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Abstract: This paper investigates the relationship between the molecular structure and thermally
induced gel properties of duck myofibrillar protein isolate (DMPI) as influenced by the addition of
pea protein isolate (PPI). The results showed that b* value of the gels increased; however, a* value
decreased with the increase of PPI content (p < 0.05). The whiteness of the gels decreased significantly
with the addition of pea protein compared with 0% vs. 0.5% addition. Nuclear magnetic resonance
tests showed the area of immobilized water also increased with increasing PPI addition (0–2%), thus
consistent with the increased water-holding capacity (p < 0.05). The penetration force of the gels
increased with increasing PPI addition (p < 0.05), while the storage modulus and loss modulus of the
gels were also found to increase, accompanied by the transformation of the α-helix structure into
β-sheet, resulting in better dynamics of gel formation. These results indicated the gel-forming ability
of DMPI, including water retention and textural properties, improves with increasing PPI addition.
Principal component analysis verified these interrelationships. Thus, pea protein could improve
the properties of duck myofibrillar protein gels to some extent and improve their microstructure,
potentially facilitating the transition from a weak to a non-aggregated, rigid structure.

Keywords: pea protein isolate; duck myofibrillar protein isolate; gel proprieties; heat-induced gel;
molecular structure

1. Introduction

Duck is a superior product even over lamb, beef, and pork because of its high nutri-
tional value, including the presence of more polyunsaturated fatty acids and its relatively
low price. Duck production is likely to play a significant role in the agricultural econ-
omy. Asian countries, especially China, account for 84.2% of the world’s total duck meat
production [1]. Even though many traditional products, including Beijing roasted duck,
Nanjing salted duck, pressed salted duck, and soy sauce duck neck, are widely preferred
and consumed in China, they do not satisfy consumer demand for duck products [2]. In
response to the new consumption trend, the food industry is constantly searching for
cheaper and healthier protein components to replace that from animal sources. At the same
time, some consumers have a negative perception of red meat because they are concerned
that excessive red meat intake can lead to an increased incidence of metabolic diseases,
such as cardiovascular disease [3]. Therefore, proteins of plant origin are gaining attention
as alternatives to animal proteins. Pea protein is an emerging agricultural product with
great potential as a functional ingredient for the food industry, which is widely utilized as
an extender in milk replacement products, cereal, and bakery products and meat products,
including sausage and meat patties [4]. It has a higher nutritional value than soy protein
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isolate and does not cause allergies [5]. Pea protein isolates can be used in various food
applications related to heat-induced gels [4], but in general, the range of applications is
narrow, and the value of pea protein resources has not been effectively exploited, especially
when added to meat products [6]. On the other hand, it is well-known that pea protein
has good solubility, foaming capacity, foam stability, and emulsification properties, and its
total or partial addition can optimize the nutritional composition of the finished product,
improve texture, and enhance its stability [7]. In addition, except for the low methionine
content, pea protein has a balanced ratio of other amino acids [8,9] and can basically be
called a full-valent protein with functions such as gastrointestinal regulation, lowering
blood pressure, and improving immunity [10]. When proteins of plant origin are added to
meat products, their nutritional composition and dietary fiber contribute to the improve-
ment of the nutritional and quality characteristics of the product [11], while the production
cost is reduced due to the increase in water-holding capacity [12]. However, to our knowl-
edge, few studies have discussed the mixing behavior of duck myofibrillar protein (DMPI)
with pea protein isolate (PPI) and its thermal gel properties. A deep understanding of the
gelling mechanism of DMPI–PPI at different additions would improve the utilization of
pea protein isolate for the development of healthy meat products with various properties.

The purpose of this study was to effectively utilize pea protein as an extender for gels
formed from duck myofibrillar protein, which brings greater potential for expanding the
use of healthier and more convenient foods and meeting consumer demand for a variety
of food matrices. To this end, we substituted duck myofibrillar protein with pea protein
isolates to varying degrees, aiming to investigate the relationship between molecular
structure and thermally induced gel properties.

