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Summary
Background Stroke ranks second worldwide and first in China as a leading cause of death and disability. It has a
polygenic architecture and is influenced by environmental and lifestyle factors. However, it remains unknown as to
whether and how much the genetic predisposition of stroke is associated with disease burden.

Methods Allele frequency from the whole genome sequencing data in the Chinese Millionome Database of 141,418
individuals and trait-specific polygenic risk score models were applied to estimate the provincial genetic
predisposition to stroke, stroke-related risk factors and stroke-related drug response. Disease burden including
mortality, disability-adjusted life years (DALYs), years of life lost(YLLs), years lived with disability (YLDs) and
prevalence in China was collected from the Global Burden Disease study. The association between stroke genetic
predisposition and the epidemiological burden was assessed and then quantified in both regression-based models
and machine learning-based models at a provincial resolution.

Findings Among the 30 administrative divisions in China, the genetic predisposition of stroke was characterized by a
north-higher-than-south gradient (p < 0.0001). Genetic predisposition to stroke, blood pressure, body mass index, and
alcohol use were strongly intercorrelated (rho >0.6; p < 0.05 after Bonferroni correction for each comparison). Genetic
risk imposed an independent effect of approximately 1–6% on mortality, DALYs and YLLs.

Interpretation The distribution pattern of stroke genetic predisposition is different at a macroscopic level, and it subtly
but significantly impacts the epidemiological burden. Further research is warranted to identify the detailed aetiology
and potential translation into public health measures.
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Research in context

Evidence before this study
We searched PubMed, Embase, Cochrane, China National
Knowledge Internet, China Science and Technology Journal
Database, and Wanfang Data for original research on the
association between stroke genetic predisposition and its
disease burden published up to August 31st, 2022 in English
and Chinese. We also focused on stroke-related
pharmacogenetics. We used the keywords “stroke”, “genetic
risk”, “disease burden”, and “pharmacogenetics”. Previous
studies have yielded achievements on genetic variations
associated with stroke, stroke-related cardiometabolic and
behavioural traits, and stroke-related drug response. And
different indicators of stroke disease burden in every country
and subregion are available from the Global Burden Disease
study. However, the distribution landscape of stroke genetic
predisposition and pharmacogenetics, and the association
between genetic risk and disease burden remain unknown.

Added value of this study
By applying both a Chinese-only polygenic risk score (PRS)
model with 500 modelling selected genetic variants and an
East Asian-specific PRS model with 4,856,268 genome-wide
variants to the whole genome sequencing data of 141,418

individuals, we sketched the stroke genetic predisposition
landscape at a provincial geographic scale in China, from
which we discovered a north-higher-than-south gradient. We
also depicted the genetically predicted metabolism of
clopidogrel, statins and warfarin, indicating lower dosage for
the Chinese population compared to Europeans. And we
discovered that the genetic predisposition to stroke has an
association with mortality, disability-adjusted life years
(DALYs), years of life lost(YLLs), and years lived with disability
(YLDs) (but not prevalence). We quantified that genetics
accounts for 1–6%, a minor but nonnegligible part of the
mortality, DALYs, and YLLs of stroke.

Implications of all the available evidence
Altogether, acquired factors play a more influential role in
disease burden. However, differences in genetic risk for stroke
are observed at a provincial resolution, and it has a small
effect on the death-related disease burden. Early screening for
genetic risk of stroke would help identify high-risk individuals
and obtain more clinical benefits, as well as reduce the
epidemiological burden. Further investigation is warranted to
determine the precise aetiology and potential translation into
public health measures.
Introduction
Among the leading causes of death and disability
throughout the world, stroke ranks second worldwide
and first in China,1–3 reaching a total of 101 million
prevalent cases, 6.55 million deaths, and 143 million
disability-adjusted life years (DALYs) globally,4 as well as
28.8 million prevalent cases, 2.19 million deaths, and
45.9 million DALYs in China,2 in 2019. The global cost
of stroke is estimated to exceed US$891 billion (1.12%
of the global GDP).5 Stroke burden continues to in-
crease, particularly in lower-income and lower-middle-
income countries, accounting for 86.0% of deaths and
89.0% of DALYs.6 The considerable disease burden
poses threats to public health and calls for urgent
attention to its prevention, as well as an early warning.

Stroke is a common complex disease caused by
various environmental, lifestyle and genetic factors.4,7,8

Genome-wide association studies (GWAS) have identi-
fied ∼100 genetic loci underlying stroke,7–9 and the
polygenic risk score (PRS), a weighted sum of the effects
of genetic variants, has become a promising and power-
ful tool to evaluate the lifetime risk of stroke.10,11 The
incorporation of genetic predisposition into the conven-
tional early risk stratification framework is appealing for
individual clinical encounters.7,12 However, it is unclear
whether the genetic predisposition of stroke is associated
with disease burden at a population level.

In this study, we characterized the stroke genetic
predisposition landscape at a provincial resolution in
China by applying two stroke PRS models on allele
frequency estimates from the nationwide whole genome
sequencing (WGS) dataset. Subsequently, we showed
that genetic predisposition was correlated with mortality
and DALY, but not prevalence. We inferred that genetics
accounts for a nonnegligible part of the disease burden
of stroke, thus providing novel insights into the genetic
epidemiology of stroke.
Methods
Data collection
Allele frequency from the whole genome sequencing data
The genetic variants allele frequency at a provincial
resolution were obtained from the Chinese Millionome
www.thelancet.com Vol 36 July, 2023
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Database (CMDB)13,14 (http://cmdb.bgi.com/), the most
representative and comprehensive Chinese population
genome database to date, consisting of WGS sequencing
of 141,431 unrelated Chinese recruited individuals from
31 out of the 34 administrative divisions in China
including Han and 36 other ethnic minorities. We
included allele frequency data from 30 administrative
divisions of 141,418 individuals after quality control
(Supplementary Methods). Genetic data that supports
the findings of this study are available from the corre-
sponding author upon reasonable request. The study
was approved by the Institutional Review Board of BGI
(BGI-202212281301).

