on Net-

work-1 and Network-2, CSN is better than others (Fig E in S1 File), which suggest that net-

work deconvolution can more effectively improve the performance of SSC analysis when CSN

was used.

Evaluation of SSC by key factor recognition from temporal single-cell gene

expression data

As another kind of performance evaluation of different SSC workflows, 16 SSC analysis work-

flows were also carried on the Chu-time dataset [33]. This dataset comes from a study of devel-

opmental biology, containing 758 cells within six time points (0 h, 12 h, 24 h, 36 h, 72 h, and

96 h) along the differentiation process to produce definitive endoderm cells in human embry-

onic stem cells, as illustrated in Fig 5A. We first evaluated four network control methods in

identifying the cell type appearance during the cell differentiation process from the stemness

state to the differentiated state. Notably, a gene network-degree matrix rather than original

gene expression matrix was applied for cell type identification (e.g., cell clustering). This new

data matrix, in which each element is not the gene expression level, but the number of edges

connected to each gene in the corresponding sample-specific interaction network, was con-

structed for CSN, SSN, SPCC, and LIONESS respectively. As the classification label (i.e., cell

type) of each cell was known from the previous study [33], the adjusted random index (ARI)

[34] was used as the performance measurement in method comparisons. Seeing Fig 5B, four

sample-specific network construction methods are able to reconstruct the ordered clusters of

single cells corresponding to the differentiation stages, and they may produce better results

than those on the original data profiles (i.e., higher ARI values were obtained from gene net-

work-degree matrix than those from gene expression data).

Next, from the SCPattern analysis [35] of the Chu-time dataset, as shown in Fig 5C, we

detected a group of genes with expression changes along the different consecutive conditions

(Up-regulated genes and Down-regulated genes); we found that the number of Up-regulated

genes peaks at 36 h, implying that the key time point during embryonic differentiation may be

around 36 h. To further validate this conclusion, we applied network structural control meth-

ods of SSC for evaluating the controllability of each cell (see Materials and Methods) at each

time, which indicates the ability of each cell to change its current state; the bigger the controlla-
bility of one cell is, the greater the probability this cell’s state will change. As seen from Fig 6,
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the controllability remains unchanged or changes non-monotonically under different methods

with SPCC and LIONESS and cannot find any significant key time point, regardless of the ref-

erence network applied. Meanwhile, all of the network structural control methods using

CSN_Net2 detected the key time point at 36 h during cell differentiation according to the

change of cell controllability, which would be consistent with the change of up-regulated genes

detected by SCPattern. These results demonstrated that CSN and reference Network-2 are rec-

ommended for supplying sample-specific interaction networks for follow-up network control

methods on such single-cell data (Table 1).

Moreover, the important genes for each cell can be identified by SSC workflows. As known,

the rapid advancement of single-cell technologies has shed new light on the complex mecha-

nisms of cellular heterogeneity, however, single-cell RNA-seq (scRNA-seq) suffers from higher

noise and lower coverage compared to bulk RNA sequencing (RNA-seq). Based on statistical

independence, cell-specific network would be able to quantify the overall reliable interactions

between genes for each cell [5]. Thus, on the basis of cell-specific or sample-spcific networks,

network control methods were applied to identify important functional genes of a single cell

during human embryonic differentiation. We collected 20 functional genes that are involved

in human embryonic differentiation (S4 File) from literature reports, and we applied the

hypergeometric test [36] (see Materials and Methods) for computing the P-value of enrich-

ment of identified important genes in those prior-known functional genes. The cells with a P-

value less than 0.05 are considered as control-efficient cells, whose biological meaning points

these cells are involved in human embryonic differentiation. Fig F in S1 File illustrated the

number of control-efficient cells at different time points during embryonic differentiation.

When holding an assumption that the number of control-efficient cells should have much

higher value during the differentiation process, the network control methods based on SPCC

and LIONESS identified much smaller fraction of control-efficient cells at different time points

compared with CSN and SSN. These results demonstrated that CSN and SSN would be the

better options for sample-specific network construction in SSC analysis on this single-cell

data. Furthermore on the CSN and SSN provided sample-specific interaction networks, MDS

and NCUA exhibited better performance and robustness than other network control methods,

regardless of the reference network applied. Therefore, CSN and reference Network-2 are rec-

ommended for supplying a sample-specific network construction, and MDS and NCUA are

recommended as network control methods on single-cell data analysis. These consistent rec-

ommendations are supported by the results in Figs 5 and 6, and Fig F in S1 File, which are

also summarized in Table 1.

Evaluation of SSC by identification of “dark genes”

To demonstrate whether SSC is able to detect important genes within dark gene regions, we

have collected the genes within dark gene regions from a canonical dataset [37], which were

regarded as dark genes for method evaluation in this study (S5 File). The results in terms of

the ability to find “dark genes” in nine TCGA cancer data sets were shown in Fig G in S1 File,

and the results of “dark genes” detected in Chu-time data set is shown in Fig 7. In brief, the

Fig 5. Evaluation of SSC workflows by key genes identification on Chu-time single-cell gene expression dataset.