2. Materials and Methods
2.1. Sample Collection and Chemicals

Pea protein was obtained from Yantai Oriental Protein Technology Co., Ltd (Yantai,
China). with 80% protein content; fresh duck breast muscle was taken from the local
farmers’ market in Nanjing, Jiangsu Province. The fat and white fascia were removed from
the breast meat as much as possible. The duck breast meat was then packed in self-sealing
bags and sent to the laboratory, where it was stored in a refrigerator at −80 ◦C for freezing
and storage. All chemical reagents were chemically pure.

2.2. Preparation of Heat-Induced Mixed-Protein Gels

The extraction of myofibrillar proteins from duck breast was appropriately modified
according to the method of Park et al. [13] with minor modification. A bag of 30 g of
duck breast was weighed, about 120 mL of extraction solution (four times the volume)
was added to the meat grinder and stirred well, and the slurry was transferred to a 50 mL
centrifuge tube and dispersed with a disperser at 10,000× rpm for 30 s. The slurry was
then centrifuged at 4 ◦C for 10 min at 4000× g, repeatedly washed three times, filtered
through gauze a second time, washed with 1% Triton X-100 for the above precipitate
twice, centrifuged at 4000× g for 10 min, washed three times repeatedly with 4 times the
volume of 0.1 mol/L NaCl, centrifuged at 4000× g for 10 min at 4 ◦C, and finally filtered
through two layers of gauze to collect the precipitated myofibrillar proteins for backup.
The precipitate (0.25 g) was placed in a 5 mL centrifuge tube, dissolved with 0.6 mol/L
NaCl (containing 10 mmol/L K2HPO4, pH 7.0), and kept at 4 ◦C. The concentration of
myofibrillar protein was then measured by Biuret method, and the final concentration was
adjusted to 40 mg/mL. Different amounts of pea protein isolate were added (0, 0.5, 1.0, 1.5,
and 2.0%, w/v) and dispersed. The protein mixture was then transferred to a small 10 mL
beaker. Three replicates were set up for each group. After heating in a water bath (75 ◦C
for 35 min), the gels were cooled with ice water for 30 min and chilled in a refrigerator at
4 ◦C for 12 h.
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2.3. Color Measurement

Gel color was measured with Minolta CR-400 (illuminant D65) equipment (Minolta
Camera, Osaka, Japan), calibrating with a standard plate before use (L* = 28.97, a* = 0.47,
b* = −0.30), and the brightness (L*), redness values (a*), and yellowness values (b*) were
recorded, and the average value was obtained by repeating six times. The whiteness values
were calculated as follows [14]:

Whiteness = 100
√
(100− L∗)2 + a∗ + b∗2

2.4. Water-Holding Capacity

The water-holding capacity (WHC, %) was measured with concerning the method of
Kocher and Foegeding [15] with minor modifications. The mixed-protein gels were weighed
and centrifuged at 4 ◦C and 5000× g for 10 min. Inverted for 20 min, excess water was
removed with filter paper, and the mass of the gel was weighed before centrifugation and
in the centrifuge tube; W1: weight of the sample and centrifuge tube before centrifugation
(g); W2: weight of the sample and centrifuge tube after centrifugation (g); W: weight of the
centrifuge tube (g).

WHC =
W2 −W
W1 −W

× 100%

2.5. Gel-Penetration Test

Gel-penetration force was measured with a texture analyzer (TA-XT plus Plaser, Stable
Micro System, Surrey, UK). Measurement conditions: p/0.5R probe, pre-test rate of 1 mm/s,
test rate of 0.5 mm/s, post-test rate of 10 mm/s, compressed mode selected, probe depth
distance of 5 mm, and trigger force of 5 g, with 3 repetitions for each treated sample.

2.6. Low Field NMR Measurements

Three grams of samples were placed into a test bottle (15 mm diameter × 30 mm
height), and the T2 relaxation time of the sample was determined using an NMR analyzer
(MesoMR23-060H-1, Niumag electric Co., Shanghai, China). Experimental parameter
setting: Carre Purcelle Meiboome Gill, proton resonance frequency of 22.6 mHz, the
number of collected echoes was 3000. The NMR data were primarily analyzed using
discrete exponential fitting and continuous distribution inverse. Each sample was analyzed
six times.