Polygenic risk score models and clinical drug response SNPs
We calculated the polygenic risk score (PRS) based on
two models. PRS Model I is a Chinese-only PRS
(https://www.pgscatalog.org/publication/PGP000285/)
of 500 modelling selected genetic variants15

(Supplementary File 1). PRS Model II is an East
Asian-specific PRS model (https://www.pgscatalog.org/
score/PGS002725/) of 4,856,268 genome-wide vari-
ants7 (Supplementary File 2) (Supplementary Methods).

Based on the American Heart Association (AHA)
guidelines, we focused on 4 stroke-related car-
diometabolic traits (including body mass index (BMI),
blood pressure (BP), type 2 diabetes (T2D), and low-
density lipoprotein cholesterol (LDL-C) and 2 behav-
ioural traits (alcohol use16 and smoking susceptibility17)
that have available trait-specific PRS models.18

Moreover, we focused on clinical drug response SNPs
associated with the metabolism of three categories of
stroke-related drugs including warfarin,19 clopidogrel,20

and statins.21 By comparison, we used the European
(non-Finnish) population from the Genome Aggrega-
tion Database (gnomAD)22 v3.1, consisting of 76,156
genomes of unrelated individuals. The SNPs from
the latest weighted genetic risk score (wGRS)
model of caffeine metabolism23,24 were also included
(Supplementary Methods and Supplementary Table S2).

Epidemiological burden data
We use five dimensions of standard epidemiological
measures: mortality, prevalence, years of life lost (YLLs),
years lived with disability (YLDs), and disability-adjusted
life-years (DALYs). We collected the number and age-
standardized rates of the aforementioned metrics avail-
able of each province in 1990, 2016, and 2019 from the
GBD study.2,25 We used age-standardized rates to correct
for different age distributions and improve compara-
bility for each province (Supplementary Methods and
Supplementary Table S3 for details).

Based on the American Heart Association (AHA)
Guidelines, we focused on smoking rate, physical
inactivity rate, salt intake level (g/d), insufficient intake
rate of vegetables and fruits, obesity rate, the morbidity
rate of hypertension, the morbidity rate of
www.thelancet.com Vol 36 July, 2023
hyperlipoidemia as covariates when quantifying the
impact of genetic components on disease burden. We
split 30 provinces evenly into the northern and southern
geographical groups. Additionally, we included the
concentration of PM2.5, the use of medication in-
terventions and the composite socioeconomic index
(RCDI). We collected covariates data for each province
in 2019 (Supplementary Methods and Supplementary
Table S4 for details).

Estimating genetic predisposition to stroke and
other traits
Our study proposed to characterize the stroke genetic
predisposition landscape at a provincial resolution in
China, which is calculated as the following Equation (1)
(see Supplementary Methods for detailed formula deri-
vation):

P̂RSk =∑M

j=1 (β‘j ⋅MAFj) (Equation 1)

For province k, P̂RSk is the average polygenic risk
score for administrative division k, M is the number of
SNPs in the PRS model, and βj is the effect size of SNPj
from the PRS model.

We calculated the weighted sums of provincial-level
MAF for SNPs in the trait-specific models as genetic
predispositions and mapped them by percentile, with
darker colours representing higher genetic pre-
dispositions. Particularly, for the two stroke PRS
models, our results were discriminated by colour, with
orange representing PRS Model I and blue representing
PRS Model II.
Study design
The overall design is shown in Fig. 1.

All data were derived from 30 of 34 provincial-level
administrative division units in China, including 22
provinces, 4 municipalities, and 4 autonomous regions.
Both municipalities and autonomous regions are
termed provincial administrative units in China,
although they are not named provinces. Hong Kong,
Macao, Taiwan and Tibet were not included due to the
limited number of sequencing participants.

Our study used each province as a proxy unit, and we
aimed to evaluate the association of genetic predisposi-
tion to stroke with disease burden (mortality, preva-
lence, DALYs, YLLs, YLDs) and estimate the predictive
value of the PRS at the provincial geographic scale. First,
we estimated the genetic predisposition for stroke and
its risk factors (including BP, BMI, LDL-C, T2D, alcohol
use, and smoking) at a provincial resolution in China.
Specifically, for stroke, we utilized two different vali-
dated PRS models—the Chinese-only PRS with 500
modelling selected variants (PRS Model I) and the East
Asian-specific PRS with 4,856,268 genome-wide vari-
ants (PRS Model II). Afterwards, we performed
3
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Fig. 1: The overall design of the study. Our study used each province as a proxy unit, and we aimed to evaluate the association of genetic
predisposition to stroke with disease burden (mortality, prevalence, DALYs, YLLs, YLDs) and estimate the predictive value of the PRS at the
provincial geographic scale. Genetic predisposition distributions for stroke and its risk factors (including BP, BMI, LDL-C, T2D, alcohol use, and
smoking) of each administrative division in China were first evaluated from the provincial allele frequencies from the Chinese Millionome
Database (CMDB) and trait-specific polygenic risk score (PRS) models. Specifically, for stroke, we utilized two types of validated models, i.e., the
Chinese-only PRS (PRS Model I) with 500 modelling-selected variants and the East Asian-specific PRS (PRS Model II) with 4,856,268 genome-
wide variants. Afterwards, we performed association analyses between the stroke genetic predisposition of both models and different
epidemiological burden metrics of each province. To ensure comparability among different provinces, we used the age-standardized rates of the
above epidemiological measurements, from which significant correlations were revealed. Finally, we conducted regression analyses of mortality,
DALYs, and YLLs in both linear and nonlinear models for PRS Model I and II to correct for covariates and obtain independent estimates of the
genetic predisposition of stroke on the epidemiological burden, thus discovering that genetic risk accounts for a minor (but significant) role.
DALYs: disability-adjusted life-years. YLLs: years of life lost. YLDs: years lived with disability. PRS: Polygenic risk score.
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association analyses between the stroke genetic predis-
position of both PRS models and different epidemio-
logical burden metrics of each province, including
mortality, DALYs, YLLs, YLDs, and prevalence. Subse-
quently, we conducted regression analyses of mortality,
DALY, and YLL in both linear models and nonlinear
(random forest) models to correct for covariates and
obtain independent estimates of the genetic predispo-
sition of stroke on the epidemiological burden.

