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The bone marrow (BM) vascular niche microenvironments harbor stem and progenitor
cells of various lineages. Bone angiogenesis is distinct and involves tissue-specific
signals. The nurturing vascular niches in the BM are complex and heterogenous
consisting of distinct vascular and perivascular cell types that provide crucial signals
for the maintenance of stem and progenitor cells. Growing evidence suggests that the
BM niche is highly sensitive to stress. Aging, inflammation and other stress factors
induce changes in BM niche cells and their crosstalk with tissue cells leading to
perturbed hematopoiesis, bone angiogenesis and bone formation. Defining vascular
niche remodeling under stress conditions will improve our understanding of the
BM vascular niche and its role in homeostasis and disease. Therefore, this review
provides an overview of the current understanding of the BM vascular niches for
hematopoietic stem cells and their malfunction during aging, bone loss diseases, arthritis
and metastasis.

Keywords: angiogenesis, vascular niche, inflammation, bone metastasis, arthritis, bone marrow
microenvironment

INTRODUCTION

In the skeletal system, vasculature plays a crucial role in nutrient delivery and maintenance
of the resident stem and progenitor cells that regulate osteogenesis and hematopoiesis. Bone
marrow (BM) harbors stem and progenitor cells of different lineages including hematopoietic and
mesenchymal stem cells that differentiate into a variety of mature functional cells, contributing
to osteogenesis and hematopoiesis (Sivan et al., 2019). These stem and progenitor cells reside in
specialized local microenvironments within the BM, known as BM niches (Colmone and Sipkins,
2008; Marenzana and Arnett, 2013). BM niches provide crucial signals for stem and progenitor cell
survival, quiescence, mobilization, and differentiation. These signals come in the form of soluble
factors, cell surface ligands or cell-to-cell interactions which regulate stem and progenitor cell fates
(Colmone and Sipkins, 2008; Sugiyama and Nagasawa, 2012).

The BM microenvironment is highly sensitive to stress. Growing evidence suggests that stress-
induced molecular changes of the BM microenvironment disrupt homeostasis (Batsivari et al.,
2020). BM endothelial cells (ECs) and their secreted factors, called angiocrine factors, regulate
hematopoietic stem and progenitor cell homeostasis and function. Stress associated with aging,
inflammation, bone diseases or bone malignancies can disrupt vascular morphology and angiocrine
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signaling, with significant impacts on osteogenesis, bone
angiogenesis, and hematopoiesis. The response of the BM
microenvironment to stressful conditions and diseases
has received increased attention over the past few years.
Nevertheless, the knowledge about the effects of stress
on the BM microenvironment remains incomplete and
is a hot topic of research. This review aims to define the
cellular and molecular response of the BM vascular niche to
different stresses by comparing the BM vascular niches in
homeostasis and under various stress conditions such as aging,
inflammation and malignancy.

BONE MARROW VASCULAR NICHES IN
HEALTH AND HOMEOSTASIS

The BM harbors multiple different cells types, thus forming
various local niches for stem and progenitor cells (Colmone
and Sipkins, 2008; Sugiyama and Nagasawa, 2012). These
niche-specific cell types show differential expression of specific
cell-surface markers and intracellular proteins and have been
characterized by genetic labeling and lineage tracing. Bone-
forming osteoblasts were the first niche cells to be associated
with hematopoiesis (Taichman and Emerson, 1994). They secrete
hematopoietic cytokines to maintain hematopoietic stem cells
(HSCs), providing an endosteal niche (Taichman and Emerson,
1994; Calvi et al., 2003; Visnjic et al., 2004). The endosteum
shows high expression of important pro-hematopoietic factors,
including C-X-C motif chemokine 12 (CXCL12) and stem cell
factor (SCF) (Kinashi and Springer, 1994; Sugiyama et al.,
2006; Ho and Méndez-Ferrer, 2020). However, osteoblast-specific
deletion of these factors has little effect on HSCs, suggesting
the existence of other niches for HSCs (Ding and Morrison,
2013). Moreover, various studies have shown that endosteal
niches only contain a small proportion of HSCs (Kiel et al., 2007;
Ding et al., 2012).

Bone marrow ECs play a crucial role in osteogenesis,
bone angiogenesis, and hematopoiesis. Located at the interface
between blood vessel lumen and the BM, they respond to various
stimuli, including chemical or mechanical stimuli, and regulate
cellular crosstalk between the two compartments. BM ECs are
remarkably heterogeneous in cell surface protein expression and
their response to stress and injury (Colmone and Sipkins, 2008;
Chen et al., 2020).

While sharing cell surface markers such as E-selectin (Winkler
et al., 2012), CD31 (Pecam-1), Endomucin (Kusumbe et al.,
2014), VE-Cadherin (Nolan et al., 2007), and Laminin (Nombela-
Arrieta et al., 2013), BM ECs can be divided into multiple
subpopulations based on the distinct expression pattern of these
(Kopp et al., 2009; Castro et al., 2018). Fenestrated sinusoidal
capillaries represent the majority of capillaries in the bone. They
express low levels of Endomucin and CD31, therefore termed
as type L vessels (Kusumbe et al., 2014). Sinusoidal ECs also
express vascular endothelial growth factor receptor 3 (VEGFR3).
In contrast, arteriolar ECs are negative for VEGFR3 (Kopp et al.,
2009; Ramasamy, 2017). Arterial and sinusoidal ECs can be

further distinguished with a combination of Podoplanin and Sca-
1. Arterial ECs are negative for Podoplanin and express high
levels of Sca-1 while sinusoidal ECs are positive for Podoplanin
and express low level of Sca-1 (Xu C. et al., 2018). Arterial
ECs have been found to be the major source of SCF in the
BM and arterial SCF is crucial for HSC function (Xu C.
et al., 2018). Type H endothelium, a recently discovered vessel
subtype in bone, shows high levels of Endomucin and CD31
(Kusumbe et al., 2014). Type H vessels are mainly located in
metaphyseal regions close to the growth plate (Figure 1). They
are organized in a columnar fashion and are physically associated
with osteoprogenitors (Kusumbe et al., 2014). Due to their direct
connection to arterioles, type H vessels contain higher oxygen
levels and blood flow than sinusoidal type L vessels (Kusumbe
et al., 2014; Ramasamy et al., 2014). Type H vessels are also
less permeable than type L vessels, creating an environment with
lower ROS levels (Filipowska et al., 2017; Ramasamy, 2017).

These morphological and functional differences between type
H vessels, type L/sinusoids and arteries create functionally
distinct BM vascular niches, that regulate osteoprogenitor and
blood cell proliferation and differentiation, partly via gradients of
oxygen tension (Marenzana and Arnett, 2013). The arterial niche
contains the surrounding type H vessels in the marrow space, that
are identified by the high expression of CD31 and Endomucin
(Duarte et al., 2018). Type H vessels also span the endosteum,
forming the endosteal vessels (Kusumbe et al., 2014).

