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Abstract

What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations,
are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites
considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations
of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available
data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass
more than twenty conditions, each containing dozens (28-108) of simultaneously measured metabolites. We test for
correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area,
lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties
elicits a ,100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged
atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing
specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of
concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on
metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of
solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic
binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects
of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.
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Introduction

Living cells exhibit a preference towards certain types of

metabolites. Many of these tendencies can be explained as

consequences of chemical constraints imposed on metabolism. For

example, the cellular ubiquity of charged metabolites, like those

containing phosphoryl or carboxyl groups, is attributed to increasing

solubility and decreasing leakage through the membrane [1].

Several studies suggest that contemporary structural preferences

can be attributed to characteristics of archaic metabolism [2,3].

For example, it has been suggested that positively charged surfaces

played a central role in archaic metabolism, selecting for

negatively charged molecules, mainly carboxylates and phosphates

[3,4]. Such conditions also favored water-eliminating polymeriza-

tion reactions, resulting in the formation of large biomolecules like

those that make up most of the biomass in contemporary cells [3].

In addition, early energy demands probably involved the use of

iron and sulfur [3,4], elements that still play a central role in living

organisms. Focusing on carbon fixation, the availability of various

reduced metals and volatile C1 compounds in the highly reduced

early environment probably account for the structure of some of

the contemporary carbon fixation pathways [5].

In this study we explore whether the qualitative preferences for

specific types of metabolites represent a systematic, quantitative

trend across multiple organisms. We suggest that a quantitative

perspective on the chemical preferences of living cells could help

elucidate the evolutionary forces shaping the structure of

metabolic systems, facilitate genome-scale metabolic reconstruc-

tions and advance the design and implementation of novel

metabolic pathways [6].

A previous study [7] demonstrated that the specific chemical

groups composing metabolites explain a fraction of the variance in

their concentrations. However, this previous work collected

concentration values from separate sources, each employing

different conditions and measurements techniques. In our study

we use data sets of simultaneously measured concentrations of

dozens of metabolites. We report a comprehensive correlation

analysis between physico-chemical parameters of metabolites and

their in-vivo concentrations. We find consistent trends which

suggest that, beyond specific metabolic effects on concentrations,

such as the kinetics of the enzymes producing and consuming a

metabolite, there are global evolutionary tendencies that shape the

internal makeup of living cells.

Results

We employed two large data sets of measured metabolite

concentrations in E. coli which represent the most comprehensive
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data sources currently available (Bennett et al. [8], containing 93

metabolites and Ishii et al. [9], 108 metabolites). To strengthen our

analysis we have further used five smaller data sets: three are from

S. cerevisiae (Ewald et al. [10], 29 metabolites, Fendt et al. [11], 29

metabolites, and Kummel et al. [12], 33 metabolites); one from B.

Subtilis (Kleijn et al. [13], 35 metabolites) and another contains

measurements of the 20 common amino acids in human muscle

(Bergstorm et al. [14]). Most of these data sets contain at least three

different conditions in which concentrations were measured.

Overall, 21 conditions were analyzed independently. The full

concentration data is given in the Dataset S1.

We analyzed various physico-chemical parameters associated

with the different metabolites, including molecular mass (MW),

polar surface area (PSA), non-polar surface area (NPSA), number

of charged atoms (NCA), hydrogen bond inventory (HBI),

number of rotatable bonds (NRB), solubility in water (LogS)

and lipophilicity (LogP, the ratio of the equilibrium concentra-

tions of a compound in octanol and water), as shown in Figure 1

(Materials and Methods). We focus our discussion on small

metabolites (MW#300 Da) as we find that these show the most

prominent correlations. This group contains most ($80%) of the

metabolites in each of the original data sets. The excluded

metabolites includes mostly co-factors (e.g. NADPH, ATP etc),

which are expected to be subject to a different and stronger set of

selective pressures, alongside phosphorylated nucleotides and

CoA substituted compounds. Notably, the qualitative trends we

describe below also persist in the full data set, albeit less clearly

(Figure S1).