Statistical analysis
Comparisons of genetic predisposition between two
different regions (the northern group and southern
group) were performed by using the Mann–Whitney U
test. Correlations between genetic predisposition and
disease burden metrics, as well as pairwise correlations
among genetic risks of different traits, were compared
by using the Spearman rank correlation via the cor.test()
function from the psych (2.2.3) package of R (4.0.5)
software. Correlation coefficients and significance test p
values are reported. The correlation coefficient rho ≥0.8
was considered a very strong correlation, rho = 0.60 to
0.79 was considered a strong correlation, rho = 0.4 to
0.59 was considered a moderate correlation, rho = 0.20
to 0.39 was considered a weak correlation, and rho≤0.19
was considered a very weak correlation. A p value < 0.05
was considered statistically significant. For pairwise
comparisons among the genetic risks of stroke and
stroke-related traits, the significant P value for Bonfer-
roni correction was 0.05/28 = 0.0018. For the correlation
between the genetic risk of stroke and epidemiological
burden metrics, the significant P value for Bonferroni
correction was 0.05/13 = 0.0038 for the Chinese-specific
model and East Asian-specific model.

Scatter plots and heatmaps were visualized by using
the ggplot2 (3.3.5) package and corrplot (0.92) package
in R (4.0.5) software. Bonferroni corrections were made
for all multiple significance testing.

Regression modelling
Linear model. A simple linear regression between ge-
netic predisposition and disease burden of stroke is as
follows:

Burdeni ∼ β ∗ PRSi + μ

where Burdeni is the stroke disease burden of province
i; PRSi is a polygenic risk score for province i; β is the
fitted slope; and μ is the intercept. R square and sig-
nificance test p values were reported. Fitting was per-
formed by using the lm() function from the stats (4.0.5)
package in R (4.0.5) software. The multivariate linear
www.thelancet.com Vol 36 July, 2023
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regression of disease burden is as follows:

Burdeni ∼ β1 ∗ PRSi + β2 ∗ x2i + β3 ∗ x3i + … +

βn ∗ xni + μ
where x2i, x3i, …, xni are the covariates of each province,
and β2i, β3i, …, βni are the fitted coefficients of the cor-
responding covariates.

Linear Model 1 is the full model, and covariates
include RCDI, the use of medication interventions for
risk factors, physical inactivity rate, salt intake level (g/
d), insufficient intake rate of vegetables and fruits,
obesity rate, the morbidity rate of hypertension, the
morbidity rate of hyperlipoidemia, the concentration of
PM2.5, smoking rate, and geographical regions
(dichotomized into the north and the south). After-
wards, we performed a backward variable selection of
the full model until we obtained a minimized AIC
(Akaike information criterion) as Linear Model 2. Then,
we excluded the PRS component of the second model as
Linear Model 3. Fitting was performed by using the lm()
function, and stepwise variable selection was performed
by using the step() function, both included in the stats
(4.0.5) package in R (4.0.5) software. Residual plots were
used to verify that normal distributions of residuals and
constant variance assumptions were satisfied for linear
regressions. Adjusted R-square values and p values were
reported.

Nonlinear (Machine learning) model. The random forest
as a machine learning algorithm confronting
Fig. 2: Genetic predisposition for stroke and risk factors in China. a.
(Methods). Colour shades represent percentile rankings. The North has a h
test). b. Genetic predisposition for stroke in China derived from PRS Mode
has a higher score than the South (p < 0.0004, two-sided Mann–Whitney
risk factors, including BMI, BP, LDL-C, T2D, alcohol use, and smoking. T
coefficient. The correlation coefficient rho ≥0.8 was considered a very s
relation, rho = 0.4 to 0.59 was considered a moderate correlation, rho =
considered a very weak correlation. The upper-left triangular matrix hi
significant effects (Spearman correlation, α threshold = 0.05/28 [total n
significance, with *** denoting p < 0.001 and ** denoting p < 0.01). PRS:
low-density lipoprotein cholesterol. T2D: Type 2 Diabetes.

www.thelancet.com Vol 36 July, 2023
multicollinearity26 was implemented by using the a3()
function from the A3 (1.0.0) package in R (4.0.5) soft-
ware. The significance p value and R-square values were
implemented based on 1000 permutation tests.

