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ABSTRACT
Since 2013, highly pathogenic avian influenza (HPAI) subtype H5N6 (clade 2.3.4.4) has been reported in wild birds and
poultry in Asia as well as in other parts of the globe. In Africa, information on the presence of this virus subtype is
lacking. This study reports the first detection of a HPAI (H5N6) virus (clade 2.3.4.4b) in a duck from a live bird market
in Nigeria, whose genome is closely related to the European 2017–2018 H5N6 viruses, indricating a recent virus
introduction into the African continent.
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In January 2006, the first outbreak of a highly patho-
genic avian influenza (HPAI) subtype H5N1 (clade
2.2) was detected in Nigeria [1]. Within two years
from its introduction, the disease had spread to
67.6% of the states in the country in circumstances sus-
pected to be linked to wild bird migration and/or trade
[2]. The HPAI outbreaks resulted in colossal economic
losses and public health concerns. Following the first
epidemic wave of HPAI (2006–2007), in 2008, a dis-
tinct H5N1 virus (clade 2.2.1) was detected in ducks
from live bird market (LBM) surveillance in Northeast
(Gombe) Nigeria [2]. In January 2015, another HPAI
H5N1 incursion (clade 2.3.2.1c) was reported from a
LBM and from poultry farms in Lagos and Kano states,
respectively [3]. A year later, in November 2016, a
HPAI H5N8 virus of clade 2.3.4.4.b, responsible for
one of the most devastating epizootic in poultry and
wild birds in Europe [4], was detected in the northern
state of Kano [5]. Since late-2017, a new reassortant
HPAI clade 2.3.4.4b H5N6 has been reported in wild
and domestic birds in Northern Europe. This study
describes the first detection, in June 2019, of the
same H5N6 subtype in a duck from LBM surveillance
in Northwest (Sokoto) Nigeria (Figure 1).

During a recent surveillance activity for HPAI con-
ducted from late-June to mid-August 2019 by the
Department of Veterinary and Pest Control Services
of the Federal Ministry of Agriculture and Rural

Development, Abuja, an isolate of avian influenza
was identified and characterized. In the course of the
surveillance activity, 3131 tracheal and cloacal samples
collected from 13 bird species were tested at the NVRI
using real-time RT–PCR for avian influenza virus
(AIV) targeting the matrix (M) gene [6]. AIV M-
gene positive samples were subjected to specific proto-
cols for subtyping avian influenza viruses [7,8]. In
addition, the M-gene positive samples were inoculated
in 9–11-day-old embryonated chicken eggs of specific
antibody-negative origin according to the standard
procedure [9].

A H5N6 virus, designated A/duck/Nigeria/
SK28T_19VIR8424-2/2019, was isolated and sent to
the Istituto Zooprofilattico Sperimentale delle Venezie
(IZSVe), Padua, Italy, for subtype confirmation. The
intravenous pathogenicity index (IVPI) was conducted
to assess the pathogenicity of the virus (supplementary
data). To trace the virus origin and evaluate its genetic
properties, whole-genome sequencing was performed
on the isolate using an Illumina MiSeq platform (Illu-
mina, San Diego, CA, USA) (supplementary data). The
sequences were deposited at the GenBank under the
accession numbers: MN889503-MN889510.

The maximum likelihood phylogenetic tree of the
haemagglutinin (HA) gene segment obtained by
using IQTREE (Figure 1) shows that the HPAI H5N6
virus detected in Nigeria in summer 2019 falls within
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genetic clade 2.3.4.4b [10] and groups together with
European H5N6 viruses identified in wild and dom-
estic birds in 2017–2018 (similarity range between
98.9% and 99%) (Supplementary Table 1). The phylo-
genetic trees of all other gene segments reflect the same
topology as the HA phylogeny (data not shown).

The amino acid sequences of the haemagglutinin
(HA) gene show that the H5N6 virus possesses a
multi-basic cleavage site (PLREKRRKR*GLF) typical
of HPAI viruses. Similarly, the IVPI test result, 2.89,
confirmed the highly pathogenic nature of the isolate
[9]. In the neuraminidase (NA) gene segment of the
virus, mutation N403H removes a potential N-glycosy-
lation site at position 403, at the level of the sialic acid-
binding domain of the protein [11]. This mutation
could potentially affect both the antigenic and the
receptor binding properties of this strain. Nevertheless,
haemagglutination inhibition assays conducted with
ferret antisera generated against HPAI viruses belong-
ing to the 2.3.4.4 clade, H5N6 A/Sichuan/26221/2014
(SICH-26221), H5N8 A/Fujian-Sanyuan/21099/
2017XPR8 (FUJIAN-21099) and the recent 2.3.4.4b
H5N8 A/turkey/Italy/17VIR576-11/2017 (ITALY-
576) strains, recorded titers that were either identical
to the ones observed against the homologous antigens
or within 1 log2 difference. Genetic and antigenic data
were generated and shared within the OFFLU network
to contribute to the WHO biannual report of “Anti-
genic and genetic characteristics of zoonotic influenza

viruses and development of candidate vaccine viruses
for pandemic preparedness.”

Here, the first H5N6 clade 2.3.4.4.b introduction
into Africa from Europe, most likely via wild birds
is reported. HPAI H5N6 bearing the same gene con-
stellation of the Nigerian strain, had already caused a
total of 98 outbreaks in Europe between late-2017
and early 2019, of which 92% had occurred in wild
birds [12]. This finding confirms our previous
study, which recognized West Africa, and in particu-
lar Nigeria, as one of the most important hotspot for
Gs/GD/96 HPAI H5Nx introduction into Africa [5].
Europe and West Africa are naturally connected by
the Black Sea/Mediterranean flyway and, as suggested
for previous virus spreads [5], wild migratory birds
may have played an important role also in this new
virus incursion. The virus may have circulated in
the West African wild or domestic population for
several months before its detection, highlighting the
need to enhance surveillance, in particular in the
areas close to wetlands. To prevent the spread of
infection to other countries in the sub-region, coordi-
nated control strategies have been applied, which
include, but are not limited to, controlling the move-
ment of poultry and poultry products with neigh-
bouring countries. In addition, implementation of
surveillance plans is mandatory to avoid possible
gaps in monitoring the virus evolution and the epide-
miological scenario.

Figure 1. Maximum likelihood phylogenetic tree of the HA gene segment of A/duck/Nigeria/SK28T_19VIR8424-2/2019. H5N6 virus
from Nigeria is marked in red. Blue rectangular highlights the European H5N6 cluster. The map shows the Nigerian state (red star),
where the H5N6 was identified.
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Co-circulation of multiple subtypes (H5N8, H5N6
and H9N2) (T. Joannis pers. comm.) in the country
may represent a diagnostic challenge, considering
that new reassortant viruses could emerge, as recently
reported in Egypt [13,14], and spread. Urgent actions
to strengthen surveillance efforts, combined with eradi-
cation measures, adequate compensations and edu-
cation of farmers are needed to contain and monitor
virus spread and the emergence of novel viruses of ani-
mal and public health concern.
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