(A) Introduction of the Chu-time dataset. This dataset comes from a study of developmental biology and contains 758

cells within six time points (0 h, 12 h, 24 h, 36 h, 72 h, and 96 h) along the differentiation process from human

embryonic stem cells to definitive endoderm cells. (B)–(F) The usage of four sample-specific network construction

methods in identifying the cell clusters, i.e. cell types/states. (G) Detection of a group of genes with significant

expression changes along the multiple time points as determined by SCPattern method.

https://doi.org/10.1371/journal.pcbi.1008962.g005
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Fig 6. Evaluation of SSC workflows by the identification of important genes involved in cell fate decisions. The corresponding SSC

analysis dependent on different sample-specific state transition networks, including (A) CSN_Net1, (B) SSN_Net1, (C) SPCC_Net1, (D)

LIONESS_Net1, (E) CSN_Net2, (F) SSN_Net2, (G) SPCC_net2, and (H) LIONESS_Net2.

https://doi.org/10.1371/journal.pcbi.1008962.g006
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ability of SSC analysis to identify “dark genes” is greatly dependent on datasets and sample-

specific network construction methods.

(i) On multiple TCGA cancer datasets (Fig G in S1 File), MMS has a similar ability to iden-

tify “dark genes” as Differential Expression Genes (DEG) selection method for a given network

construction method and a given dataset. However, MDS, DFVS and NCUA have less ability

to identify “dark genes” than Differential Expression Genes (DEG) selection method.

(ii) Meanwhile, for the Chu-time single cell dataset, the final performance of SSC analysis is

dependent on the choice of sample-specific network construction methods and the reference

network (Fig 7). In particular, NCUA exhibited better performance when CSN_Net1 was

used. Thus, CSN and reference Network-1 and NCUA are recommended to combine as a SSC

workflow to identify “dark genes” on Chu-time dataset.

Besides, the above discussions demonstrate that SSC is able to detect potential driver genes

with important roles in the biological network control, meanwhile, the importance of driver

genes without differential expression would be underestimated by conventional analysis on

Fig 7. Identification of “dark genes”by different SSC workflows on Chu-time single cell dataset. The different state transition networks include (A) CSN_Net1, (B)

CSN_Net2, (C) SSN_Net1, (D) SSN_Net2, (E) LIONESS_Net1, (F) LIONESS_Net2, (G) SPCC-Net1, and (H) SPCC_Net2.

https://doi.org/10.1371/journal.pcbi.1008962.g007
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the expression level, so that they could also be thought of as “dark-differential expression

genes”, e.g. on transcriptome level [2,5]. It is necessary to further evaluate whether different

SSC analysis workflows have particular abilities or preferences to detect such “dark-differential

expression genes”. For nine TCGA cancer datasets, we obtained the personalized “dark-differ-

ential expression genes” by calculating the fold change of driver genes’ expressions between

normal and tumor samples (|log2(fold change)|<1). For the Chu-time dataset [33], we applied

the SCPattern method [35] for detecting a group of “dark-differential expression genes” along

differentiation time points.

The results in terms of the ability to find “dark-differential expression genes” (e.g. F-mea-

sure) on nine TCGA cancer data sets were shown in Fig 8 while the results of Chu-time data

set is shown in Fig H in S1 File. Generally, the ability of SSC analysis to identify “dark-differ-

ential expression genes” is greatly dependent on datasets and sample-specific network con-

struction methods. (i) In multiple TCGA cancer datasets, for a given network construction

method and a given dataset, all of the network control methods have a similar ability to iden-

tify “dark-differential expression genes” (Fig 8). (ii) Meanwhile, for the Chu-time dataset, as

shown in Fig H in S1 File, the final performance of SSC analysis is dependent on the choice of

sample-specific network construction methods and the reference network. In brief, NCUA

exhibited better performance when CSN_Net1 was used and MMS performs better when

CSN_Net2 and SSN (SSN_Net1 and SSN_Net2) and LIONESS (LIONESS_Net1 and LIO-

NESS_Net2) and SPCC (SPCC_Net1 and SPCC_Net2) were used. By summarizing the above

results, CSN and reference Network-1 and NCUA would be recommended as combined SSC

workflow to identify “dark-differential expression genes”. Thus, when using SSC analysis on a

particular dataset in practice, the users should evaluate the sample-specific network control

Fig 8. Identification of “dark-differential expression genes” by different SSC workflows on multiple TCGA cancer expression datasets. The different state transition

networks includes (A) CSN_Net1, (B) CSN_Net2, (C) SSN_Net1, (D) SSN_Net2, (E) SPCC_Net1, (F) SPCC_Net2, (G) LIONESS_Net1, and (H) LIONESS_Net2.

https://doi.org/10.1371/journal.pcbi.1008962.g008
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methods and network structural control algorithms to balance the identification of potential

“dark-differential expression genes” and conventional DEGs.

Note 1: Significant SSC analysis rather than random selection

i) To demonstrate the performance of SSC, we used z-score to evaluate whether the perfor-

mance of SSC analysis performs better than that of the random selection method and degree-

preserved random selection method on TCGA cancer datasets. Without loss of generality, we

choose BRCA cancer data with relatively large number of patients among multiple TCGA can-

cer datasets for the identification and discussion of driver genes and dark genes. Of note, the

dark genes were regarded as the genes within dark gene regions from a canonical dataset [37].

Similarly, we chose LUAD cancer data with relatively large number of patients among LUNG

(i.e., LUAD and LUSC) cancer datasets for the identification of drug combinations. The ran-

dom selection method randomly selected the genes with the same number of SSC selected and

we repeated this procedure 100 times. The degree-preserved random selection method gener-

ated 100 topologically matched random networks, each of which maintains the degree distri-

bution of the original sample-specific interaction network used in SSC analysis. The z-score is

defined as follows.

zi ¼ ðni � meanðSDiÞÞ=ðstdðSDiÞÞ ð3Þ

where ni is the result of SSC analysis for sample i, SDi is the distribution of the distribution of

the result of random selection method or degree-preserved random selection method. For this

one-side statistic test, the null hypothesis (H0) is ni = n0 and the alternative hypothesis (H1) is

ni> n0, where n0 is mean value of SDi. If z-score is greater than 1.645 (i.e., P-value <0.05), we

can regard that the SSC analysis performs better than the random selection method or the

degree-preserved random selection method.