2.7. Raman Spectroscopy Measurements

Raman spectra were determined using a Labram HR800 spectrometer (Horiba Jobi
Yvon S.A.S., Longjumeau, France) according to the method of Zhuang et al. [16] with
minor modifications. Raman spectra of the mixed-protein solution were collected in the
400–3600 cm−1 under the following conditions: three scans, exposure time 30 s, resolution
2 cm−1, sampling speed 120 cm−1. min−1, and data acquisition speed 1 cm−1. The spectra
were standardized with the phenylalanine band at 1003 cm−1 by Labspec version 5 (Horiba
Jobi Yvon S.A.S., Longjumeau, France). The content of protein secondary structure was
calculated by Alix’s method according to the change of amide I band [17].

2.8. Dynamic Rheological Measurements

The rheological properties of DMPI-PPI mixed proteins were measured using a rheome-
ter (MCR-301, Anton Paar, Graz, Austria) in oscillatory mode. Parameter setting: the
selected fixture was 50 mm plate, the gap between the upper and lower plates was 1 mm,
the frequency was 0.1 Hz, the strain was 2%, the temperature was raised from 30–80 ◦C
at the speed of 2 ◦C/min, and the cooling rate was 5 ◦C/min. Before the test, a drop of
paraffin oil was added to the edge of the plate to separate the sample from the outside air
and prevent the sample from evaporating due to heat. The energy storage modulus (G’)
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and loss modulus (G”) were recorded, and tan δ was then calculated according to the ratio
of G′ and G”.

2.9. Microstructural Analysis

Scanning electron microscopy was used to observe the morphology of the mixed-
protein gel referring to the method of Jiang et al. [18]. The heat-induced protein gel was cut
into small pieces (5 × 5 × 1 mm) and fixed with 2.5% glutaraldehyde for 24 h. Each sample
was freeze-dried and sputter-coated with 10 nm of gold. Gels were then analyzed with a
Hitachi S-3000N scanning electron microscope (Tokyo, Japan) at an accelerating voltage of
20 kV. The microscopy images were then analyzed with the public domain software ImageJ
v1.52a (Rawak Software Inc., Stuttgart, Germany) to measure the average cavity size.

2.10. Statistical Analysis

One-way analysis of variance (ANOVA) and Duncan’s multiple range test for statis-
tical analysis was conducted using SPSSTM software(version 20, SPSS Inc., Chicago, IL,
USA). Principal component analysis (PCA) was performed to estimate the relationship be-
tween the DMPI–PPI protein structure and gel textural quality characteristic using SPSSTM

software (version 20, SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Gel Color

Color is one of the important indicators to evaluate the sensory quality of meat
products, and it will affect the purchasing intention of consumers to some extent. As seen in
Figure 1a, the 0.5% PPI-addition group exhibited a significant higher brightness (L* value)
compared to the control group (0% PPI addition) although no significant differences were
found between the other groups; with the addition of pea protein, there was a definite
increase in the L* value of the gel. The L* value shows the light scattered by the structural
elements that make up the gel network (protein aggregates, molecular fragments, etc.). The
matrix became denser when myofibrillar protein was partially added to the pea protein
isolate. The redness (a* value) of the gels decreased with the addition of pea protein
(p < 0.05), with the largest a* value for the gels with 0% PPI addition shown in Figure 1b.
However, the difference between PPI additions of 1.5% and 2% was not significant. As seen
in Figure 1c, the yellowness (b* value) of the gels increased significantly (p < 0.05) with
increasing PPI addition, and it reached a maximum value of 11.58 (2% PPI addition). Since
the color of pea protein isolate varies from creamy to beige depending on the processing
method [7], the color of the gel is easily affected with increasing PPI addition. As seen in
Figure 1d, the whiteness of the gel decreased significantly compared to the 0.5% addition.
Although an increasing trend can be found with increasing addition from 0.5% to 2%, no
significant differences were found between the 1%, 1.5%, and 2% PPI addition groups.
This result is consistent with the findings of Borderías et al. [19], where the increase in
b* values was associated with the presence of phenolic compounds, including anthocyanins
and flavonols, which provide the characteristic pale yellow color of PPI. Then, the color
properties of these compounds suggest that they absorb part of the light wave, which also
leads to a decrease in the whiteness of the mixed gels.
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Different letters (a–e) indicate significant difference (p < 0.05).