In Figure 2 we show the level of correlation between the

physico-chemical parameters analyzed and the logarithm of

metabolite concentrations for each of the 21 experimental

conditions. Even though the data sets are known to be noisy for

experimental reasons we find that some parameters are consis-

tently correlated with metabolite concentrations whereas others

show no consistent correlation. The non-polar surface area

(NPSA), LogP, LogS and the number of charged atoms (NCA)

correlate with concentrations across the data sets and conditions

(Figure 2) and point to a systematic phenomenon: the concentra-

tions of non-polar, un-charged metabolites are significantly lower

within cells. Specifically, in the two large data sets (Figures 3A and

S2), metabolite concentrations decrease on average ,100 fold

with increasing NPSA. In the S. cerevisiae data sets, concentrations

increase ,100 fold with decreasing LogP or increasing LogS

(depending on the data set, Figure 2). The lower correlation

observed in the data set of Kleijn et al. can be attributed to the

multiple analytical platforms that the authors used for the

measurement of the metabolites, which might introduce different

experimental biases.

In Bennett et al. [8], the most reliable and comprehensive data

set (see below), we find that a regression analysis using only NPSA

and NCA accounts for almost half of the variation in metabolite

concentrations within the cell (R2 = 0.43, glucose-fed E. Coli,

Figure 3B). Moreover, while ,55% of metabolites’ concentrations

are within one order of magnitude of the mean metabolite

concentration in glucose-fed E. coli, we find that a linear model

using NPSA and NCA predicts concentrations to within an order

of magnitude with a significantly higher ,80% accuracy

(Materials and Methods and Figure S3). The difference between

the measured concentrations and those predicted by our linear

model is about 5-fold on average. This variation can be attributed

to other global or local factors which affect metabolite concentra-

tions. Also, error inherent to the measurement procedures limits

the accuracy of the fit between model and data set.

Figure 1. Schematic representation of physico-chemical pa-
rameters of metabolites (Materials and Methods), exemplified
using 2-ketoglutarate. (a) Purple - polar surface area (PSA, oxygen
and nitrogen atoms that are able to form hydrogen bonds, including
hydrogen atoms attached to them). Blue - non-polar surface area
(NPSA) which contributes to the hydrophobic effect. Yellow trapezes
represent hydrogen bonds that the molecule can form with the solvent
or with other solute molecules (HBI - hydrogen bond inventory).
Charges are marked by red ellipses (NCA – number of charged atoms).
Curved, dashed grey arrows correspond to rotatable bonds (NRB –
number of rotatable bonds). (b) LogP (left) is the logarithm of the
equilibrium ratio of concentrations of a metabolite in the two phases of
a mixture of octanol and water. LogS (right) is the logarithm of the
water solubility. See Materials and Methods for details on the
calculation of these parameters.
doi:10.1371/journal.pcbi.1002166.g001

Author Summary

What governs the identity and concentrations of metab-
olites within living cells? The first part of this question has
received much attention. Organisms were found to
qualitatively prefer hydrophilic and charged metabolites,
a phenomenon that was explained to be a result of
constraints imposed by contemporary as well as archaic
metabolism. However, among the metabolites that are
used, a quantitative preference has never been analyzed
systematically. Here we use the most comprehensive data
sets of metabolite concentrations available to explore such
trends. We find that in various organisms and growth
conditions, living cells minimize the concentrations of non-
polar, un-charged metabolites. More specifically, metabo-
lites’ hydrophobicity alters concentrations by two orders of
magnitudes on average and explains up to half of the
variation of metabolite concentrations within cells. We
suggest that this can be attributed to an evolutionary
pressure to avoid an unspecific hydrophobic effect: the
preference of hydrophobic surfaces in an aqueous
environment to adhere to other hydrophobic surfaces.
Our findings shed light on the evolution of the internal
makeup of living cells and can assist in establishing
metabolic models that support synthetic biology and
metabolic engineering efforts.

Hydrophobicity Shape Metabolite Concentrations
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Could the observed correlations stem from a systematic bias in

the extraction and measurement procedures, which might prefer

polar and charged metabolites over non-polar and un-charged

ones? Indeed, some of the published data sets were obtained using

extraction methods which risk losing lipophilic metabolites. For

example, the two-phase water/chloroform extraction system used

by Ishii et al. [9] may be biased towards the extraction of

hydrophilic compounds. In order to control for such extraction

biases and calibrate the intracellular metabolite concentrations,

most studies spiked internal standards directly into the extraction

fluid. Bennett et al. [8] and Fendt et al. [11] took the most stringent

approach and added known concentrations of labeled standards of

all compounds measured to the extraction solvent. Consequently,

cellular metabolites and internal standards experienced the same

opportunities for adsorptive losses or degradation [15]. This

methodology enabled the authors to minimize sources of bias in

the extraction and measurement procedures, indicating that the

observed trends are unlikely to be the result of experimental

artifacts (see Text S1 for further discussion).