We compared two random selection methods with SSC analysis by above reported results,

including: (1) the z-score results of SSC analysis compared to random selections in terms of

the F-score for CGC gene enrichment on BRCA cancer data, shown in Fig I in S1 File; (2) the

z-score results of SSC analysis compared to random selections in terms of the F-score for clini-

cal efficient combinational drug target enrichment on LUAD cancer data, shown in Fig J in S1

File; (3) the z-score results of SSC analysis compared to random selection in terms of the F-

score for enriching in dark genes, shown in Fig K in S1 File.

By summarizing the results in Figs I-K in S1 File, the performance of MDS and NCUA on

the sample-specific network of CSN and SSN performs better than those of random selection

methods. And the results of MDS method on the sample-specific network of CSN perform bet-

ter than that of degree-preserved random selection method. Therefore, SSC workflows actually

can have significant findings rather than random selections.

ii) To evaluate whether the performance of SSC analysis performs better than that of two

random selection methods on Chu-time single cell data, we defined the significance score of

SSC as the average ratio between number of efficient cells of SSC analysis and those of the

random selections. Obviously, in such a fold-change evaluation manner, we can regard

that the SSC analysis performs better than the random selections when the significance
score is greater than 1. As shown in Figs L and M in S1 File, most SSC analysis has signifi-

cant discoveries rather than random selections. Meanwhile, the results of network control

methods on the sample-specific network of SSN, LIONESS and SPCC performs better than

that of degree-preserved random selection method. These results further enhance the con-

clusion that SSC workflows actually can have significant findings rather than random

selections.
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Note 2: Consensus on identified driver genes between different

network structural control methods

To evaluate whether different network structural control methods (down-stream of SSC

analysis) can detect the same driver genes, the findings between any two control methods

(e.g., MMS vs. MDS, MMS vs. DFVS, MMS vs. NCUA, MDS vs. DFVS, MDS vs. NCUA, and

DFVS vs. NCUA) were compared by Jaccard scores (see Materials and Methods) between

any two control methods as the method consensus. According to such consensus measure-

ments of any two methods on nine cancer datasets (Fig 9A) and Chu-time dataset (Fig 9B),

we found that the output similarity of two directed-network-based control methods

(MMS_DFVS) and that of two undirected-network-based control methods (MDS_NCUA)

indeed has a higher Jaccard score than other method pairs. These results suggest the type of

network direction is an important factor to determine the method consensus. Besides, on

the cancer datasets shown in Fig 9A, some paired structural methods (e.g., MMS vs. MDS,

MMS vs. DFVS, and MMS vs. NCUA) actually showed the lowest consensus when SPCC

and LIONESS were adopted, suggesting MMS performance might have more variations

than other methods when the upstream sample-specific network construction methods

approaches changed.

Note 3: Robustness of network structural control methods for

different reference networks

Besides, to comprehensively evaluate the robustness of structural control methods when differ-

ent reference networks were used, the results of a given control method were compared again

by using two reference networks (e.g., MMS_Net1 vs. MMS_Net2, MDS_Net1 vs. MDS_Net2,

DFVS_Net1 vs. DFVS_Net2, and NCUA_Net1 vs. NCUA _Net2), where the Jaccard score was

applied as a measure of robustness. On the basis of the robustness scores of four network struc-

tural control methods on nine cancer datasets (Fig 10A) and Chu-time dataset (Fig 10B), all

these methods would have relatively weak robustness when different reference networks were

applied, independent of the exact dataset, which are also consistent to synthetic pinning con-

trol evaluations. In particular, on the cancer datasets, MMS and NCUA tended to have higher

robustness than other methods (Fig 10A); meanwhile, on the Chu-time dataset, MDS and

NCUA tended to outperform other methods (Fig 10B). Indeed, current network structural

control methods are strongly dependent on the sample-specific network construction methods

and are indeed sensitive to the underlying reference network structure. Therefore, the choice

of a proper prior-given interaction network is a key for applying SSC analysis in research and

applications.

In addition, to investigate what network structure factors of reference network determine

such performance differences, we evaluated the degree centrality, closeness centrality and

betweeness centrality of network nodes. Similar to above strategy, we randomly selected the

genes with the same number of sample-specific network control methods and we repeated

this procedure 100 times; then we used a statistic test (3) to evaluate whether these network

structure factors determine performance difference between SSC analysis and random

selection. If P-value of such test is less than 0.05, we can regard that the network structure

factors involved in network control methods is significantly different from those involved

in the random selection method or others. As shown in Fig 11, the degree centrality and

closeness centrality can significantly affect the network controllability which might serve as

network structure factors to influence the performances of different methods, e.g. SSC

workflows.
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Fig 9. Evaluation of identification consensus among structural control methods. The comparisons are carried on any two control methods using (A) nine TCGA

cancer datasets, and (B) temporal single cell datasets.

https://doi.org/10.1371/journal.pcbi.1008962.g009
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Note 4: Driver configuration and network direction for different

network structural control methods

As above introduced, the network structural control methods are import down-stream work

of SSC analysis workflow, whose driver configurations (i.e. identified driver node sets) are