Endothelial cell function and stability are closely linked to
perivascular cells (Rafii et al., 2016). Different vessel types are
supported by distinct perivascular cell types of mesenchymal
origin that contribute to these specialized vascular niches
(Kusumbe et al., 2016; Ramasamy et al., 2016). For instance,
arteries are wrapped with smooth muscle actin (α-SMA).
Arterioles and type H capillaries are associated with NG2
and platelet-derived growth factor receptors β (PDGFR-β)
expressing pericytes and Nestin-GFPbright mesenchymal stem and
progenitor cells (MSPCs) (Kunisaki et al., 2013; Mizoguchi et al.,
2014). Type H vessels are surrounded by Osterix and Runx2
expressing osteoprogenitors (Figure 1; Kusumbe et al., 2014;
Filipowska et al., 2017; Ramasamy, 2017; Peng et al., 2020).
Sinusoidal type L vessels are mainly supported by perivascular
LepR-expressing cells, that contribute to the adipocyte lineage,
and CXCL12-abundant reticular (CAR) cells that support HSCs
(Sugiyama et al., 2006; Ding et al., 2012; Boulais and Frenette,
2015).

Hematopoietic stem cells preferentially localize within the
vascular niches throughout the BM. However, the exact location
of HSCs within the distinct vascular niches is still unsettled
with new studies debating of HSC localization. Imaging studies
of HSCs in the BM have produced different results. Using the
HSC markers α-catulin and c-kit for deep confocal imaging
of the BM, showed that the majority of dividing and non-
dividing HSCs are localized in the central diaphyseal BM around
sinusoidal blood vessels and are distant from bone surfaces and
arteriolar vessels (Acar et al., 2015). Analysis of distinct subsets
of HSCs demonstrated a preferential location of quiescent HSCs
near endosteal arteriolar vessels surrounded by NG2+ pericytes.
In contrast, proliferative HSCs move away from arterioles
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FIGURE 1 | Bone marrow blood vessel organization and niche microenvironment in homeostasis, aging and regeneration. In homeostasis, young bone exhibits an
abundance of type H vessels in metaphyseal regions. Type H endothelium is closely associated with osteoprogenitors and stimulates angiogenesis and osteogenesis
via angiocrine factors. During aging and bone loss conditions, type H vessel density declines. This decline is accompanied by a reduction osteoprogenitors, reducing
osteogenesis and bone mass. Aging also reduces the pool of HSCs while increasing the adipocyte compartment. Bone injury such as fracture or irradiation
stimulates type H vessels, osteoprogenitors and HSC proliferation and differentiation to enhance angiogenesis and osteogenesis that guide bone repair and
regeneration. LepR, leptin receptor.

toward LepR+ perisinusoidal niches, suggesting a pivotal role for
arteriolar niches in maintaining HSC quiescence and a distinct
HSC distribution between differential BM niches (Kunisaki et al.,
2013; Itkin et al., 2016; Figure 2). Recent intravital imaging
studies of genetically labeled native HSCs suggest that LT-HSCs
reside near sinusoidal vessels in the endosteum and exhibit
limited motility (Christodoulou et al., 2020). In contrast, another
recent study found that the majority of HSCs are localized
in the perivascular space with significant motility and spatial
association with SCF-expressing stromal cells (Upadhaya et al.,
2020). The above studies were based on different mouse models,
or different cell surface markers were used, which may ultimately
lead to the analysis of different subsets of HSCs. Overall, the
detailed location of HSCs in their vascular niches requires
further investigation.

VASCULAR SENSING AND SIGNALING
IN THE BONE MARROW
MICROENVIRONMENT

Bone marrow ECs and perivascular stromal cells express a
range of paracrine factors and interact with surrounding cells to
maintain vascular tissue homeostasis and create vascular stem cell
niches. These factors include cytokines and growth factors and

are collectively termed angiocrine factors (Table 1). Some of them
are produced constitutively, while other factors modulate the
production of angiocrine factors (Rafii et al., 2016). Angiocrine
signals enable crosstalk between ECs and neighboring cell
types, thereby contributing to various tissue functions, including
maintenance of tissue homeostasis and regulation of stem cell
behavior and differentiation (Ding et al., 2012; Sivan et al., 2019;
Chen et al., 2020). BM ECs promote HSC maintenance and self-
renewal and blood vessel formation by expressing stimulating
factors such as CXCL12, SCF, and vascular endothelial growth
factor (VEGF) (Sugiyama et al., 2006; Coskun and Hirschi,
2010). Expression of cytokines, such as granulocyte colony-
stimulating factor (G-CSF) and various interleukins, enables BM
ECs to initiate lineage-specific HSPC differentiation (Kobayashi
et al., 2010; Rafii et al., 2016). Furthermore, angiocrine signaling
plays an essential role in the coupling of bone angiogenesis
and osteogenesis (Chen et al., 2020). This osteo-angiogenic
coupling is mediated explicitly by type H ECs that release various
osteogenesis stimulating factors such as platelet-derived growth
factor B (PDGF-B) and VEGF (Maes and Clemens, 2014; Grosso
et al., 2017; Rumney et al., 2019).

Vascular endothelial growth factor A (VEGFA) is one of
the most important proangiogenic factors in physiological and
pathological conditions. It is secreted by various cells including
ECs and bone lineage cells to promote EC migration and
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FIGURE 2 | BM vascular niche remodeling in homeostasis, aging, inflammation, and bone diseases. In homeostasis, type H endothelium secretes angiocrine factors
to promote osteogenesis, bone remodeling and HSC maintenance. A reduction of type H ECs and pericytes during aging decreases osteogenesis and impairs HSC
function. Reduced secretion of proangiogenic factors further results in bone loss. Bone repair requires proangiogenic factors for revascularization and bone
formation. CSCs also have the ability to secrete proangiogenic factors that stimulate tumor angiogenesis. Tumor ECs produce proinflammatory cytokines, facilitating
vascular niche integration of cancer cells. In inflammatory arthritis, inflamed synovium increases the production of proinflammatory cytokines that trigger
inflammation, pathological angiogenesis and cartilage degradation. BM, bone marrow; HSC, hematopoietic stem cell, EC, endothelial cell; CSC, cancer stem cell;
FGF, fibroblast-derived growth factor; TGF, transforming growth factor; CXCL12, C-X-C motif chemokine 12; VEGF, vascular endothelial growth factor; SLIT3, slit
guidance ligand 3; BMP, bone morphogenetic protein; PDGF, platelet-derived growth factor; SCF, stem cell factor; ICAM, intercellular adhesion molecule; VCAM,
vascular cell adhesion protein; MMP, matrix metalloproteinase; HIF, hypoxia-inducible factor.