Role of the funding source
The funders of the study had no role in the study design,
data analysis, data interpretation, or writing of the
manuscript.

Results
Genetic predisposition distribution landscape of
stroke, risk factors, and metabolism
The overall design is shown in Fig. 1 (see Methods).
First, we depicted the provincial-level genetic predispo-
sition distribution landscape of stroke (Fig. 2a–b),
stroke-related risk factors (Supplementary Fig. S1),
stroke-related clinical drug response SNPs
(Supplementary Fig. S2a–i), and caffeine metabolism-
related SNPs (Supplementary Fig. S2j–l) in China, ac-
cording to the provincial allele frequencies derived from
whole genome sequencing (WGS) data from the Chi-
nese Millionome Database (CMDB),13 trait-specific
polygenic risk score (PRS) models and the Clinical
Pharmacogenetics Implementation Consortium (CPIC)
guidelines (Methods, Supplementary Methods and
Supplementary Tables S1 and S2 in the Appendix).

We estimated the provincial genetic risks of stroke
from a Chinese-only model (PRS Model I) consisting of
500 modelling selected SNPs and an East Asian-specific
model (PRS Model II) consisting of 4,856,268 genome-
Genetic predisposition for stroke in China derived from PRS Model I
igher score than the South (p < 0.0001, two-sided Mann–Whitney U
l II (Methods). Colour shades represent percentile rankings. The North
U test). c. Pairwise correlation of genetic predisposition for stroke and
he bottom-right triangular matrix shows the Spearman correlation
trong correlation, rho = 0.60 to 0.79 was considered a strong cor-
0.20 to 0.39 was considered a weak correlation, and rho≤0.19 was
ghlights significance via asterisks, and blank spaces represent non-
umber of comparisons]; specifically, p < 0.0018. Asterisks indicate
Polygenic risk score. BMI: body mass index. BP: blood pressure. LDL-C:
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wide variants, and the risks were generally consistent
(Fig. 2c, rho = 0.77, p < 0.0001, Spearman correlation,
after Bonferroni correction). A coherent north-to-south
gradient of stroke genetic predisposition was observed,
with the north being higher than the south (Fig. 2a–b,
p < 0.0001 for PRS Model I, p = 0.0004 for PRS Model
II, two-sided Mann–Whitney U test). Overall, there was
a precipitous change observed in the provinces along the
Huai River-Qinling Mountain line (blue line in Fig. 2a
and yellow line in Fig. 2b), whereas the trend was more
moderately gradated within the provinces on either side
of the dividing line.

Moreover, according to American Heart Association
(AHA) guidelines, we further evaluated the genetic
predisposition distribution landscape of several cardio-
vascular health (CVH) metrics, including body mass
index (BMI), blood pressure (BP), type 2 diabetes (T2D),
and low-density lipoprotein cholesterol (LDL-C), as well
as two lifestyle behaviours (alcohol consumption and
smoking) (Supplementary Fig. S1). We observed north-
south differences for all of the traits except T2D and
LDL-C. A trend of higher-in-north and lower-in-south
was observed among genetic risk for BMI (p < 0.0001,
two-sided Mann–Whitney U test), BP (p = 0.0001, two-
sided Mann–Whitney U test), and alcohol consump-
tion (p < 0.0001, two-sided Mann–Whitney U test). In
contrast, the genetic risk of smoking showed a higher-
in-south and lower-in-north trend (p = 0.0027,
two-sided Mann–Whitney U test). No significant
differences were observed for T2D (p = 0.44, two-sided
Mann–Whitney U test) or LDL-C (p = 0.098, two-sided
Mann–Whitney U test).

We then conducted pairwise comparisons among
genetic susceptibility to stroke and stroke-related traits
(Fig. 2c). In addition to the consistency in stroke genetic
risk derived from PRS Model I and II, strong correla-
tions also exist between the genetic risk of stroke and
that of BMI (PRS Model I: rho = 0.92, p < 0.0001,
Spearman correlation after Bonferroni correction; PRS
Model II: rho = 0.74, p < 0.0001, Spearman correlation
after Bonferroni correction), between the genetic risk of
stroke and that of BP (PRS Model I: rho = 0.79,
p < 0.0001, Spearman correlation after Bonferroni
correction; PRS Model II: rho = 0.70, p < 0.0001,
Spearman correlation after Bonferroni correction), as
well as between genetic risk of stroke and that of alcohol
consumption (PRS Model I: rho = 0.87, p < 0.0001,
Spearman correlation after Bonferroni correction; PRS
Model II: rho = 0.79, p < 0.0001, Spearman correlation
after Bonferroni correction).

In addition, we illustrated the population frequency
of stroke-related drug response SNPs (clopidogrel for
antiplatelet therapy, statins for lipid-lowering therapy,
and warfarin for anticoagulation therapy) among
different provinces (Supplementary Fig. S2a–i). Notably,
for 8 of 9 SNPs that indicate decreased metabolism of
medications, including rs12769205 (CYP2C19),
rs4244285 (CYP2C19), and rs4986893 (CYP2C19) as no
function alleles for clopidogrel; rs2306283 (SLCO1B1)
and rs4149056 (SLCO1B1), rs2231142 (ABCG2), and
rs1057910 (CYP2C9), as poor function alleles for statins;
rs1057910 (CYP2C9), rs9923231 (VKORC1), and
rs9934438 (VKORC1) as the decreased alleles for
warfarin, most provinces demonstrated a higher-
frequency pattern than that of European (the MAF of
the aforementioned SNPs in non-Finnish European are
0.15, 0.15, 0.00018, 0.40, 0.16, 0.11, 0.066, 0.38, and
0.38, accordingly), implying lower dosages for most
Chinese patients than European patients.