Fig 10. Evaluation of robustness of network structural control methods. The MMS, MDS, DFVS, and NCUA were compared, when two reference networks

on CSN and SSN and SPCC and LIONESS used. The robustness of network structural control methods is shown in (A) for nine TCGA cancer datasets and in (B)

for temporal single cell datasets.

https://doi.org/10.1371/journal.pcbi.1008962.g010
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usually not unique especially for MMS, and remarkably related to network type (i.e. directed v.

s. undirected). Finally, on a newly collected directed cell-signaling network [38,39], the perfor-

mance of network control methods were compared again by considering the multiple driver

nodes configurations. Considering that driver node sets are usually not unique in the directed

cell-signaling network, a random markov sampling was applied to search the multiple sets of

minimum driver nodes set for MMS [40] and NCUA (Material and Methods, and a diagram

of the random markov sampling process for NCUA was illustrated in Fig N in S1 File).

According to the F-score of the driver nodes’ enrichments in the list of cancer-associated

Fig 11. The P-value results of these network structure factors compared with random selection method. (A) Degree centrality; (B) Closeness centrality; (C) Betweeness

centrality.

https://doi.org/10.1371/journal.pcbi.1008962.g011

Fig 12. The F-score of the driver nodes’ enrichments in the list of cancer-associated genes in the human signaling network.

https://doi.org/10.1371/journal.pcbi.1008962.g012

PLOS COMPUTATIONAL BIOLOGY Performance assessment of sample-specific network control methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008962 May 6, 2021 20 / 32

https://doi.org/10.1371/journal.pcbi.1008962.g011
https://doi.org/10.1371/journal.pcbi.1008962.g012
https://doi.org/10.1371/journal.pcbi.1008962


genes[38,39]. the performance of NCUA was better than that of MMS (Fig 12). We should not

that currently there are no theory model to find multiple driver node configurations for MDS

and DFVS methods. It is worth studying how to find multiple driver node configurations for

MDS and DFVS methods in the future, which will further benefit the applications of network

control methods in biology.

Discussion

In the last few years, many new algorithms for network structural control methods and sam-

ple-specific network construction methods have appeared to support a wide range of sample-

specific biological data analysis using control principles. However, few of them had been com-

pared directly, and guidelines and instructions are required to help develop and apply these

cutting-edge approaches.

Single-sample network construction methods have been used to construct sample-specific

interaction network for supporting identification of driver genes or drug targets or marker

genes in biological networks by combining with network control methods, which can deepen

our understanding on tumor or cell heterogeneity. To quantify the connections between net-

work drivers identified by network theory, and driver genes or drug targets or marker genes in

biology, we provided a performance evaluation of SSC analysis workflows based on the combi-

nation of four sample-specific network reconstruction methods and four representative net-

work structural control methods on many bulk and single-cell expression dataset. By this

study, we have shed light on the relative behavior and performance of different SSC implemen-

tations in particular application scenarios.

On one hand, for sample-specific network construction methods (i.e., the first step of SSC

analysis), CSN or SSN are suggested as the preferred methods to try at first due to their com-

petitive results compared to other methods; SPCC and LIONESS should be improved by con-

sidering more dynamic information from nonlinear association and matched controls in

practice. On the other hand, for the network structural control methods (i.e., the second step

of SSC analysis), MDS and NCUA could achieve higher efficiency, F-measure, and AUC scores

than other methods on many datasets, although they do not currently use edge direction infor-

mation for the identification of network driver nodes; MMS and DFVS would be secondary

recommendations due to their potential to obtain meaningful results on particular datasets

with high-quality edge direction information. Of note, when adopting a reference network as

the prior-known part of CSN, SSN, SPCC, or LIONESS for obtaining high-confidence sample-

specific state transition networks, it is suggested a few better-performing network structural

control algorithms should be evaluated for analysis sensitivity.

Throughout this study, we have observed a number of issues that deserve to be points of

focus in future investigations.

i. The important network characteristics should be considered for SSC analysis in the future,

including the network construction, prior-known network integration, and network direc-

tion determination and usage. For example, recently a partial correlation-based single-sam-

ple network (P-SSN) [41] retains the direct interactions by excluding indirect interactions

and can provide new clues for constructing sample-specific networks. However, the P-SSN

may generate more computational cost which should be considered for SSC analysis in the

future.

ii. SSC mainly exploited dynamic analysis of node-networks from sample-specific network

controllability perspective. However, recently edge-network dynamic analysis has become a

hot topic in both sample-specific edge-network construction [42] and edge network

PLOS COMPUTATIONAL BIOLOGY Performance assessment of sample-specific network control methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008962 May 6, 2021 21 / 32

https://doi.org/10.1371/journal.pcbi.1008962


controllability [43–47]. Therefore, how to extend SSC to the edge dynamic of sample-spe-

cific edge-network in biological application scenarios is an important direction in the

future.

iii. Current SSC analysis ignored the temporal network dynamic information and would pro-

duce unnecessary false positives, thus SSC analysis should be shifted to temporal controlla-

bility so as to obtain more efficient and optimal controllers in the context of biological

function and systems biology [48–50].

iv. Driver node sets are usually not unique and multiple driver node configurations are usually

ignored for current SSC analysis. It is worth studying how to find multiple driver node

configurations for SSC analysis, which will benefit the application of network control

methods in diverse biology and biomedicine.