proliferation and couple bone angiogenesis to bone remodeling
(Tombran-Tink and Barnstable, 2004; Sivan et al., 2019;
Figure 3). VEGFA has also been shown to be produced by HSCs
(Gerber and Ferrara, 2003). VEGFA is released in a paracrine
and autocrine fashion and primarily binds to VEGFR2, which
functions as a critical regulator of endothelial proliferation and
migration (Podar and Anderson, 2005). EC-specific deletion
of this receptor impairs angiogenesis, reduces vessel density
and disrupts metaphyseal organization (Wang L. et al., 2013).
Further, loss of VEGFA can disrupt vessel invasion into
hypertrophic chondrocytes and impair osteogenesis and bone
growth (Maes et al., 2002). In vitro studies suggest that angiogenic
and osteogenic effects of VEGFA rely on tight regulation of
timing and dose. For instance, VEGF-mediated activation of
VEGFR2 suppresses PDGFR-β signaling via formation of a
VEGFR2/PDGFR-β complex, resulting in a loss of pericytes and
impaired vessel stability (Greenberg et al., 2008). Independent of
its angiogenic function, VEGFA has also been implicated in HSC

specification via loss of Notch1 expression (Leung et al., 2013;
Figure 2).

PDGFR-β signaling also contributes to osteo-angiogenic
coupling. PDGF-B is secreted by ECs and pre-osteoclasts
and stimulates mesenchymal and endothelial migration and
proliferation via binding to its receptor PDGFR-β (Xie et al., 2014;
Xu R. et al., 2018; Peng et al., 2020; Figure 3). By activating the
focal adhesion kinase (FAK) pathway, PDGF-B also induces type
H vessel formation and osteogenesis (Xie et al., 2014).

Hypoxia-inducible factor (HIF) is a transcription factor that
regulates cellular signaling in response to changes in oxygen
levels (Riddle et al., 2009; Peng et al., 2020). HIF-1α is one
of three α-subunits with hypoxia-dependent activity (Semenza,
1999) and acts as an essential regulator of physiological and
pathological bone angiogenesis, osteogenesis, and regeneration
(Greijer et al., 2005; Wan et al., 2008). Under hypoxic conditions,
ECs and osteoblasts increase HIF-1α expression, which promotes
the expression of VEGFA and other proangiogenic factors
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TABLE 1 | Vascular niche associated factors in bone aging, stress, and disease.

Sl. No Factor/Signal Function Cell Type Condition References

1 Angiopoietins Inhibition of angiogenesis Endothelial cells Osteosarcoma Habel et al., 2015

2 BMP-4BMP-6 Cancer cell dormancy CSCs, HSCs Bone metastasis, Ageing Singh et al., 2019

3 Cathepsin K Inhibition of PDGF-BB secretion Pre-osteoclasts Osteoporosis Yang et al., 2018

4 CXCL12 HSC maintenance,
Chemoresistance, tumor proliferation

HSC, Endothelial Cell Ageing,Bone malignancies Kusumbe et al., 2016;
Poulos et al., 2017

5 CYR61 Primary tumor vascularization, VEGFA production Endothelial cell, CSCs Osteosarcoma Habel et al., 2015

6 Dll4 HSC differentiation and maintenance HSCs Irradiation, chemotherapy Tikhonova et al., 2019

7 FGF4 Endothelial activation Endothelial cells Bone malignancies Cao et al., 2014

8 G-CSFGM-CSF Angiogenesis, HSC differentiation HSCs, endothelial cells Irradiation, chemotherapy Kobayashi et al., 2010

9 HIF-1α Angiogenesis, osteogenesis Endothelial cells Ageing,Bone repair Kusumbe et al., 2014

10 IL-1TNF-a HSC differentiation & migration, inflammation HSCs, Endothelial cells Ageing, Inflammation Broudy et al., 1986; Sieff
et al., 1987; Boettcher
et al., 2014

11 IL-6 Downregulation of inflammatory response Endothelial cells Inflammation Luu et al., 2013

12 Jagged1 Angiogenesis, HSC regeneration Endothelial cells, HSCs Irradiation, chemotherapy Kobayashi et al., 2010

13 MMPs Cartilage matrix remodeling, tumor invasion Chondrocytes Osteoarthritis, bone repair,Bone metastasis Behonick et al., 2007;
Wang X. et al., 2013;
Romeo et al., 2019

14 mTORC1 Subchondral angiogenesis, VEGFA production Endothelial cells Osteoarthritis Lu et al., 2018

15 Notch Angiogenesis
Vascular niche function

Endothelial cells, HSCs Ageing Kusumbe et al., 2016;
Poulos et al., 2017

16 NOTCH3 Differentiation & expansion of synovial fibroblasts Synovial fibroblasts Rheumatoid arthritis Wei et al., 2020

17 Osteopontin Angiogenesis Endothelial cells, pericytes Bone repair Duvall et al., 2007

18 PDGF-BB Susceptibility to radiation and chemotherapy
Osteo-angiogenic coupling

Pericytes Bone metastasis,Ageing,Osteoporosis Xie et al., 2014; Yang et al.,
2018; Singh et al., 2019

19 PECAM Inhibition of angiogenesis Endothelial cells Osteosarcoma Habel et al., 2015

20 PEDF Inhibition of tumor angiogenesis and growth Endothelial cells Osteosarcoma Cai et al., 2006; Ek et al.,
2007b

21 SCF HSC maintenance HSC Ageing Kusumbe et al., 2016;
Poulos et al., 2017

22 SLIT3 Angiogenesis Endothelial cells Osteoporosis Xu R. et al., 2018

23 TGF-β1 Type H formation Endothelial cells Osteoarthritis Brenet et al., 2013; Zhen
et al., 2013

24 Thrombospondin-1 Cancer cell dormancy,
Inhibition of angiogenesis

Endothelial cells, DTCs Bone metastasis,Osteoporosis Rae et al., 2009; Ghajar
et al., 2013

25 VCAM1 ICAME-selectin Immune cell recruitment Fibroblasts Rheumatoid arthritis Klimiuk et al., 2002

26 VEGFA (Tumor) angiogenesis
Osteogenesis

Endothelial cell Ageing,Bone malignancies, inflammation Kusumbe et al., 2016;
Passaro et al., 2017;
Duarte et al., 2018

27 VEGFR1 Pre-metastatic niche CSCs Bone metastasis Kaplan et al., 2005

28 VEGFR2 Osteogenesis, chondrogenesis, sinusoidal regeneration Osteoblasts, sinusoidal endothelial cells Bone repair, irradiation Tarkka et al., 2003; Hooper
et al., 2009
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FIGURE 3 | Endothelial interactions with HSCs in the BM vascular niche. Quiescent HSCs preferentially locate in arteriolar niches surrounded by NG2+ pericytes.
Arteriolar ECs and NG2+ pericytes release quiescence-inducing factors including SCF, CXCL12, and PDGF-B. Proliferative HSCs move away from arterioles toward
sinusoidal niches. Sinusoidal ECs to release proliferative factors such as Osteopontin, FGF-2, E-selectin, and Notch ligands. HSC differentiation is induced by the
endothelial release of G-CSF, GM-CSF or interleukins. Reciprocally, HSCs can induce endothelial proliferation by releasing proangiogenic factors such as VEGFA.
HSC, hematopoietic stem cell, EC, endothelial cell; FGF, fibroblast-derived growth factor; TGF, transforming growth factor; CXCL12, C-X-C motif chemokine 12;
VEGF, vascular endothelial growth factor; BMP, bone morphogenetic protein; PDGF, platelet-derived growth factor; SCF, stem cell factor; G-CSF, granulocyte
colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor.