3.2. Gel WHC

It is widely accepted that a gel can be considered as a network in which the “grid”
of the network is filled with water molecules. Water retention reflects the water changes
in the gel network caused by capillary effects in the mixed-protein matrix [20]. Figure 2a
shows the effect of PPI addition on the water retention of the mixed-protein gels. There
were significant differences in water retention between the control group (PPI addition
of 0%) and the experimental groups (addition of 0.5–2%), but no significant difference
was found within the experimental group (addition of 0.5–2%). Li et al. [21] found that as
the amount of chickpea protein isolates added increased from 0 to 15 g/kg, the WHC of
pork myofibrillar protein gels increased from 75.85–86.30% (p < 0.05) significantly. These
results are consistent with other studies that have shown a significant increase in WHC of
meat products through the addition of non-meat proteins [22] and polysaccharides [23].
This trend of increased WHC suggests that a more favorable physical capture of water
occurs in mixed molecular matrices and that higher additions promote the capture of water
molecules [24]. From our results, it appears that water may be kept in the lattice of the
myosin network or bound to the functional groups of PPI. As is well-known, that the
WHC of gels depends essentially on the structural stability of the gel [25]. The enhanced
intermolecular interactions upon heating and the more compact and homogeneous gel
structure induced by PPI, which will be mentioned later, may also have a conductive effect
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on the entrapment of water in the gel network. The increase of WHC in DMPI–PPI gel is
partly due to these factors.
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3.3. Gel-Penetration Test

Gel-penetration force (GPF) reflects the gel strength of the protein, which is an impor-
tant indicator related to the gel texture and depends on the variation of the gel microstruc-
ture [26]. A high gel strength reflects the formation of a gel structure that is compact,
stronger, and stable. The effect of PPI supplementation on the gel penetration of DMPI is
shown in Figure 2b. Gel-penetration force of DMPI gradually increased with increasing
PPI addition (0–2%), but the rising trend decreased, as no significant differences were
found between the groups with 1%, 1.5%, and 2% addition. However, results also showed
significant differences between the 0.5% and 2% mixed-gel groups were found. These
results suggest that PPI can improve the gel strength of DMPI to some extent. It is spec-
ulated that addition of PPI helps DMPI to form a filled-gel system where pea proteins
are filled into the gel network formed by myosin, making the gel network denser and
eventually showing an increase in protein gel-penetration force. Wang and Damodaran [27]
also correlated the gel strength with the degree of protein denaturation and unfolding
under given conditions, with the greater the degree of protein denaturation and unfolding
the stiffer the gel. Previous studies have also shown that the polysaccharide fraction can
significantly increase the gel stiffness of myofibrillar protein gels [28], in addition, the
elasticity of myofibrillar protein gels was also significantly improved [29]. As pea protein
enhances emulsification and gelation, the number of molecules per unit volume and their
intermolecular collision probability increase with the increase of PPI addition, forming a
stable gel network structure. Gel elasticity generally increased first with increasing soy
protein isolate content, which is similar to the results of Jiang et al. [30]. Niu et al. [31]
suggested that the increase in gel strength may be attributed to the regular arrangement of
the protein network. Thus, when non-meat protein is applied to ground meat as a potential
texture modifier, it can be effective at relatively low concentrations. Sun et al. [12] reported
that the addition of peanut protein isolate to chicken salt-soluble protein improved the gel
strength of thermally induced mixed-protein gels, as peanut protein isolate may be used as
a meat binder. However, it is worth mentioning that when excessive amounts of non-meat
proteins are added, they instead hinder the three-dimensional network structure of my-
ofibrillar protein gels and reduce their gel strength [26]. Mccord et al. [11] also reported
penetration force of salt-soluble muscle proteins gel decreased when excessive amounts of



Foods 2022, 11, 1040 7 of 14

native soy protein isolate were added, and the degree of decrease was proportional to the
amount of added.