Materials and methods

The first step of SSC analysis: Sample-specific network construction

methods

The CSN method is derived from a new theoretical model based on statistical dependency [5],

which can be viewed as data transformation from the “unstable” gene expression data to the

“stable” gene association data. CSN designs a statistic for genes x, y of sample k as:

rk
xy ¼

nk
xy

n
�

nk
x

n
nk
y

n
; ð4Þ

where nk
x ¼ nk

y ¼ 0:1n are predetermined integers (< n). In other words, CSN first draws the

two boxes in data space near xk and yk based on the predetermined nk
x and nk

y ; then it can

straightforwardly produce the third box, which is simply the intersection of the previous two

boxes. Thus, CSN can obtain the value of nk
xy by counting the data sample plots in the third

box, thereby testing the criterion of Eq (4). The original work has shown that if x and y are

independent of each other, the statistic rk
xy approximately follows a normal distribution, and

the mean value and standard deviation are:

mk
xy ¼ 0; ð5Þ

sk
xy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk
xnk

yðn � nk
xÞðn � nk

xÞ

n4ðn � 1Þ

s

; ð6Þ

Therefore, for CSN, the edge between genes x and y is determined by the statistic (4) and the

P-value corresponding to this statistic can be obtained from Eqs (5) and (6).

SSN is a statistical method to construct an individual-specific network solely based on

expression data of a single sample [4], rather than the aggregated network for a group of sam-

ples, based on statistical perturbation analysis of a single sample against a group of given con-

trol samples. For the SSN method, the co-expression network of the tumor sample network or

normal sample network for each patient is first constructed based on statistical perturbation

analysis of one sample against a group of given reference samples (e.g., choosing the normal

sample data of all of the patients as the reference data). If the differential Pearson Correlation

Coefficient (ΔPCC) of an edge is significantly large based on the evaluation of the SSN method,

this edge would be kept for the single sample (e.g. normal sample or tumor sample) from each

patient. In detail, the P-value for an edge can be obtained from the statistical Z-value
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measuring ΔPCC. All the edges with significantly differential correlations (e.g., P-value < 0.05)

are used to constitute the SSN for one normal sample or tumor sample. Finally, the personal-

ized gene state transition network can be composed of selected edges existing in both the col-

lected reference network and the referred differential co-expression network for each patient.

In addition, the edge weight can be quantified by the differential fold change of gene pairs

between the normal sample and the tumor sample for a given patient. Of note, the ΔPCC of an

edge between genes i and j and its significant Z-score are calculated using the following formu-

las:

DPCCij ¼ jPCCnþ1
ij � PCCn

ijj

Z ¼
DPCCij

ð1 � ðPCCn
ijÞ

2
Þ=ðn � 1Þ

; ð7Þ

where PCCn
ij is the PCC of an edge between genes i and j in the reference network with n sam-

ples; and PCCnþ1
ij is the PCC of the edge between genes i and j in the perturbed network with

one additional sample, given that this new sample (e.g. normal sample or tumor sample) for

each patient is added to the reference sample group.

For the paired-SSN method [22], the co-expression network of the tumor sample network

and normal sample network for each patient is constructed in the same way as for the SSN

method. Then, the personalized differential co-expression network between the normal sample

network and tumor sample network can be constructed in which the edge will exist if the P-

value of the gene pair is less than (greater than) 0.05 in the tumor network but greater than

(less than) 0.05 in the normal network for their corresponding patient. Note that by using SSN

or paired SSN, the reference network can generally also be used to filter the noise in estimated

co-expression networks.

To overcome the difficulty in obtaining correlations or edges from one sample, the SPCC

approach [1,2] was first developed by decomposing each PCC measurement into multiple

additive elements that form a new vector embedding correlation-like information of two vari-

ables for one sample. Then the transformation of gene correlation between gene x and gene y
into edge space is carried out as follows:

SPCCs
ij ¼

xs
i � �xi
di

xs
j � �xj
dj

; ð8Þ

where �xi and δi are the mean and standard variance of the expression value of gene i in the

group of n samples; and xs
i is the expression value of gene i in the sample s. To construct the

sample-specific network, after we obtain the SPCC distribution S of all of the gene pairs we

choose a threshold to determine the differential expression edges in the sample-specific net-

work as follows:

w ¼ mðSÞ þ 2dðSÞ; ð9Þ

where μ(S) and δ(S) are the mean and standard variance of the SPCC distribution S of all gene

pairs.

LIONESS does not rely upon differential analysis between the tumor sample and a group of

normal samples, and it reconstructs the individual specific network in a population of tumor

samples as the personalized gene state transition network for each tumor sample [3]. LIONESS

constructs the state transition network by calculating the edge statistical significance between

all the tumor samples and the tumor samples without a given single sample. As LIONESS can

be applied to multiple aggregate network reconstruction approaches, we used LIONESS
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applied to PCC to model the sample-specific state transition network in order to guarantee a

fair comparison here. The network specific to one sample s in terms of the aggregate networks

is then:

esij ¼ NðeNij � eN� sij Þ þ eN� sij ; ð10Þ

where eNij and eN� sij are the PCC values of gene pairs i and j in sample n and all but sample s,
respectively; N is the number of the samples. Similar to the SPCC method, we use Eq (9) to

determine the final differential expression edges in the sample-specific network.