(Kwon et al., 2011; Peng et al., 2020). In the metaphysis,
HIF-1α is expressed by type H vessels in an oxygen-
independent manner. Pharmacological and genetic activation
of HIF signaling promotes type H vessel formation and
osteogenesis. EC inactivation of HIF-1α impairs type H vessel
number and bone formation (Kusumbe et al., 2014). In
contrast, EC-specific deletion of Von Hippel Lindau (Vhl), which
stabilizes endothelial HIF-1α, enhances the abundance of type
H vessels and osteoprogenitors (Jaakkola et al., 2001). Similarly,
pharmacological stabilization of HIF-1α via administration of
deferoxamine mesylate promoted type H vessel formation and
increased osteoprogenitors and osteoblasts (Jones and Harris,
2006; Kusumbe et al., 2014). A follow up study demonstrated that
the transcriptional coregulators Yap1 and Taz negatively regulate
bone angiogenesis by suppressing endothelial HIF-1α activity.
EC-specific inactivation of Yap1 and Taz upregulated HIF-1α

target genes and increased type H and type L vessel density, which
could be normalized with EC-specific stabilization of HIF-1α

(Sivaraj et al., 2020).
C-X-C motif chemokine 12 is a crucial chemokine in HSC and

lymphoid progenitor maintenance and quiescence. It is expressed
by BM ECs, perivascular cells, osteoblasts and sympathetic
neuronal cells (Ding and Morrison, 2013; Sivan et al., 2019)
and particularly Nestin+ perivascular stromal cells that are
physically associated with HSCs (Mendez-Ferrer et al., 2010;
Figure 2). Selective ablation of CXCL12-expressing perivascular

cells significantly decreased HSC numbers and size (Omatsu
et al., 2010). EC-specific deletion of CXCL12 also reduces HSC
frequency (Ding and Morrison, 2013; Boulais and Frenette, 2015)
and impairs long-term HSC repopulation activity. Deletion of
CXCL12 in MSPCs has similar effects on HSC number and
repopulation activity, indicating a crucial role of endothelial and
perivascular derived CXCL12 in supporting HSCs (Greenbaum
et al., 2013; Boulais and Frenette, 2015).

Stem cell factor is another crucial niche component for
HSC maintenance. Via differential splicing and proteolytic
cleavage, it is found in a soluble and a membrane-bound form.
Deletion of the expression of membrane-bound SCF significantly
depletes HSCs, demonstrating a particularly important role of
membrane-bound SCF for HSC maintenance (Barker, 1994; Ding
et al., 2012; Figures 2, 3). SCF is expressed by perivascular
stromal cells and ECs. Arterial ECs, type H ECs and sinusoidal
ECs; all express SCF with higher expression levels detected
in the type H and arterial ECs (Ding et al., 2012; Kusumbe
et al., 2016; Sivan et al., 2019). Within the mesenchymal
compartment; deletion of SCF from Nestin-GFP cells resulted
in the depletion of HSCs (Asada et al., 2017) indicating
that SCF from these peri-arterial mesenchymal stem cells is
critical for HSC maintenance. Further, conditional deletion of
SCF in ECs using Tie2-Cre which marks the arterial, type H
and sinusoidal ECs and the LepR-Cre mice which marks the
perivascular cells, also led to a depletion of BM and spleen
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HSCs (Ding et al., 2012). These findings suggest an essential
role for endothelial and perivascular SCF in HSC survival
and maintenance.

The proximity of BM ECs to stem and progenitor cells in
different tissues facilitates the delivery of angiocrine factors
and cell-to-cell contacts (Rafii et al., 2016). One of the most
critical cellular interaction mechanisms is the Notch signaling
pathway that controls the cell fate decisions via binding of
Notch ligands of the Delta-like or Jagged family to Notch
receptors (Milner and Bigas, 1999; Fernandez et al., 2008).
Opposite to its function in other organs and tissues, EC
Notch activation in long bones stimulates EC proliferation and
type H vessel formation (Ramasamy et al., 2014). Endothelial
Notch activation also enhances HSCs and PDGFR-β and NG2
expressing perivascular cells and increases SCF levels, indicating
a Notch-mediated enhancement of vascular niche function
(Figure 2; Kusumbe et al., 2016; Sivan et al., 2019). Most of
the research into vascular niches and HSC maintenance has
been conducted using mouse models. In contrast, identifying
factors that maintain human HSCs has been more challenging
(Sugimura, 2018). A study has identified the compounds
UM171 and SR1 from a family of chemically related small
molecules to stimulate human HSC expansion in vitro (Fares
et al., 2014). However, the precise downstream mechanisms
of these compounds remain unclear. Using a vascular niche
reconstitution approach; human endothelial and mesenchymal
progenitors and HSCs were implanted in mice to create
a humanized BM xenotransplantation model that may help
to identify factors for the maintenance of human HSCs
(Reinisch et al., 2016).

AGING OF THE BONE MARROW
VASCULAR NICHE

During aging, the BM endothelium exhibits significant
morphological and metabolic changes. Imaging and flow
cytometry studies report an overall decrease in the arteriolar
proportion (Kusumbe et al., 2016; Maryanovich et al., 2018; Ho
et al., 2019). This significant reduction of arteriolar vessels and
PDGFR-β expressing perivascular stromal cells is concomitant
with a decrease in SCF levels in long bones of aged mice
(Kusumbe et al., 2014; Figure 1 and Table 1). In contrast,
the abundance of sinusoidal type L blood vessels remain
unchanged during aging (Kusumbe et al., 2014; Ho et al.,
2019).