3.4. NMR Analysis

To further investigate whether the addition of pea protein stabilizes water in the
composite duck myofibrillar protein gels, T2 relaxation measurements were performed.
With this approach, three major characteristic peaks were observed in the heat-treated
mixed-protein gels (Figure 3); a small population (or populations) at approximately 10 ms or
less (often referred to as T21’, partially immobilized water [32], and a dominant population
between 80–000 ms (denoted T21) [33] and a minor peak after 1000 ms represents free water
T22. These results suggest that during heating, myofibrillar proteins inter cross-linked,
forming a network structure that locks a large amount of free water into it, making it
immobilized. The area of total immobilized water (including T21’ and T21) was significantly
increased in the experimental group (PPI addition of 0.5–2%) compared to the control
group (PPI addition of 0%); however, no significant difference was found within the
experimental group. Previous studies also reported similar results that the relaxation time
of the composite gels and the relaxation peak area of free water was reduced after the
addition of 1.5% chickpea protein isolate [21]. Compared with the control, the addition
of 1.5% water insoluble dietary fibers significantly increased the immobilized water of
gel and was accompanied by a remarkable decrease in free water [25]. These results
revealed that the addition of pea protein stabilizes the water distribution in the composite
gels and that the interaction between myofibrillar protein and pea protein powder in the
network structure is enhanced [34]. The area of free water T22 decreased. This suggests
that the addition of pea protein helps to convert free water into immobilized water and
reduce the amount of free water [35]. The water retention of myofibrillar protein gels
could be enhanced by the addition of pea protein since the free water content is inversely
proportional to the water retention [36]. These results can be consistent with the above-
mentioned results of WHC.
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Figure 3. Effect of pea protein addition level (0%, 0.5%, 1%, 1.5%, and 2%) on the distribution of
the T2 of DMPI–PPI mixed gel. T2, spin-spin relaxation times (ms) for different types of water.
Each treatment was performed in triplicate (n = 3). T21’: a small population (or populations) at
approximately 10 ms or less; T21: a dominant population between 80–000 ms; T22: a minor peak after
1000 ms represents free water.

3.5. Rheological Properties Analysis

The storage modulus (G’) of DMPI–PPI mixed proteins can reflect not only the un-
folding and agglutination process of protein molecules at different temperatures but also
the elasticity and gelation of protein gels [30]. As shown in Figure 4, the storage modulus
trend of DMPI with pea protein addition was consistent throughout the heating process. As
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the pea protein addition increased from 0.5–2%, the final G’ value also increased, which is
consistent with the gel-penetration force results, indicating that the addition of pea protein
contributed to the formation of duck myofibrillar protein gels and improved the qualitative
characteristics of the aforementioned gels. In the range of 30–45 ◦C, the storage modulus
increased slowly, which may indicate that the gel network was formed at the beginning. At
this time, myosin began to cross-link through the interactions between the head dimers
and slowly formed the elastin network structure. At 45 ◦C, the storage modulus began to
decrease, which was relatively flat from 52–58 ◦C and started to decrease after 58 ◦C. At
60 ◦C, the storage modulus reached its lowest value. The sharp decrease may be related to
the expansion of the myosin tail. Thereafter, G’ rises continuously in the range of 62 ◦C
and 80 ◦C, reaching a maximum of 80 ◦C [37]. The storage modulus of the gels without
pea protein was the same as that of the gels with pea protein until 52 ◦C, but after that,
it did not decrease but rather increased. A small peak was reached at 58 ◦C and then
continued to rise. This may be due to the instability of the gel structure formed when no
pea protein was added. In addition, pea vicilin reduced the self-aggregation of myosin
heavy chains during heating and delayed the temperature of myosin head denaturation
after reaching the peak [38], partly because the addition of pea protein could delay the
temperature of myosin tail denaturation during gel formation [39]. However, it is also
evident that the final G’ and final G” values of the different experimental groups (0.5–1.5%
PPI addition) were lower than those of the control group (0% PPI addition), suggesting that
PPI can cross-link with MPI during programmed heating (30–80 ◦C at a rate of 2 ◦C/min)
but with limited effect [38]. Compared to the above results for gel strength and water
retention, thermostatic heating (heating at 75 ◦C for 35 min) was more favorable than the
programmed heating described above for the formation of mixed-protein gels, which may
contribute to the denaturation of pea vimentin and bean protein [6]. Stiffer gels can even
be formed during constant temperature heating; however, the lack of interference with
protein–protein interactions responsible for the formation of less elastic structures has a
detrimental effect on muscle protein gelation. Higher tanδ values, which indicate a more
viscous or less elastic sample [40], gradually increase as the heating temperature increases
from 20–55 ◦C, followed by a sharp decrease in all these treatments (Figure 4c). These
changes indicate that viscosity of DMPI–PPI mixed proteins is higher than elasticity at the
beginning of heating.