The second step of SSC analysis: Structure-based network control methods

For SSC problems, a sample-specific system is generally considered as the following broader

model class:

dx=dt ¼ Fðx;AÞ þ Bu; ð11Þ

where x2RN×1 denotes the state at time t, respectively, in the sample system, A2RN×N repre-

sents the state transition matrix, and B 2 RN�NC characterizes the driving by the NC controllers

with the genes. The “controllers” in network control can produce input signals to realize the

state transition of the whole network. The element to Bij is nonzero if the j-th input signal

directly acts on node vi. The input matrices are set as BT ¼ ½Iðbk1
Þ; Iðbk2

Þ; . . .; IðbkT
Þ�;

fb1; b2; . . .; bNC
g are the indices of the set of constrained control genes U, and I(i) denotes the

i-th column of the N×N identity matrix I.
So far, the studies exploiting the structure-based control of complex networks can be

mainly divided into two categories according to the styles of the network dynamics [51]. One

is for linear dynamical networks; many researchers have developed structural control work-

flows, including the Maximum Matching Set (MMS)-based control methods [7] and the Mini-

mum Dominating Set (MDS)-based control methods [9], the purpose of which is to identify

the minimum number of input nodes that need to be controlled by external signals for the sys-

tem to achieve the desired control objectives. The other is for nonlinear dynamical networks.

Feedback Control workflows, such as the Directed FVS-based control method (DFVS) and the

Nonlinear Control of Undirected networks Algorithm (NCUA), investigate the control of

large networks in a reliable and nonlinear manner, where the network structure is prior

known and the functional form of the governing equations is not specified, but must satisfy

some continuous, dissipative, and decaying properties [10,11].

In the MMS-based and MDS-based control methods, a sample-specific network can be con-

sidered a system with the canonical linear time-invariant dynamics as follows:

dx=dt ¼ Axþ Bu; ð12Þ

For the MMS-based and MDS-based control methods, the minimum subset

K = {K1,K2,. . .,KT} of fb1; b2; . . .; bNC
g needs to be found to satisfy the following criterion:

maxfrankð½CB;CAB;CA2B; . . . ;CAN� 1B�Þg ¼ NO ð13Þ

when Eq (13) is satisfied, the system in Eq (12) is structurally controllable. Note that the maxi-

mum in Eq (13) implies that given the input matrices B, one needs to choose the proper non-

zero weights in A to satisfy Eq (13). For MMS-based control methods, the driver nodes can be

identified by using the maximum matching algorithm to ensure that there are no inaccessible

nodes and no dilation that can guarantee the system is completely controllable [7]. Note that

the MDS method focuses on the controllability study for undirected networks by assuming
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that each edge in a network is bidirectional [9]. That is, MDS assumes that the state transition

matrix A in (11) is symmetric. The identification of MDS can be solved by using Integer Linear

Programming (ILP) formalization as follows:

min
X

i2V

xi

s:t:xi þ
X

j2@ðiÞ

xj � 1; xi; xj 2 f0; 1g
; ð14Þ

where @(i) denotes the neighborhood nodes of node i.
For this Feedback Control, F(x,A), the enhancement of the activity of the nodes in a sam-

ple-specific system, must satisfy: (i) the continuous differentiability of F(x,A), that is, F(x,A)2

C1, (ii) the dissipativity, that is, for any initial condition x(0) and for a finite time t�0, the

dynamic state x(t) is bounded by a positive constant C: kxn(t)k�C, and (iii) the decay condi-

tion @1F(x,A)<0, that is, the nonlinear dynamic function is not any nonlinear function but

requires only a few conditions (e.g., continuous, dissipative, and decaying) on the nonlinear

functions [10,11]. To drive the state of a network to any one of its naturally occurring end

states (i.e., dynamical attractors), one needs to manipulate a set of nodes called Feedback Ver-

tex Set (FVS) that intersects every feedback loop in the network, uniquely determining the

long-term dynamics of the entire network. The definition of FVS is a subset of nodes in the

graph, such that the removal of the set leaves the graph without feedback loops. Given a

directed graph G = (V‚ E), the FVS can be calculated using ILP formalization [52]. This algo-

rithm utilizes a scheme that enables weights to be assigned to vertices to capture an ordering

relationship among the vertices. The ILP is formalized as follows:

min
X

i2V

xi

s:t:wi � wj þ nxi � 1ðevery vi ! vjÞ

0 � wi � 1; xi; xj 2 f0; 1g

; ð15Þ

Then the noted ILP can be used to perform the FVS calculation in the directed network.

Recently, DFVS was proposed under the framework of Feedback Control to study dynamic

models of direct networks[21]. DFVS illustrates that controllability can be determined by the

cycle structure and the source nodes of a directed network with FVS. DFVS, however, mainly

focuses on the structural control of direct networks with nonlinear dynamics. Therefore, to

solve the control problem of nonlinear undirected networks, Guo et al. developed the novel

NCUA, under the framework of Feedback Control, which is based on the assumption that the

edges of these undirected networks are modeled as bidirected edges [22]. For a given undi-

rected network G (V, E), Guo et al. assumed that each edge was bidirectional, and G (V, E) was

converted into a bipartite graph G (VT,V?,E1), where VT�V and V?�E. If vi2VT is one of the

nodes for vj2V?,they add an edge connecting vi and vj into set E1. After the bipartite graph is

obtained, they adopt a modified version of the dominating set, in which the dominating set

must be selected from VT and is also sufficient to dominate all of the nodes in V?. The mini-

mum dominating set cover problem can be solved by the following ILP model:

min
X

v2V?

xv

s:t:;
X

fv;ug2E1

xv � 1ðevery u 2 VTÞ; xv 2 f0; 1g
; ð16Þ

PLOS COMPUTATIONAL BIOLOGY Performance assessment of sample-specific network control methods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008962 May 6, 2021 25 / 32

https://doi.org/10.1371/journal.pcbi.1008962


where the variable xi will take the value 1 when node i belongs to the cover set; the objective is

to obtain the minimum number of nodes to cover set V?.