Along with a decline in type H vessel density, aged bones
show a decrease in blood flow that is likely to induce metabolic
changes in the BM microenvironment (Figure 3; Ramasamy
et al., 2016; Sivan et al., 2019). Age-related type H vessel decline
correlates with a reduction of osteoprogenitors, osteogenesis and
bone density (Kusumbe et al., 2014) and endosteal BM niches
(Ho et al., 2019; Figures 1, 3). Further metabolic changes in
aged BM endothelium include increased hypoxia and reactive
oxygen species (ROS) levels, which are associated with decreased
angiogenic and migration potentials (Poulos et al., 2017). Aging
also reduces the endothelial expression of HIF-1α, contributing

to the age-related loss of bone mass and type H endothelium
(Kusumbe et al., 2014; Figure 3 and Table 1). BM ECs of
aged mice express significantly lower levels of pro-hematopoietic
factors in comparison to BM ECs of young mice. These factors
include CXCL12, SCF and Notch ligands that are critical for
HSC homeostasis (Kusumbe et al., 2016; Poulos et al., 2017;
Table 1). Moreover, Notch activity is higher in type H ECs and
adjacent perivascular cells, suggesting a link between the age-
related decrease of endosteal vessels and impairments in the
endothelial Notch signaling pathway along with the loss of type
H vessels with age. Consistent with this, activation of endothelial
Notch signaling enhances blood flow to the bones and increases
HSC abundance (Kusumbe et al., 2016).

In addition to functional and metabolic changes, aged
endothelium shows significant morphological changes, including
augmented vasodilation and leakiness and impaired vascular
integrity (Poulos et al., 2017).

Perivascular cells also exhibit functional changes during aging.
Aging reduces the abundance of pericytes, thereby decreasing
the release of quiescence inducing factors such as SCF, Bmp4,
and Bmp6, which ultimately results in the loss of HSC and
cancer cell quiescence (Singh et al., 2019; Figure 3 and Table 1).
Further, reduced perivascular secretion of Osteopontin may
induce HSC proliferation and increase HSC numbers during
aging (Guidi et al., 2017; Figure 3 and Table 1). BM MSCs
show reduced proliferation and a bias toward adipogenesis at
the expense of osteogenic differentiation (Kim et al., 2012;
Singh et al., 2016). Since adipocytes are known to inhibit HSC
function and B-lymphomagenesis (Kennedy and Knight, 2015),
age-related adipocyte accumulation in the BM may underlie
myeloid skewing and impaired functionality of aged HSCs
(Kovtonyuk et al., 2016).

Despite the increase in HSC numbers, HSC function has been
found to decrease during aging, showing a reduction of self-
renewal and loss of quiescence (Morrison et al., 1996; Chambers
et al., 2007; Pang et al., 2011; Kovtonyuk et al., 2016; Singh et al.,
2019). These functional HSC alterations correlate with an age-
related relocation of HSCs away from endosteal arteriolar niches,
favoring non-endosteal sinusoidal BM niches in the central BM
(Maryanovich et al., 2018; Ho et al., 2019; Saçma et al., 2019).
Cell-intrinsic dysregulations such as protein misfolding and
accumulation of DNA damage have been thought to underlie
these age-related HSC changes (Beerman et al., 2014; Flach
et al., 2014; Kovtonyuk et al., 2016). However, there is increasing
evidence that changes in the BM microenvironment contribute
to reduced HSC function during aging (Kovtonyuk et al., 2016).
Aging of the BM vascular niche disrupts HSC homeostasis and is
sufficient to induce an aging-associated HSC phenotype in vitro
and in vivo (Poulos et al., 2017). Co-cultures of young HSCs with
aged ECs and in vivo infusion of aged ECs after myelosuppression
impair hematopoietic repopulating activity and induce a myeloid
lineage bias. Infusion of young ECs improves repopulation
activity and partially restores the HSC function, suggesting a
reciprocal relationship between HSC aging and vascular niche
alterations (Poulos et al., 2017). Hematopoietic aging leads to a
decreased functionality of the immune system. Immunological
impairments lead to increased susceptibility to infections,
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autoimmune disorders, and hematological malignancies (Kim
et al., 2003; Esplin et al., 2011; Kovtonyuk et al., 2016) that
cause additional vascular niche alterations and further disrupt
HSC homeostasis.

INFLAMMATION DRIVEN MODULATION
OF THE BONE VASCULATURE

Inflammation is a protective response of the immune system
against different inflammatory stimuli such as tissue injury,
physical stress or infection. Upon peripheral infection,
pattern recognition receptors (PRRs) on ECs, MSCs and
other hematopoietic and non-hematopoietic cells are activated.
ECs express various PRRs, including toll-like receptors (TLRs),
that enable them to detect systemic infections and regulate
inflammatory responses. Upon TLR4 activation or stimulation
with IL-1 or TNF-α, ECs upregulate their production of
proinflammatory cytokines such as interleukins, TNF-α, G-CSF,
and granulocyte-macrophage colony-stimulating factor (GM-
CSF) (Broudy et al., 1986; Sieff et al., 1987; Boettcher et al.,
2014) that circulate to the BM. In the BM, they induce HSC
proliferation, migration, and differentiation to restock the pool of
immune effector cells of the inflammatory response (Kovtonyuk
et al., 2016). G-CSF and GM-CSF also promote granulopoiesis,
and proliferation and recruitment of neutrophils (Schuettpelz
et al., 2014; Kovtonyuk et al., 2016). Proinflammatory cytokines
also stimulate ECs and MSCs to increase cytokine production
and secretion, creating a positive feedback loop (Luu et al., 2013;
Kovtonyuk et al., 2016). Activated ECs increase their expression
of adhesion molecules such as vascular cell adhesion molecule
1 (VCAM1), further facilitating the immune cell recruitment
(Castro et al., 2018). Upregulated expression of the Notch
ligand Jagged-2 by the bone endothelium in response to the
proinflammatory stimuli LPS and TNF-α, suggests that BM ECs
may promote hematopoietic progenitor cell proliferation via
increased Notch activation (Fernandez et al., 2008).

Inflammation distinctively alters both morphology and
function of the BM endothelium. During acute inflammation,
IFN-α promotes activation and proliferation of BM ECs is
mediated by increased VEGF production by hematopoietic cells
such as HSCs (Prendergast et al., 2017; Batsivari et al., 2020). In
line with increased angiogenic VEGF levels, enhanced number
of sinusoids and luminary are found in the inflamed BM.
Inflammation also increases hypoxic regions in long bones, which
may contribute to enhanced bone angiogenesis (Vandoorne et al.,
2018). Furthermore, the BM endothelium shows high vascular
permeability and leakiness during inflammation, caused by the
opening of tight junctions in order to promote trans-endothelial
migration of immune cells (Prendergast et al., 2017; Vandoorne
et al., 2018; Batsivari et al., 2020).