We also displayed the provincial allele frequency of
SNPs that genetically predict the increased metabolism
of caffeine, indicating increased caffeine intake. The
weighted average distribution pattern (Supplementary
Fig. S2j–l, and Supplementary Table S3) appeared to
be generally equal across the regions with the exception
of Qinghai, tagged with an asterisk, with all three SNPs
displaying high frequency.

Correlation between the genetic predisposition and
disease burden of stroke
We hypothesized that at the population level, the
genotype–phenotype correlation of stroke exists. To test
this hypothesis, we compared stroke genetic predispo-
sition with different epidemiological burden metrics at
the provincial geographic scale, including the age-
standardized rate of mortality, DALYs, YLLs, YLDs,
and prevalence, in 1990, 2016, and 2019 of each
province.

In both PRS Model I and II (Supplementary Figs. S3
and S4), we observed that across different years, mor-
tality and DALYs were associated with genetic predis-
position of a moderate to a strong degree rather than
prevalence. Further stratified analysis of YLL and YLD
(Supplementary Figs. S5 and S6), which are the two
sources of DALYs, demonstrated a stronger association
of YLLs than that of YLDs with the genetic predisposi-
tion. We also observed that more recently (2016 and
2019), the most developed administrative divisions
(Beijing and Shanghai) have a lower rate of mortality
and DALY than the genetically predicted ones. While
less developed provinces, such as Qinghai, have higher
rates of mortality and DALY than genetically predicted
provinces.

Estimating the importance of genetic
predisposition to the disease burden of stroke
To further determine the significance of genetic pre-
dictors for stroke burden, first, we performed simple
linear regression analyses and then conducted multi-
variable regression analyses in both linear regression
and nonlinear regression in both PRS models, which
were corrected for the potential confounders including
smoking, physical inactivity, salt intake, intake of vege-
tables and fruits, obesity, hypertension, hyperlipidemia,
www.thelancet.com Vol 36 July, 2023
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Fig. 3: Correlation between the disease burden and genetic predisposition for stroke in 1990, 2016, and 2019. a. Simple linear Regression
of age-standardized mortality rate (per 100,000) and genetic predisposition in PRS Model I. b. Simple linear Regression of age-standardized
DALY rate (per 100,000) and genetic predisposition in PRS Model I. c. Simple linear Regression of age-standardized mortality rate (per
100,000) and genetic predisposition in PRS Model II. d. Simple linear Regression of age-standardized DALY rate (per 100,000) and genetic
predisposition in PRS Model II. Shadowed areas indicate 95% confidence intervals. DALY: age-standardized disability-adjusted life year.
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the concentration of PM2.5, medication use, RCDI, and
geographical regions (Methods).

In simple linear regression, genetic risk is a sig-
nificant predictive variable for mortality (Fig. 3a–b;
PRS Model I: r2 = 0.19, p = 0.02 in 1990; r2 = 0.32,
p = 0.001 in 2016; r2 = 0.38, p = 0.0003 in 2019; PRS
Model II: r2 = 0.20, p = 0.01 in 1990; r2 = 0.17, p = 0.02
in 2016; r2 = 0.14, p = 0.04 in 2019) and DALYs (PRS
Model I: r2 = 0.23, p = 0.007 in 1990; r2 = 0.38,
p = 0.0003 in 2016; r2 = 0.44, p < 0.0001 in 2019; PRS
Model II: r2 = 0.24, p = 0.006 in 1990; r2 = 0.17,
p = 0.02 in 2016; r2 = 0.17, p = 0.02 in 2019, Fig. 3c–d)
other than prevalence (Supplementary Fig. S7) in both
PRS models across different years. Regression validity
was confirmed with the normal distribution of
www.thelancet.com Vol 36 July, 2023
residuals and constant variance in most regressions
(Supplementary Figs. S8–S13).

Second, we performed multivariable analyses. From
linear models (Table 1), although the full model (Linear
Model 1) with lower adjusted R-square values did not
identify genetic risk as a significant variable, after
stepwise regression, Linear Model 2 with the highest
adjusted R-square values determined genetic risk as an
independent predictor of mortality and DALYs in both
PRS models in 3 of 4 tests (p = 0.0003 for mortality in
PRS Model I; p = 0.2 for DALYs in PRS Model I;
p = 0.05 for mortality in the PRS Model II; p = 0.03 for
DALYs in PRS Model II). After excluding the genetic
factor, the adjusted R-square of Linear Model 3
decreased. Overall, we observed that Linear Model 2 was
7
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Estimated coefficient (SD) PRS Model I PRS Model II

Age-standardized Mortality Rate Age-standardized DALYs Rate Age-standardized Mortality Rate Age-standardized DALYs Rate

(per 100,000) (per 100,000) (per 100,000) (per 100,000)

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

RCDIb −1.83** −2.17*** −1.68*** −32.38* −35.58*** −33.17*** −1.64* −1.96*** −2.00*** (28.08) −32.23*** −33.17***

(0.84) (0.47) (0.58) (16.59) (9.65) (9.64) (0.86) (0.45) (0.48) (16.74) (8.98) (9.64)

Drug Intervention −0.51* −0.39** −0.62*** −11.55** −9.44*** −10.51*** −0.51* −0.37** −0.46*** −11.53** −8.55** −10.51***

(0.25) (0.16) (0.20) (4.95) (3.34) (3.30) (0.25) (0.16) (0.16) (4.82) (3.19) (3.30)