As noted, MDS, DFVS, and NCUA can be solved by ILP formulation. It is well known that

the ILP problem is an NP-hard problem. However, the optimal solution can still be efficiently

obtained for moderate sizes of graphs with up to a few tens of thousands of variables by utiliz-

ing an LP-based classic branch and bound method.

Identification of multiple sets of minimum nodes set by using random

markov sampling

To search the multiple sets of minimum node set, we designed a random Markov chain sam-

pling strategy [40] to obtain different driver node sets. To use such strategy for NCUA, we

defined a set of minimum dominating nodes in the “bipartite graph” as a Markov chain. The

state space G of the Markov Chain (MC) is the set of all the possible minimum dominating

nodes of the “bipartite graph”. The different MCs need to be sampled from the state space G so

that a random MC method is used. The MC approach samples different sets of minimum

dominating nodes randomly. Thus, the MC method can give different sets of driver nodes.

The basic idea of the MC method for NCUA is to build a Markov Chain whose states are col-

lections of the minimum dominating nodes in the top nodes covering the bottom nodes in the

bipartite graph G(VT, V?, E1). As shown in Fig N in S1 File, we gave a diagram to illustrate the

process of random markov sampling strategy for NCUA. The details were introduced below:

Initialization: By using ILP, obtain the initial Markov Chain M0.

Iteration: For t = 1, 2,. . ., obtain Mt+1 from Mt as follows:

• Choose a node w uniformly at random in Mt. Then, delete node w and add a new node

v�VT−Mt which can cover the edges connected by node w in the bipartite graph G(VT, V?,

E1). A new Markov Chain Mt+1 = Mt−{w}+{v} has been obtained.

• Accept the new Markov Chain Mt+1 randomly.

Assessment indices of SSC analysis

We used the following metrics of F-measure, AUC, controllability of sample, and Enrichment

significance to assess the performance of SSC analysis workflows.

F-measure: To verify the effectiveness of the SSC analysis, the F-measure is considered to

assess the enrichment ability of predicted control/driver nodes in a given gold standard list

from biological or biomedical fields, which considers both the precision and the recall) using

the formula:

Fi ¼ 2PiRi=ðPi þ RiÞ; ð17Þ

where Pi denotes the fraction of correctly predicted genes among all of the predicted genes

(precision) and Ri denotes the fraction) of correctly predicted personalized driver genes

among the given dataset (recall).

AUC: To evaluate the usage efficiency of sample-specific network driver nodes for person-

alized drug discovery, we calculated the number of targeted sample-specific network driver

nodes matching with drug combinations and rank anti-cancer drug combinations for each

patient. The drug combinations annotated in the CAC drugs were applied to assess the AUC

[53] of the top-ranked/predicted anti-cancer drug combinations from different SSC analysis

workflows. We assigned a probability to each personalized gene according to its rank by using
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the formula:

pðCDi
jÞ ¼ 1 �

rankðCDi
jÞ

CDi
ð18Þ

where CDi
j denotes the predicted score of combinational drug j for sample i and CDi denotes

score of all the combinational drugs for sample i. Based on the predicted probability and the

true label in the CAC, we can obtain the AUC value of predicted anti-cancer drug combina-

tions when the prediction threshold shifts.

Jaccard score: To measure the consensus of different methods on the same dataset and the

robustness of one method when two reference networks are used, we adopt the Jaccard score

as follows:

Siðm1;m2Þ ¼
kDiðm1Þ \ Diðm2Þk

kDiðm1Þ [ Diðm2Þk
; ð19Þ

where Di(m1) and Di(m2) denote the driver node sets of sample i by using methods m1 and m2,

respectively.

Controllability of sample: For each sample, we evaluated the controllability of each sample

by structural control methods on the sample-specific state transition network, which is

assumed to measure the power of each sample for changing its current state. The controlla-

bility is defined as:

Controllabilityi ¼ 1 �
kDik

kGk
ð20Þ

where Di denotes the driver node set of sample i and G denotes the set of all of the genes. The

bigger the controllability is, the greater the probability the sample state is capable of change.

Enrichment significance: To estimate the significant overlap between the driver predic-

tions S and a given list D, we computed the P-value by the hypergeometric test [36] as follows:

P� value ¼ PðX � kÞ ¼
X1

k¼1

K

k

 !
N � K

n � k

 !

K

n

 ! ; ð21Þ

where N is the number of all genes in the network, K is the number of a given gold standard

list D, n is the number of the driver predictions S, and k is the number of the driver predictions

overlapping with the genes in D. If the enrichment P-value for one method’s output/prediction

is less than 0.05, we regard this method to have satisfactory driver predictions when using the

prior-known gold standard.