Inflammation-driven niche alterations show many
similarities to changes in the aged BM niche. Elevated levels
of proinflammatory cytokines have been associated with
aging of the BM microenvironment and age-related myeloid
malignancies. Both inflammation and aging induce a myeloid
differentiation bias and impair HSC self-renewal capacity

(Kovtonyuk et al., 2016). Serum levels of proinflammatory
cytokines such as IL-1, IL-6, and TNF-α are upregulated in
the aged population, and this upregulation may underlie the
high myelopoiesis and adipogenesis that occurs in aged BM
(Hasegawa et al., 2000; Ferrucci et al., 2005; Table 1). Age-
associated chronic inflammatory cytokine production, termed
as “inflammaging,” is proposed to result in cumulative tissue
damage (Franceschi et al., 2000; Baylis et al., 2013). Myeloid cells
and adipocytes represent significant sources of proinflammatory
cytokines, suggesting a positive feedback loop between aging
and inflammation. During aging, increased levels of pro-
inflammatory cytokines create a chronic proinflammatory state
that further enhances myeloid skewing of HSCs (Ergen et al.,
2012). In addition, adipogenic differentiation of perivascular
MSCs may also promote myelopoiesis and cytokine production
that is observed during aging (Kovtonyuk et al., 2016). To
uncover the contributions of vascular and perivascular cells
during age-associated inflammation, the inflammaging process
needs further investigation.

VASCULAR PERTURBATIONS IN
ARTHRITIS

Alterations in vascularization in connective tissues including
bone have been described in a number of arthropathies;
neoangiogenesis has been proposed as a pathological process in
some. Here, rheumatoid arthritis (RA) as an exemplar of chronic
inflammatory arthritis and osteoarthritis as the commonest
degenerative joint disorder are given.

Rheumatoid Arthritis
Rheumatoid arthritis is the most common form of chronic
inflammatory arthritis and results in joint inflammation, articular
bone loss and increased cardiovascular morbidity and mortality
(Totoson et al., 2016). RA is characterized by increased
articular angiogenesis and synovial inflammation that damages
affected joints (Walsh et al., 2010). Proinflammatory cytokines
from inflamed joints activate ECs by inducing endothelial
expression of VCAM1, intracellular adhesion molecule 1
(ICAM1), E-selectin and other adhesion molecules (Klimiuk
et al., 2002; Kong et al., 2018; Figure 3 and Table 1).
Cell adhesion molecules facilitate leukocyte and fibroblast
invasion into the joint and shift ECs into a proinflammatory
state (Klimiuk et al., 2002; Bordy et al., 2018; Sivan et al.,
2019). Endothelial activation and systemic inflammation trigger
endothelial dysfunction, which is characterized by impaired
vasodilation. Endothelial dysfunction crucially contributes to
the development of accelerated atherogenesis and cardiovascular
mortality in RA (Ulker et al., 2000; Totoson et al., 2014).
Impaired vasodilation increases the blood flow and pressure that
is transmitted into microvessels, thereby damaging vascular beds
(Totoson et al., 2016; Bordy et al., 2018). Multiple studies have
identified a decreased bioavailability of vasoactive nitric oxide
(NO) underlying impaired vasodilation in RA (Wilcox et al.,
1997; Garg et al., 2017). During the early stage of RA, this
is compensated by increased NO synthase activity that is lost
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with persistence of inflammation and the onset of endothelial
dysfunction (Totoson et al., 2016).

Transcriptomic analysis of human synovial fibroblasts
has identified a distinct subpopulation characterized by the
expression of Podoplanin, THY1, and Cadherin-11 (Mizoguchi
et al., 2018). This fibroblast subpopulation is significantly
upregulated in RA patients, localizing and expanding near
the blood vessels and secreting proinflammatory cytokines
(Mizoguchi et al., 2018). Upregulation of NOTCH3 and Notch
target genes via blood vessels is found in active RA (Wei et al.,
2020; Figure 3 and Table 1). Deletion of Notch3 or blocking
of NOTCH3 signaling blocks fibroblast expansion, alleviates
inflammation and prevents damage of inflamed joints, indicating
a critical role for Notch3 signaling in regulating synovial
fibroblast differentiation, expansion and disease activity (Wei
et al., 2020). Moreover, Notch-1 has been shown to mediate
VEGF/Angiopoietin 2-induced angiogenesis and EC invasion in
RA synovial explants (Gao et al., 2013).

Levels of neoangiogenesis in RA appear to be closely linked to
levels of synovial inflammation and to pain experienced, making
it a viable therapeutic target in this disease (Paleolog, 2009;
Fransès et al., 2010; Ashraf et al., 2011). Proinflammatory
cytokines also modulate osteoclastogenesis and impair
osteoblastic bone repair, facilitating articular bone loss in
RA if inflammation is not controlled pharmacologically
(Karmakar et al., 2010). At a local level this can lead to bone
erosion, loss and deformity, and systemically to osteopenia and
osteoporosis. Controlling inflammation by inhibiting TNF-α
significantly improves flow-mediated vasodilation and disease
activity and may reduce cardiovascular morbidity (Jacobsson
et al., 2005; Greenberg et al., 2011; Kawalkowska et al., 2019;
Végh et al., 2020).

Osteoarthritis
Osteoarthritis (OA) is a chronic joint disease and considered
the most common form of arthritis (Ashford and Williard,
2014; Vincent and Watt, 2018; Hunter and Bierma-Zeinstra,
2019). OA is characterized by articular cartilage loss and new
bone formation (osteophytosis) associated with sclerosis of
underlying bone. BM abnormalities are seen including BM
edema (BME), abnormal osteogenesis and a reported increase
in subchondral angiogenesis (Felson et al., 2003; Li et al., 2013).
Some believe that these subchondral bone changes contribute
to the progressive degeneration of cartilage, although this is not
well understood (Dyke et al., 2015). Disruption of subchondral
blood flow impairs diffusion of nutrients to the articular cartilage,
resulting in the death of osteocytes and joint damage (Zhen
et al., 2013; Glyn-Jones et al., 2015; Sivan et al., 2019). OA has
also been associated with increased cardiovascular comorbidity
and mortality (Turkiewicz et al., 2019). One study of patients
with knee OA revealed an association between OA radiological
severity and increased arterial stiffness (Tootsi et al., 2016).

Obesity is known to increase the incidence and progression of
OA (King et al., 2013). Multiple studies demonstrate increased
adipokines including serum leptin levels associated with the
disease (de Boer et al., 2012; Tootsi et al., 2016; Morales Abaunza
et al., 2020). Leptin has been shown to upregulate proteolytic

enzymes such as MMP-1 and MMP-3 in articular cartilage and
correlates with their levels in the synovial fluid of OA patients,
suggesting a potential for an enhanced catabolic effect on OA
cartilage (Koskinen et al., 2011).