3.6. Changes in the Protein Secondary Structures

The Raman bands of muscle fibers in the range of 1600–1700 cm−1, especially the band
at 1654 cm−1, can reflect the vibrational modes of amide I, which mainly involves C = 0
stretching and N–H bending of a small fraction of peptide groups [17]. The exact position of
these bands and the corresponding secondary structures of DMPI-PPI gels were quantified
in this study to obtain Figure 5. Thus, in general, the α-helix, β-sheet, and random coil
structures correspond to the 1658–1650, 1680–1665, and 1665–1660 cm−1 ranges of the
amide I band, respectively [41]. It clearly showed that the addition of pea protein led to a
change in the amide I band in the Raman spectrum of the mixed protein, with a decrease
in the α-helix content; however, content of β-sheet increased with the addition of PPI.
Similar results also showed that thermal processes induced a decrease in α-helix content
and an increase in β-sheet content during myofibrillar protein denaturation [42]. Pea
proteins are reported to mainly consist of vicilin, 7 s and legumin, 11 s, which show a high
endothermic conversion [38] and generally do not affect MP denaturation. Zhuang et al.
(2021) also reported consistent results in the effect of konjac glucomannan on myofibrillar
protein gels [43]. Thus, the addition of pea protein during thermal processing facilitates
the unfolding of the total secondary structure in the mixture, with more α-helix unfolding,
more exposure of hydrophobic groups, and the formation of a rigid gel network. The
results fit well with the previous results of gel-penetration tests.
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second structure of DMPI–PPI mixed gel. Each treatment was performed in triplicate (n = 3).

3.7. Principal Component Analysis

The eigenvalue plots show the explanation of the overall variation by the two principal
components, accounting for 47.1% and 40.1% of the variation in the data, respectively
(Figure 6a). Thus, the model explains 87.1% of the total variance in the data, and these
data show a strong correlation between the original data. As shown in Figure 6a, the
first principal component (47.1% variation) was mainly positively correlated with WHC,
GPF, α-helix, β-sheet, and β-turn and negatively correlated with a-values and α-helix,
which were mainly related to the internal chemical forces and color of the gels. These
results suggest that water mobility, GPF, and a-helix are the three key factors affecting the
performance of DMPI–PPI gels. This may be due to the addition of pea protein isolate
enhancing the water-binding ability and better gel strength of rigid gels. PC2 (40.1%
variation) is characterized by four variants (final G’, final G”, T21, and T22). The score plot
shows the group distribution of PC scores in multivariate space. As shown in Figure 6b,
the DMPI–PPI gels are arranged from left to right along PC1 and are distinguished into
four groups. It can be inferred that the water fluidity, color, and texture of the DMPI 1.5%
PPI group were similar to those of the DMPI 2% PPI group. When excessive amounts
of non-meat proteins are added, no additional improvement in gel properties may be
found, and it may even hinder the network structure of the mixed-protein gels [26]. This
suggests that the distribution of water is closely related to the viscoelastic changes during
the dynamic protein-gelation process [25]. During gelation, free water is removed from
the gel matrix, while the viscoelastic gel is transformed into an elastic gel, which helps to
improve the gel properties.
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3.8. Microstructure of the Gels