Supporting information

S1 File. Some supplementary tables and figures in the manuscript. Table A in S1 File: Sam-

ple information in TCGA Cancer datasets. Each individual has paired samples (control

sample and tumor sample) Fig A in S1 File. Precision of structural control methods for

driver genes identification on 9 TCGA bulk cancer data sets. By using (A-B) CSN_Net1 and

CSN_Net2, (C-D) SSN_Net1 and SSN_Net2, (E-F) SPCC_Net1 and SPCC_Net2 and (G-H)

LIONESS_Net1 and LIONESS_Net2, we can obtain different state transition network. There-

fore we respectively evaluate the performance (Precision) of 4 structure control methods on

these different state transition networks. Fig B in S1 File. Recall of structural control
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methods for driver genes identification on 9 TCGA bulk cancer data sets. By using (A-B)

CSN_Net1 and CSN_Net2, (C-D) SSN_Net1 and SSN_Net2, (E-F) SPCC_Net1 and

SPCC_Net2 and (G-H) LIONESS_Net1 and LIONESS_Net2, we can obtain different state

transition network. Therefore we respectively evaluate the performance (Recall) of 4 structure

control methods on these different state transition networks. Fig C in S1 File. The heatmap in

terms of the average rate of F-scores in the new SSC corresponding to the old SSC from all

reference samples on Network-1. Fig D in S1 File. The heatmap in terms of the average

rate of F-scores in the new SSC corresponding to the old SSC from all reference samples on

Network-2. Fig E in S1 File. The heatmap in terms of the average rate of F-scores of net-

work control methods on BRCA cancer patient data with network deconvolution corre-

sponding to those without network deconvolution method on (A) Network-1 and (B)

Network-2. Fig F in S1 File. Evaluation of structural control methods using the efficiency

number, i.e., the fraction of cells enriched in factor genes that are involved in human

embryonic development at each time point. Different methods were used for these different

state transition networks, including (A) CSN_Net1, (B) CSN_Net2, (C) SSN_Net1, (D)

SSN_Net2, (E) SPCC_Net1, (F) SPCC_Net2, (G) LIONESS_Net1, and (H) LIONESS_Net2.

Fig G in S1 File. For nine TCGA data set, identification of ‘Dark genes’ by using different

methods on these different state transition networks including (A-B) CSN_Net1 and

CSN_Net2, (C-D) SSN_Net1 and SSN_Net2, (E-F) SPCC_Net1 and SPCC_Net2 and (G-H)

LIONESS_Net1 and LIONESS_Net2. Fig H in S1 File. For Chu-time data set, identification

of “Dark-differential expression genes”by using different methods on these different state

transition networks including (A-B) CSN_Net1 and CSN_Net2, (C-D) SSN_Net1 and

SSN_Net2, (E-F) SPCC_Net1 and SPCC_Net2 and (G-H) LIONESS_Net1 and LIONESS_-

Net2. Fig I in S1 File. (A1-A4) The z-score results of SSC analysis control for enriching in

CGC genes on BRCA cancer data compared with random selection method.(A1) CSN, (A2)

SSN, (A3) LIONESS, and (A4) SPCC. (B1-B4) The z-score results of SSC analysis control for

enriching in CGC genes on BRCA cancer data compared with degree-preserved random

selection method.(B1) CSN, (B2) SSN, (B3) LIONESS, and (B4) SPCC. Fig J in S1 File.

(A1-A4) The z-score results of SSC analysis control for enriching in clinical efficient com-

binational drugs on LUAD cancer data compared with random selection method.(A1)

CSN, (A2) SSN, (A3) LIONESS, and (A4) SPCC. (B1-B4) The z-score results of SSC analysis

control for enriching in clinical efficient combinational drugs on LUAD cancer data com-

pared with degree-preserved random selection method.(B1) CSN, (B2) SSN, (B3) LIONESS,

and (B4) SPCC. Fig K in S1 File. (A1-A4) The z-score results of SSC analysis control for

enriching in dark genes on BRCA cancer data compared with random selection method.

(A1) CSN, (A2) SSN, (A3) LIONESS, and (A4) SPCC. (B1-B4) The z-score results of SSC

analysis control for enriching in dark genes on BRCA cancer data compared with degree-

preserved random selection method.(B1) CSN, (B2) SSN, (B3) LIONESS, and (B4) SPCC.

Fig L in S1 File. The significance score results of SSC analysis control for enriching in 20

human embryonic differentiation functional genes on Chu-time single cell data compared

with random selection method. (A) CSN_Net1, (B) CSN_Net2, (C) SSN_Net1, (D)

SSN_Net2, (E) LIONESS_Net1, (F) LIONESS_Net2, (G) SPCC-Net1, and (H) SPCC_Net2.

Fig M in S1 File. The significance score results of SSC analysis control for enriching in 20

human embryonic differentiation functional genes on Chu-time single cell data compared

with degree-preserved random selection method. (A) CSN_Net1, (B) CSN_Net2, (C)

SSN_Net1, (D) SSN_Net2, (E) LIONESS_Net1, (F) LIONESS_Net2, (G) SPCC-Net1, and (H)

SPCC_Net2. Fig N in S1 File. A schematic diagram illustrating the markov chaining for

NCUA algorithm. We assume that each edge in a network is bi-directional and construct a

bipartite graph from the original undirected network, in which the nodes of top side are the
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nodes of original graph and the nodes of the bottom side are the edges of the original graph.

Then, we adapt an equivalent optimization procedure for obtaining the initial input nodes M1

= {v1,v4,v9} as a initial Markov chain within the top side nodes to cover the bottom side nodes

in the bipartite graph that are sufficient to control the whole network with nonlinear dynamics

in mathematical term. Finally, we generate a new Markov chain M2 = {v1,v8,v9} by replacing

node v4 with node v8 in the Markov chain M1 which can also cover edge and generated the

new Markov chain M2 and repeat this process until the terminated condition is satisfied.

(DOCX)

S2 File. The interactions between combinatorial drugs and targets from multiple datasets.

(XLSX)

S3 File. The drug combinations annotated in the Clinical Anti-cancer Combinational

drugs.

(XLSX)

S4 File. The functional genes that are involved in human embryonic differentiation.

(XLSX)

S5 File. The list of dark genes within dark gene regions from a canonical dataset.

(XLSX)
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