Stroke PRS 301.84 410.84*** 5083.80 4412.72 952.00 917.91* 18332.48 20,145.42**

(210.98) (97.13) (4188.09) (3229.10) (601.41) (449.76) (11782.89) (8952.82)

Obesity 0.16 −0.25* −0.31* 1.84 −6.93** −8.33** 0.27 4.24

(0.37) (0.13) (0.17) (7.36) (2.91) (3.83) (0.38) (7.49)

Hypertension 0.12 0.20 0.10 5.89 5.72 3.44 0.05 0.89

(0.23) (0.16) (0.20) (5.39) (3.41) (4.46) (0.22) (4.27)

Geographical Regions 16.16 405.17 355.60* 562.30*** 20.24 14.59** 23.22*** 469.57 372.94** 562.30***

(16.03) (318.22) (192.50) (121.04) (15.36) (7.06) (5.99) (300.97) (140.54) (121.04)

Smoking −0.17 −3.63 −0.14 −3.08

(0.19) (3.71) (0.18) (3.54)

Physical inactivity −0.01 1.17 −0.00 0.87

(0.31) (6.10) (0.30) (5.87)

Salt Intake 0.04 1.69 0.03 1.73

(0.31) (6.15) (0.30) (5.93)

Insufficient Intake of
Vegetables and Fruits

0.14 3.38 0.13 3.03

(0.17) (3.38) (0.17) (3.31)

Hyperlipidemia −0.15 −3.85 −0.20 −4.80

(0.23) (4.61) (0.23) (4.54)

PM2.5 −0.06 0.18 −0.17 −1.88

(0.19) (3.72) (0.20) (3.87)

Constant 305.70*** 338.19*** 329.12*** 5570.00*** 6000.96*** 6013.98*** 880.57** 887.57*** 341.52*** 16,511.80** 17,998.07*** 6013.98***

(96.16) (40.40) (51.44) (1908.84) (832.12) (845.83) (341.07) (270.46) (41.85) (6682.34) (5383.62) (845.83)

Adjusted R2 0.74 0.80 0.67 0.75 0.79 0.78 0.75 0.80 0.78 0.76 0.81 0.78

Note: *p < 0.1; **p < 0.05; ***p < 0.01. (1) Full mode. (2) Backwards stepwise regression of the full model. (3) Remove the PRS component of the second model. aDALY: Disability-adjusted life years. bRCDI: Renmin University China Development
Index, a composite socioeconomic index.

Table 1: Multivariate linear regression of mortality and DALYa.
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best fitted for both mortality and DALY. In addition, as
stratified analyses for DALYs, we obtained similar re-
sults for YLLs (Supplementary Table S5). Most re-
gressions obtained normal distribution of residuals and
constant variance (Supplementary Figs. S14–S19).

On the other hand, we performed nonlinear regres-
sion as complementary to the linear regressions
combating potential collinearity among different pre-
dictive variables by using the random forest algorithm.26

For mortality and DALYs (Table 2), the genetic risk was
still significant as an independent variable, with a partial
R-square of approximately 1–6% in both PRS models
(p = 0.03 for mortality in PRS Model I; p = 0.01 for
DALYs in PRS Model I; p = 0.002 for mortality in PRS
Model II, p = 0.06 for DALYs in PRS Model II).
Meanwhile, we obtained a partial R-square of approxi-
mately 4–6% for YLLs as stratified analyses for DALYs
(Supplementary Table S6).

We concluded that genetic predisposition plays a
small but nonnegligible role in stroke epidemiological
burden, especially for mortality, DALYs and YLLs.
Discussion
By applying two different validated PRS models
respectively derived from modelling selected SNPs and
whole genome-wide variants to the allele frequency data
from WGS from 141,418 unrelated Chinese people in
30 provinces (Methods and Fig. 1), we depicted coherent
genetic predispositions to stroke in China at a provincial
resolution for the first time (Fig. 2a–b). We found the
genetic risk was associated with mortality and DALYs,
but not prevalence and dissected the small but
Estimated coefficient (SD) PRS Model I

Age-standardized
Mortality Rate (per
100,000)

A
D
1

r2 p-value r2

Full Model 0.52 <0.001

RCDIb 0.14 <0.001

Drug Intervention 0.14 0.001

Stroke PRS 0.02 0.03

Geographical Regions 0.00 0.2

Obesity −0.02 0.6 −

Hypertension −0.01 0.4 −

Smoking −0.02 0.4 −

Physical inactivity −0.01 0.7 −

Salt Intake −0.02 0.4 −

Insufficient Intake of Vegetables and Fruits −0.02 0.7 −

Hyperlipidemia −0.03 0.8 −

PM2.5 −0.02 0.5 −

(Intercept) 0.00 0.2

aDALY: Disability-adjusted life years. bRCDI: Renmin University China Development Inde

Table 2: Random forest regression of Stroke disease burden.
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nonnegligible impact of genetic risk on disease burden
(Tables 1 and 2). We also illustrated the provincial ge-
netic risk of stroke-related cardiometabolic traits and
behavioural traits (Supplementary Fig. S1). Moreover,
we displayed the allele frequency of the stroke-related
drug response SNPs and caffeine metabolism-related
SNPs (Supplementary Fig. S2). Overall, we revealed
stroke’s genetic predisposition at a provincial
geographic scale and found its correlation with the
disease burden.