Protein isolation is widely used as a binder for meat products to improve yield and
texture and as surfactants to improve emulsion stability during heating. As can be observed
in Figure 7, although the individual MP gels showed a 3D network structure, the structure
was not homogeneous, with significant large diameter pores and voids on the surface.
However, the network structure of the experimental group containing pea protein (0.5–2%)
is relatively compact, and the structure becomes more compact. Cavity size was measured
using software ImageJ v1.52a (Rawak Software Inc., Stuttgart, Germany), and there are
significant differences in cavity size among the 0%, 0.5%, and 1% groups, as the average
cavity size obviously decreases (13.7, 11.59, 6.9 µm). However, no significant differences
were found among 1% group, 1.5% group, and 2% group although a trend of decease
(6.9, 6.0, and 5.5 µm) also existed. This may be due to the fact that pea protein molecules
interspersed in the network structure, relying on the expansion of volume after water
absorption, exerted repulsive and supporting effects on the protein network, filled the
pores between proteins, promoted direct limited adhesion of proteins, made the gel network
more compact and orderly, and improved the structure of the protein gel network [16].
In semi-compatible systems, non-gelling proteins can bind to networks of other proteins,
reducing the flexibility of the network and producing much more rigid gels [44]. Several
studies have found that non-meat proteins can enhance the ability of MPI to thermally
induce gel formation and make the gel structure denser [28]. In general, the textural
properties of the composition depend on the dispersed phase of the gel matrix, including
the degree of dispersion and phase volume [45,46]. Isolated pea proteins can be used as a
matrix in a second continuous phase or directly with muscle proteins in semi-compatible
gels [22]. It was hypothesized that pea protein could promote the formation of bovine
salt-soluble protein gel structures mainly through physical filling and that the addition of
pea protein significantly reduced the particle size compared to the control (data not shown
in our results), while the addition of pea protein would inevitably reduce the average
particle size of the mixed proteins. The limited connection between filling, encapsulation,
and mechanical support, which may be through drainage, is mediated by a chemical
combination of hydrogen bonding, hydrophobic interactions, etc.



Foods 2022, 11, 1040 12 of 14

Foods 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 

soluble protein gel structures mainly through physical filling and that the addition of pea 
protein significantly reduced the particle size compared to the control (data not shown in 
our results), while the addition of pea protein would inevitably reduce the average parti-
cle size of the mixed proteins. The limited connection between filling, encapsulation, and 
mechanical support, which may be through drainage, is mediated by a chemical combi-
nation of hydrogen bonding, hydrophobic interactions, etc. 

  
(a) DMPI–0%PPI (b) DMPI–0.5%PPI 

  
(c) DMPI–1.0%PPI (d) DMPI–1.5%PPI 

 

 

(e) DMPI–2.0%PPI  

Figure 7. Effect of pea protein addition level (0%, 0.5%, 1%, 1.5%, and 2%) on the microstructure 
(SEM, 2000×) of DMPI–PPI mixed gel. Each treatment was performed in triplicate. 
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(SEM, 2000×) of DMPI–PPI mixed gel. Each treatment was performed in triplicate. (a) DMPI–0%PPI;
(b) DMPI–0.5%PPI; (c) DMPI–1.0%PPI; (d) DMPI–1.5%PPI; (e) DMPI–2.0%PPI.

4. Conclusions

The gel-forming ability of DMPI, including water retention and textural properties,
improves with increasing PPI addition. The addition of pea protein promotes the conversion
of free water to immobilized water. α-Helix content decreases while β-sheet content
increases upon heating, providing the driving force for gel formation and producing a
more compact and homogeneous gel structure induced by PPI, which may also have a
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conductive effect on the entrapment of water in the gel network. While processing duck
gel products, less than 2% of PPI is strongly recommended to utilize in order to increase
gel strength and water retention; however, more attention should be paid to the effect
on the color of products. Further studies are necessary to determine the effect of protein–
protein interactions on gel properties to investigate the mechanism and provide additional
opportunities to expand the utilization of pea protein in duck products.
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