When we restrict our analysis to amino acids, we find a

significantly higher correlation between their hydrophobicity and

measured concentrations (Figure S4). For amino acids, NPSA (or

LogP) yields an R2 of more than 0.3 in all data sets, and in several

cases it even surpasses 0.5. This trend is apparent when using

LogP instead. We note that the concentration differences between

free amino acids span two or three orders of magnitude. This large

range cannot be explained by the well-known observation that

hydrophobic amino acids are less abundant in proteins by about

an order of magnitude [16].

The increased correlation observed for amino acids suggests that

the observed trends might be more prominent when inspecting a

group of metabolically similar compounds. Indeed, we find

confirmation of this notion in phosphorylated nucleic acids, the

concentrations of which correlate with NCA with R2.0.4, where

each additional phosphate group increases concentration roughly

three-fold on average. The observation that trends sharpen for

groups of metabolically similar compounds suggests that the

observed preference for polar, charged metabolites is present at

multiple scales of inquiry and is indeed systematic.

There are, however, metabolites which display a consistent

deviation from predicted concentrations. Most significant devia-

tions from predicted concentrations occur only in specific

conditions or data sets. Notably, glutamate and, to a lesser extent,

glutamine are the only non-cofactor metabolites with MW,300

that display a consistent deviation from concentrations predicted

using the four main physico-chemical parameters (NPSA, LogP,

LogS and NCA) across most data sets. The concentration of

glutamate is .30-fold higher than predicted, which has been

explained by its role as a cellular nitrogen donor and counter-ion

to potassium [8]. Notably, glutamate and glutamine can be

regarded as co-factors, serving as nitrogen donors for the

biosynthesis of essentially all other amino-acids.

Discussion

Why should the concentration of hydrophobic, un-charged

metabolites be lower in living cells? We hypothesize that

concentrations are governed by evolutionary constraints. Here,

we summarize and shortly discuss several previously suggested

selective pressures acting in cells and how they might account for

the observed trends.

A cellular preference for low hydrophobicity and high NCA can

be attributed to a selection for decreased membrane permeability

[17]. High permeability can result in metabolite leakage [17] or in

metabolite accumulation within the membrane, which can lead to

membrane instability [18]. Indeed, lipophilicity has become an

important criterion in the pharmaceutical industry for estimating

the permeability of small molecules through the intestinal

membrane and their potential for use as oral drugs [17,19]. In

contrast, charged molecules are orders of magnitude less

permeable as compared to their un-charged counterparts [20].

However, previous studies demonstrated that the negative effect of

polar surface area (PSA) on permeability is considerably higher

than the positive effect of NPSA [17]. As PSA does not exhibit

Figure 2. Correlation (R) between the logarithm of metabolites concentrations in each data set and the physico-chemical
parameters of metabolites. Only metabolites with MW,300 were included in this analysis (see Text S1 and Figure S1). We computed the p-value
of each R2 and determined its significance, as explained in the Methods. A correlation that was found to be significant (false discovery rate of 0.01, see
Methods) is denoted by *. Parameters abbreviations are as in Figure 1.
doi:10.1371/journal.pcbi.1002166.g002

Hydrophobicity Shape Metabolite Concentrations
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consistent correlation with concentrations, permeability can only

provide a partial explanation of the observed trends.

Another explanation for generally lower concentrations of

hydrophobic metabolites is that non-polar and un-charged small

compounds are at the risk of forming large colloid-like ‘‘aggre-

gates’’ within the cell [21,22]. These aggregates have been shown

to enhance protein unfolding [23], and many synthetic aggregat-

ing compounds begin to aggregate at the low mM concentrations

Figure 3. Physico-chemical parameters significantly correlate with the logarithm of the metabolite concentrations in glucose grown
E. coli, as measured by Bennett et al. [8]. (a) Metabolites are ordered (top to bottom) by increasing concentration. Physico-chemical parameters
are ordered based on their correlation with concentrations, from the most negative correlation on the left to the most positive correlation on the
right. Compound properties were normalized by subtracting the mean and dividing by the standard deviation, enabling consistent color coding of
their values. R2 values are given at the top of the columns. p-values were calculated as described in the Methods, where ** correspond to a p-
value,10-4 and * to a p-value,10-2. Parameter abbreviations are as in Figure 1. (b) A linear regression using NPSA and NCA explains about half of the
variability in metabolites concentration, as shown by a Log-Log correlation between the expected and measured concentrations.
doi:10.1371/journal.pcbi.1002166.g003

Hydrophobicity Shape Metabolite Concentrations
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[22]. Furthermore, different compounds may promote aggregation

synergistically when present in the same mixture [24]. Indeed, it

has been shown that lipophilicity, solubility and lack of charged

atoms are the most central factors determining the tendency of a

compound to form aggregates [21].