Inflammatory cytokines such as TNF-α, IL-6, IL-11, and
IFN-γ have been reported to be upregulated in the synovial
fluid, the articular cartilage and synovium of OA patients
(Zhou et al., 2016). Inflammatory signaling in connective tissues
(which can be driven by such inflammatory cytokines as well
as by mechanical stress to tissues) is associated with protease
expression such as aggrecanases and metalloproteinases (MMPs)
and chemokines, driving cartilage degeneration (Findlay and
Kuliwaba, 2016). Increased activation of TGF-β1 in murine and
human OA effectively recruits MSCs and type H vessels, causing
OA-characteristic abnormal bone formation and augmented
subchondral angiogenesis (Zhen et al., 2013; Figure 3 and
Table 1). Osteoblast-specific overexpression of TGF-β1 induces
murine OA (Blaney Davidson et al., 2007; Zhen et al., 2013), while
subchondral inhibition of TGF-β and type H vessel formation
alleviates cartilage degeneration (Cui et al., 2016).

Increased subchondral angiogenesis may contribute to OA
progression (Hamilton et al., 2016). Type H vessels can
drive OA progression by releasing proteases such as MMP-
2, MMP-9, and MMP-14, which promote the resorption of
cartilage matrix and its degeneration (Romeo et al., 2019;
Table 1). Articular chondrocytes in vitro stimulate excessive
subchondral type H vessel formation by mechanistic target of
rapamycin complex 1 (mTORC1)-mediated VEGFA production
(Lu et al., 2018). Reciprocally, vascular-derived nutrients promote
chondrocyte and mTORC1 activation and VEGF production,
further enhancing subchondral angiogenesis (Lu et al., 2018;
Figure 3). Inhibition of mTORC1 is able to reduce this
pathological angiogenesis, thereby delaying disease progression
(Lu et al., 2018). During later stages of OA, articular cartilage,
synovium and subchondral bone show increased levels of
VEGF (Hamilton et al., 2016). Synovial VEGF levels have
also been found to correlate with disease severity and pain
in patients with knee OA, potentially implicating VEGF as a
biomarker for OA pathogenesis (Gaballah et al., 2016). Sensory
nerves grow along new blood vessels in osteoarthritic joints,
eventually reaching non-calcified articular cartilage, osteophytes
and menisci, and may be a source of pain from all of these
structures. Angiogenesis could therefore be a source of pain in
OA (Mapp and Walsh, 2012).

ANGIOGENESIS AND BONE PAIN

Inflamed synovium has upregulated levels of the neurotrophin
nerve growth factor (NGF) (Aloe et al., 1999). NGF signals
by way of binding its two receptors TrkA and p75. Most pain
signaling is considered to be via TrkA whilst p75 signaling
relates to cell survival/death (Reichardt, 2006). NGF signaling
is known to be increased in the context of inflammation, for
example in RA (Skaper, 2017). In OA, NGF stimulates sensory
nerve growth into vascular channels of articular cartilage and
subchondral bone, contributing to arthritic pain (Suri et al.,
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2007). Neutralizing NGF with monoclonal antibodies in both
murine and human OA leads to reduction in joint pain (Lane
et al., 2010; McNamee et al., 2010). Substantial expression of NGF
receptors TrkA and p75 is found in rat bone (Nencini et al., 2017).
NGF injection into rat bone rapidly activates nociceptors and
produces an acute behavioral pain response, implicating NGF
in inflammatory bone pain (Nencini et al., 2017; Table 1). NGF
also functions as an angiogenic factor. ECs express TrkA and
p75 and administration of NGF induces capillary sprouting and
increased neuronal VEGF expression in newborn rats (Calzà
et al., 2001). NGF receptor binding activates the mRas/ERK
and PI3K/Ak pathways that control endothelial proliferation
and survival. VEGF activates these same pathways, perhaps
suggesting a joint role for NGF and VEGF in the regulation of
angiogenesis (Nico et al., 2008).

VASCULAR FUNCTION IN BONE LOSS
DISEASES

Osteoporosis is a metabolic bone disease that results in
progressive bone loss and fragility (Cooper et al., 2006;
Sözen et al., 2017). It is characterized by the imbalance of
osteoblast-mediated bone formation and osteoclast-mediated
bone resorption with resultant reduction in bone mass, disrupted
microarchitectural integrity and increased risk of fracture (Sözen
et al., 2017; Compston et al., 2019). Postmenopausal women have
an increased susceptibility to osteoporosis, in part due to the
fall in estrogen levels at the time of menopause that leads to a
higher rate of bone resorption than formation (Ji and Yu, 2015).
Aging in both men and women is also associated with increased
risk of osteoporosis. Multiple studies have shown a reduction
in bone vasculature and bone-forming cells in mouse models
of osteoporosis (Weinstein et al., 2010; Cui et al., 2012; Yang
et al., 2018). Specifically, age-related loss of type H endothelium
appears to play an important role in the pathogenesis of
osteoporosis (Ding et al., 2020; Figures 1, 3). Significant
reduction of type H vessels is observed in ovariectomized female
mice, a commonly used experimental model of postmenopausal
osteoporosis (Wang et al., 2017). Likewise, the decline of human
type H endothelium is observed in women after menopause (Zhu
et al., 2019). A reduction of type H vessels, mature osteoblasts and
osteocytes is also observed in a mouse model of glucocorticoid-
induced osteoporosis (GIO) (Yang et al., 2018). Glucocorticoids
decrease blood flow and inhibit angiogenesis by reducing VEGF
levels (Wang et al., 2010; Weinstein et al., 2010) and increasing
thrombospondin-1 (Rae et al., 2009; Yang et al., 2018).

Pre-osteoclast PDGF-B secretion induces type H vessel growth
and angiogenesis and osteogenesis (Dou et al., 2018; Ding
et al., 2020). The osteoclast-derived cathepsin K decreases pre-
osteoclast secretion of PDGF-B; this impairs the recruitment of
mesenchymal and endothelial progenitors to bone remodeling
sites and reduces bone and blood vessel formation (Yang
et al., 2018; Figure 3 and Table 1). Interestingly, knockout
of cathepsin K in GIO mice prevents PDGF-B reduction and
loss of osteoblasts, osteoclasts, and type H ECs. In line with
these findings, inhibition of cathepsin K via administration

of an inhibitor L-235 prevents osteoporosis and maintains
osteoblasts and bone volume (Yang et al., 2018). Moreover,
cathepsin K inhibition increases PDGF-B and preserves type
H vessel by enhancement of endothelial VEGF production
(Yang et al., 2018). Another study implicated a role for another
osteoblast-derived proangiogenic factor slit homolog 3 protein
(SLIT3) in osteoporosis-associated loss of bone mass and
vasculature (Figure 3 and Table 1). Intravenous SLIT3 injection
in ovariectomized mice reverses bone loss and augments type H
ECs (Xu R. et al., 2018; Ding et al., 2020).