The interest in personalized early risk stratification
for complex diseases has increased.12 However, its
limited trans-ancestry applicability has long been criti-
cized. The latest GWAS, led by the GIGASTROKE
consortium,7 now provides an integrated East Asian-
specific PRS model derived from a Japanese-majority
population. Although both Japanese and Chinese are
East Asians, they do have differences in genetic back-
grounds27 and distinguishable lifestyles. To ensure the
validity of our findings, we employed a Chinese-only
PRS model with 500 SNPs15 and an integrated East
Asian-specific PRS model with nearly 5 million SNPs to
evaluate the provincial genetic predisposition to stroke.
The results from PRS Model I and II showed agree-
ment, demonstrating the reliability of the quantitative
inferences on the depiction and impact of stroke genetic
risk.

Identifying genetic predispositions can help with
early stratification. We illustrated genetic pre-
dispositions to stroke as well as its risk factors and
detected a noticeable north-south gradient for most
traits (Fig. 2a and b and Supplementary Fig. S1). The
genetic differences are in conjunction with the well-
PRS Model II

ge-standardized
ALYsa Rate (per
00,000)

Age-standardized
Mortality Rate (per
100,000)

Age-standardized
DALYsa Rate (per
100,000)

p-value r2 p-value r2 p-value

0.55 <0.001 0.60 <0.001 0.61 <0.001

0.07 <0.001 0.13 <0.001 0.06 0.001

0.14 <0.001 0.11 <0.001 0.12 <0.001

0.01 0.01 0.04 0.002 0.06 <0.001

0.00 0.1 0.00 0.004 0.01 0.03

0.02 0.4 0.00 0.2 −0.01 0.3

0.03 0.4 0.01 0.03 −0.02 0.2

0.01 0.6 0.00 0.1 −0.01 0.4

0.02 0.4 0.00 0.04 -0.01 0.1

0.03 0.8 0.01 0.1 −0.02 0.6

0.02 0.8 −0.01 0.1 −0.03 1

0.02 0.6 −0.01 0.2 −0.01 0.4

0.01 0.6 0.00 0.1 −0.02 0.4

0.01 0.3 0.00 0.03 0.00 0.2

x, a composite socioeconomic index.
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known genomic dissection of the population substruc-
ture of the Chinese population, which is partly attrib-
uted to Huai River-Qinling Mountain as a natural
barrier of restricted gene flow. And the north-south
genetic gradient is consistent with the long-existing
north-south gradient of epidemiological burden28–30 or
the geographical “stroke belt”,31 which is defined as a
higher stroke burden of north and west China. Addi-
tionally, the strong correlation among the estimated
provincial genetic risk of stroke, BP, and BMI (Fig. 2c) is
consistent with the deduced cause of “stroke belt”:
specifically, the higher prevalence of hypertension and
excess body weight in stroke belt regions leads to a
higher burden of stroke.

Despite the stable correlation between mortality and
YLLs and genetic predisposition, however, the disasso-
ciation between prevalence and genetic predisposition is
counterintuitive. This is partially due to the multiple
etiologies of stroke. For instance, GWAS may aim to
discover the loci associated with the most prevalent
etiologies,32 such as large-artery atherosclerotic stroke
(LAS) and cardioembolic stroke (CES), which tend to
have a more severe prognosis. Additionally, during the
construction of PRS, only the loci that are more likely to
be associated with more than one subtype of stroke33 are
not pruned, thus leading to the possibilities of their
greater effects on poor prognosis. In addition, the data
quality of mortality may be closer to the actual situation
than prevalence because the overall framework for the
national surveillance of cardiovascular disease (CVD)
incidence and prevalence has just begun,34 whereas the
establishment of the death registration reporting system
dates back to 1978 and is more experienced.35

Pharmacogenetics guides tailored therapeutic in-
terventions. Different genetic dosages of clinical drug
response SNPs can influence individual pharmacoki-
netics, dose needs, and safety. Awareness of the genetic
variations among populations is essential for identifying
patients who may experience an adverse drug response
or no drug response, thus optimizing patients’ prog-
nosis. We found stroke-related drug response SNPs
showed varying frequencies (Supplementary Fig. S2).
Clopidogrel, as the most widely prescribed antiplatelet
medication, has higher resistance among East Asians.36

This can be partly explained by a higher frequency of
CYP2C19 nonfunctional allele carriers than Europeans
as we observed (Supplementary Fig. S2a–c). Statins, the
cornerstone for primary and secondary prevention, are
more likely to induce adverse side effects, such as
myalgia, in the Chinese population.36 It can be attributed
to the higher frequency of SNPs for statin metabolic
decline as we demonstrated (Supplementary Fig. S2d–
g). In addition, clinical prescription of warfarin needs
special caution in China because Asians exhibit greater
thromboembolic protection at lower INR, lower initia-
tion and maintenance doses of warfarin, and a higher
risk of ICH caused by warfarin.36 The phenomenon is in
line with the allele frequencies of the SNPs that decrease
warfarin metabolism are more frequent in the Chinese
population (Supplementary Fig. S2g–i) when compared
to Europeans. Our findings agree with the conclusions
of previous clinical trials,37–39 which demonstrated that
Asian ancestry patients require a genotype-guided lower
dosage than European guidelines have recommended
for clinical benefits. By contrast, Europeans made up
more than 80% of recruited patients in pivotal efficacy
random control trials implementing new approval of
cardiometabolic drugs,36 raising disparity among un-
derrepresented populations. And due to financial con-
straints, drug–drug and drug–diet interactions, and a
lack of enough high-quality studies in non-white pop-
ulations, a genotype-guided strategy is not routine in the
clinic. However, we do not suggest that the ‘one-size-
fits-all’ therapy strategy would endure, and with the
increasing ease and declining cost of sequencing tests,
as well as more well-designed and high-quality clinical
studies being carried out in more diverse populations,
the genotype-guided strategy will play a more important
role in the individualized cardiovascular care.