Finally, a reduction in the concentration of non-polar

metabolites can serve to decrease non-specific binding. Hydro-

phobic compounds can bind non-specifically to hydrophobic

surfaces within the cells, including enzymatic active sites [25,26],

protein surfaces that participate in protein-protein interactions, or

even nucleic acid strands [27]. Such hydrophobic stickiness is also

associated with promiscuous activity of enzymes towards substrates

other than their natural ones [28]. Indeed, in a study examining a

large set of enzymes, the lipophilicity of a substrate was found to

correlate with its participation in promiscuous drug binding [29].

According to this line of reasoning there is selective pressure to

decrease the concentrations of metabolites that are highly

hydrophobic and able to bind non-specifically to hydrophobic

surfaces. Strengthening this explanation, a selection against non-

specific binding of proteins and peptide ligands was demonstrated

in the cellular protein interaction network of yeast [30].

We note that each of the above hypotheses actually refers to the

phenomenon known as the hydrophobic effect: the preference of

hydrophobic surfaces in an aqueous environment to adhere to

other hydrophobic surfaces [31]. The ‘‘aggregation’’ hypothesis

relates to self-adhesion while the ‘‘hydrophobic stickiness’’ and

‘‘membrane permeability’’ hypotheses refer to adhesion to other

hydrophobic surfaces in the cell, the latter involving a specific

hydrophobic organelle: the membrane. However, when hydro-

phobic metabolites are present in low enough concentrations, they

are much less likely to diffuse out, aggregate, or bind non-

specifically. That is, the ‘‘cost’’ of a metabolite, considering the

above constraints, is a function of its concentration as well as its

physico-chemical parameters.

From this perspective it is clear that the selective pressures we

discuss do not necessarily predict a correlation between absolute

concentrations and physico-chemical parameters relating to

hydrophobicity. Rather, they predict a correlation when the

absolute concentrations are high enough that the costs imposed by

the various constraints discussed above are not negligible. In this

light it is striking that we observe the significant level of correlation

that we do, as several of the metabolites measured are present in

extremely low concentrations (,1026M), likely low enough to not

be significantly affected by any of the above constraints.

Conversely, a metabolite that is found in high concentration must

be soluble and polar enough to meet the constraints imposed by

the aqueous environment of the cell or it will certainly impose the

costs we have described.

In conclusion, our study suggests that the concentrations of

metabolites within the cell is not only a result of specific metabolic

effects (i.e. kinetic parameters of the enzymes utilizing them), but

also follows systematic global trends. Various large metabolomics

data sets have accumulated in recent years and their number is

predicted to increase rapidly as the technology improves and

becomes more accessible. We believe that our study could raise the

interest of the scientific community in the general questions

addressed here and pave the way for future and more elaborate

analysis. Such future studies could test and refine our findings and

pinpoint the exact forces that shape the in-vivo concentrations of

metabolites. Of special interest are the questions we addressed only

partially: what is the relative importance of each of the discussed

selective pressures? How do the differences between the internal

environments of different organisms and organelles affect their

distributions of metabolite concentrations? Do the constraints

associated with different organisms and environments translate

into preferences for different, parallel metabolic pathways, each

employing different metabolites? We believe that the methodology

put forward in this study enables inquiry into these questions and

provides a better understanding of the forces shaping cellular life.

Materials and Methods

Obtaining the physico-chemical parameters
The physico-chemical parameters for all compounds analyzed

are given in Dataset S1.

We used Pybel, the Python wrapper for OpenBabel (http://

openbabel.sourceforge.net) to calculate the molecular mass,

number of hydrogen bond acceptors, number of hydrogen bond

donors, number of charged atoms and number of rotatable bonds

[32]. Using the same software package we corrected all

compounds to be in the protonation level most abundant at

pH 7. The total hydrogen bond inventory of the molecule [33]

was taken as hydrogen bond donors + hydrogen bond acceptors.

The number of rotatable bonds refers to the internal molecule

bonds that are able to freely rotate in solution but become

restricted on passing from a free to a bound state, resulting in an

entropic cost [34].