Caffeine is a widely consumed psychoactive agent in
daily beverages such as coffee, tea and soft drinks,
attracting increasing attention for cardiovascular health,
and it has been recognized as a healthy lifestyle with
adequate intake in recent years.40 The coffee intake
inferred from the three accessible SNPs appeared to be
relatively even across provinces (except for Qinghai)
(Supplementary Fig. S2j–l), and more verification is
needed.

Finally, we inferred that genetic risk plays a small but
independent role in disease burden (Fig. 3, Tables 1 and
2, Supplementary Figs. S3–S6, Supplementary
Tables S5 and S6). Although simple linear regression
results showed that hereditary factors can explain
approximately 30% of the disease burden for a single
variable (Fig. 3), which is comparable with some family
lineage studies that have obtained heritability for stroke
up to 32%41; we believe this result is over-estimated
owing to confounding effects by covariates within the
same family, such as environment and lifestyle. There-
fore, we included covariates of more dimensions, thus
yielding a finding that genetic risk affects stroke burden
by approximately 1–6% (Tables 1 and 2). In terms of
methodology, we use both linear regressions and non-
linear regressions to ensure validity. On the other
hand, from quantitative calculations, our estimation is
consistent with a multiancestry genome-wide associa-
tion meta-analysis in 521,612 individuals, which indi-
cated that the phenotypic variance explained by SNPs
ranged between 0.6% and 1.8%.32 Therefore, our find-
ings on the correlation between genetic risk and disease
burden reveal the predictive value of PRS from a
macroscopic perspective.

Previous studies have revealed that attributable
environmental and lifestyle factors account for more
www.thelancet.com Vol 36 July, 2023
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than 90%2 of stroke disease burden and that genetics
plays a nonnegligible role in the remaining 10% of
stroke disease burden. Additionally, we observed a
much larger effect of RCDI and medication intervention
than genetic components, which emphasizes the ne-
cessity of intervention of modifiable acquired factors,
including environment, lifestyle, healthy car-
diometabolic metrics, and timely drug interventions. It
is promising that at an individual level, previous studies
revealed that people at higher genetic risk can benefit
more from maintaining a healthy lifestyle and adhering
to preventive treatment, compared to those at lower risk.
Thereby, they offset increased genetic risk.15 We value it
as an opportunity to promote public awareness and
patient compliance if high-risk individuals can be
identified beforehand. On the other hand, at a popula-
tion level, as previous simulation analysis demonstrated
that if CVD risk factors (including smoking, physical
inactivity, BMI, fasting glucose levels, total cholesterol
levels, and systolic blood pressure) were adequately
controlled, more than 700,000 deaths among people
aged 30–70 years could be avoided.42 Hence, early
screening for genetic risk of stroke would help identify
high-risk individuals and obtain more clinical benefits,
as well as reduce the epidemiological burden. While
nurture is more influential than nature in the case of
stroke, a clearer understanding of nature would make a
difference in the outcome.

Our study had several strengths. First, we utilized
two PRS models of different magnitudes of SNPs
derived from the Chinese-only population and East
Asian-specific population, thus avoiding poor trans-
ancestry portability as much as possible. Importantly,
consistent results were achieved from both models,
strengthening the reliability of our conclusions. Second,
the genetic data and epidemiological data that we
applied are obtained from the most comprehensive and
representative genetic database and the most authorita-
tive published statistics in China, respectively, allowing
us to fill the gap in the landscape of genetic predispo-
sition to stroke and stroke-related traits as well as
genetically predicted drug response at the population
level. Third, we made exhaustive efforts to ensure the
robustness of the genotype–phenotype correlation. We
not only compared epidemiological data from different
years but also analyzed multidimensional covariates and
managed to fit both linear and nonlinear models. The
relatively stable association we identified between ge-
netic risk and death-related disease burden (mortality,
DALYs and YLLs) provides a new perspective for future
research.

The study results should also be interpreted in light
of several limitations. First, we analyzed summary-
statistical level data at a provincial resolution, and our
findings warrant further individual-level granular vali-
dation. Second, the PRS calculation results may not be
perfectly accurate to elucidate the complete heritability
www.thelancet.com Vol 36 July, 2023
of stroke due to the loss of a small fraction of SNPs
(6.4% for the Chinese-specific model and 19.2% for the
East Asian-specific model). Fortunately, the proportion
is not enough to twist the overall results. More detailed
and diversified data collection in population genetics is
needed to expand insights into genetic assessment,
etiological explorations, and precision medicine of
stroke. Third, epidemiological data are limited in some
remote areas wherein poor data availability intensifies
regional disparity; thus, this effect could be under-
estimated.2 This result also suffers from the shortcom-
ings inherent in the GBD methodological framework,
including challenges in fully quantifying all sources of
uncertainty, variation in coding practices, and other
biases.25 A better disease surveillance system is currently
under construction and is expected to deliver new in-
formation to help in reducing the disease burden.

Conclusion
We delineated the distribution of genetic predisposition
to stroke and common cardiovascular risk factors from a
population-level perspective in China and detected a
minor but nonnegligible independent effect of genetic
predisposition on stroke burden. Collectively, our find-
ings provide novel insights into the genetic epidemi-
ology of stroke. Further granular research of genetic risk
prediction and genotype-guided pharmacotherapy is
warranted to mitigate stroke burden clinical outcomes.
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