The molecular 3D-structure, essential for determining the

surface area of the molecules, was also estimated using Open-

Babel. We used asa.py (http://boscoh.com/protein/asapy) [35] to

calculate the total surface area of the 3D-structure. We used the

solvent-excluded surface area, representing the ‘‘cavity’’ the

molecule creates in bulk solvent [36]. We also computed the polar

surface area, i.e. the area contributed by polar atoms only (oxygen,

nitrogen and the hydrogen atoms attached to them). The non-polar

surface area is the difference between total surface area and polar

surface area.

The logarithm of the octanol-water (LogP) partition coefficient

for un-ionized compounds, was estimated using three different

programs: XLOGP3 [37], ALogPS [38] and SciFinder (https://

scifinder.cas.org/scifinder). In the paper, we use the ALogPS

values since they were found to have the lowest RMSE for small

molecules [37] and indeed they produce higher overall correla-

tions. LogS, the logarithm of the solubility in water, was also

estimated using ALogPS [38].

Statistical analysis
We calculated the correlation between the metabolite concen-

trations in each data set and each of the physico-chemical

parameters. For each such calculation, metabolites that were not

measured in a given data set or did not have a value for that

parameter, were discarded. To find a p-value for each R2 we used

a Monte-Carlo permutation test. We created a distribution of

randomized R2 values by shuffling the parameter values, randomly

assigning them to metabolites and then correlating shuffled values

with concentrations. We repeated this process 105 times. The p-

value was defined to be the fraction of times for which the

randomized R2 values were higher than the original R2. To

account for multiple hypothesis testing, we used false discovery

rate (FDR) control [39], with a rate of 0.01 (n = 168, 21 data sets X

8 physico-chemical parameters).

Predicting metabolite concentrations
Metabolite concentrations were predicted using least-squares

multiple linear regression of log10 concentrations against the

metabolite NPSA and NCA values. As before, high molecular

weight compounds were removed from the analysis. In order to

avoid potential over-fitting, the concentration of each metabolite

Hydrophobicity Shape Metabolite Concentrations
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was predicted using a model trained on all other metabolites and

excluding the one to be predicted. As we are interested in global

trends in concentration, the accuracy of the prediction was taken to

be the fraction of predictions within an order of magnitude of the true

concentration. In order to quantify the predictive power of our

model, we compared the prediction accuracy to the accuracy of

predicting the mean concentration for a given data set. For the case of

glucose-fed E. Coli from Bennet et. al. we found that 78% of

predictions were within one order of magnitude of the true

concentrations while only 57% of measured concentrations were

within one order of magnitude of the mean concentration (Figure S3).

Supporting Information

Text S1 A computational analysis which suggests that a systematic

bias in the extraction procedure is unlikely to account for the

observed correlation between metabolite concentrations and NPSA

(non-polar surface area) and NCA (number of charged atoms).

(DOC)

Dataset S1 Metabolite concentrations as measured in various

organisms and conditions alongside the physicochemical param-

eters of all metabolites.

(XLS)

Figure S1 Correlation (R) between the logarithm of metabolites

concentrations in each data set and the physico-chemical

parameters of metabolites. All metabolites, (MW,300 &

MW.300), were included in this analysis. A correlation that

was found to be significant is denoted by *. See Figure 2.

(PDF)

Figure S2 Physico-chemical parameters significantly correlate

with the logarithm of the metabolite concentrations in E. coli, as

measured by Ishii et al. [9]. Median was taken across all

repetitions. Metabolites are ordered (top to bottom) by increasing

concentration. Physico-chemical parameters are ordered based on

their correlation with concentrations, from the most negative

correlation on the left to the most positive correlation on the right.

Compound properties were normalized by subtracting the mean

and dividing by the standard deviation, enabling consistent color

coding of their values. R2 values are given at the top of the

columns. p-values were calculated as described in the Methods,

where ** correspond to a p-value,10-4 and * to a p-value,10-2.

Parameter abbreviations are as in Figure 1.

(PDF)

Figure S3 Fraction of metabolites whose concentrations, as

measured by Bennett et al. [8] (Glucose grown), is within a given

factor of the prediction. Two predictions are used: the overall

concentration mean and a linear regression using NPSA and

NCA.

(PDF)

Figure S4 Correlation (R) between the logarithm of metabolites

concentrations in each data set and the physico-chemical

parameters of metabolites. Only amino-acids were included in

this analysis. A correlation that was found to be significant is

denoted by *. See Figure 2.

(PDF)
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