DYNAMICS OF BONE VASCULATURE
DURING FRACTURE REPAIR

Bone fracture disrupts the typical bone architecture, vasculature,
and surrounding tissue. Fractures are often accompanied by
blood vessel damage, thereby causing hemorrhage, local hypoxia
and susceptibility to infection (Marenzana and Arnett, 2013;
Baker et al., 2018). The initial proinflammatory state stimulates
cell proliferation and differentiation via expression of IL-1 (Lange
et al., 2010), MMP-9 (Wang X. et al., 2013), and BMPs (Cheng
et al., 2003; Bahney et al., 2015). A soft callus is formed soon after
fracture which stabilizes the site of injury (Baker et al., 2018).

Local hypoxia and high lactate levels after fracture upregulate
the expression of HIF1-α and its downstream target VEGF that
stimulate angiogenesis and osteogenesis and replace soft callus
by vascularized hard callus (Wang et al., 2007; Marenzana and
Arnett, 2013; Baker et al., 2018; Bahney et al., 2019; Figure 3 and
Table 1). Disruption of osteoblast-derived HIF1-α delays callus
formation and impairs fracture healing (Wang et al., 2007).

Angiogenesis is considered to be essential in fracture repair
(Hausman et al., 2001). During the repair phase, VEGF stimulates
the regrowth of blood vessels into the site of injury to restore
normal oxygen and nutrient supply and activate osteoblast
function (Marenzana and Arnett, 2013; Figure 1). While
inhibition of VEGFR1 and VEGFR2 impairs osteogenesis and
chondrogenesis and reduces callus formation (Jacobsen et al.,
2008), VEGF administration significantly accelerates fracture
repair (Tarkka et al., 2003; Table 1). TNF-α administration has
also been shown to promote fracture repair by recruiting muscle-
derived stromal cells and promoting osteogenic differentiation
(Glass et al., 2011). Regrowth of sensory nerve fibers is
stimulated by NGF, creating pain sensation. NGF also stimulates
VEGFA-mediated revascularization and promotes ossification
via TrkA-mediated communication between sensory nerves
and osteoblasts (Tomlinson et al., 2017; Li et al., 2019;
Table 1). Inhibition of TrkA signaling reduces nerve regrowth
and revascularization, delaying ossification of fracture calluses
(Li et al., 2019).

With revascularization of the injury site, new bone tissue is
formed directly via progenitor differentiation into osteoblasts
(intramembranous ossification) and indirectly via cartilage
intermediate (endochondral ossification) (Hu et al., 2017).
During endochondral ossification, VEGF binds to the cartilage
matrix until its release by MMPs. MMPs degrade and remodel
the extracellular matrix (ECM) and are highly expressed during
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fracture repair (Bahney et al., 2019; Table 1). Knockout of
MMP-2 delays bone remodeling, while MMP-9 and MMP-13
knockouts impair cartilage remodeling, vascularization and bone
formation (Colnot et al., 2003; Behonick et al., 2007; Wang
X. et al., 2013). Interestingly, administration of recombinant
VEGF rescues these phenotypes, emphasizing the importance for
MMP mediated fracture revascularization of VEGF availability
(Colnot et al., 2003; Bahney et al., 2019). ECM proteins such
as thrombospondin and osteopontin also modulate fracture
vascularization. Thrombospondin has an antiangiogenic function
(Bahney et al., 2019). Accordingly, thrombospondin knockout
mice exhibit enhanced angiogenesis and bone regeneration
(Taylor et al., 2009; Miedel et al., 2013; Table 1). In contrast,
osteopontin is a proangiogenic factor, and delays fracture
neovascularization when deficient (Duvall et al., 2007; Bahney
et al., 2019; Table 1). During the remodeling phase, callus and
vessels are reduced toward pre-injury levels, and the cortical
and medullary structure is restored (Baker et al., 2018). The
remodeling process consists of a complex interplay between
osteoclasts, osteoblasts and vasculature and is driven by high
levels of proinflammatory cytokines such as IL-1 and TNF-α
(Mountziaris and Mikos, 2008; Baker et al., 2018). Blockade
of angiogenesis during this phase significantly increases callus
formation and inhibits callus remodeling (Holstein et al., 2013).

During the remodeling phase, BM stem cells (BMSCs) form
a source of osteoclasts, while a subset of periosteal stem cells
differentiates into chondrocytes and osteoblasts (Colnot, 2009;
Baker et al., 2018). Moreover, BMSCs and pericytes direct stem
cell differentiation by producing various trophic factors (Colnot,
2009; Hadjiargyrou and O’Keefe, 2014; Baker et al., 2018).
Multiple studies have indicated an MSC-function for pericytes,
enabling them to differentiate into osteoblast and chondrocyte
progenitors (Diaz-Flores et al., 1992; Maes et al., 2010; Figure 3).

Comorbidities such as aging significantly delay fracture repair,
presumably due to underlying vascular dysfunction (Bahney
et al., 2019). Blood vessel density was significantly decreased
in fractures of aged and middle-aged mice compared to young
mice, coupled with reduced cartilage volume (Lu et al., 2008).
Moreover, expression levels of VEGF, HIF-1α, MMP-9, and
MMP-13 were significantly reduced in early fracture calluses of
aged mice, likely underlying the observed delay of angiogenesis
(Lu et al., 2008).

DYSREGULATION OF BONE
VASCULATURE IN BONE
MALIGNANCIES

The BM provides a unique microenvironment not only for HSCs
but also for tumor cells. Similar to HSCs, cancer stem cell
(CSC) activity relies on signals from the BM microenvironment
(Plaks et al., 2015; Batlle and Clevers, 2017). Primary tumor cells
and host cells secrete various factors that support CSC survival
and dissemination, creating a pre-metastatic microenvironment
(Kaplan et al., 2005; Chin and Wang, 2016; Sivan et al.,
2019). Further, CSCs can modulate angiogenesis by producing
proangiogenic factors such as VEGFA (Chand et al., 2016)

to induce unregulated tumor angiogenesis and metastasis
(Carmeliet and Jain, 2011; Treps et al., 2017; Sun et al., 2020;
Figure 3 and Table 1). Here, malignant alterations of the BM
niche in hematologic tumors, primary bone tumors and bone
metastasis are highlighted.

Hematologic Tumors
Acute myeloid leukemia (AML) is the most common type
of leukemia. AML patients show upregulated VEGF levels
and BM hypervascularity, associated with poor prognosis
(Bosse et al., 2016). Besides inducing tumor angiogenesis,
VEGFA also facilitates chemotactic cell migration and increases
vascular permeability (Nagy et al., 2008; Heinolainen et al.,
2017). Studies using intravital two-photon microscopy have
demonstrated various structural and functional maladaptations
of bone vasculature in AML. Vasculature of mice with AML
show disorganized vasculature, reduced vessel diameter and
increased microvascular density within the BM and reduced
vessel density in the endosteal region (Passaro et al., 2017;
Duarte et al., 2018). Also, AML mice exhibit functional vascular
abnormalities; perfusion is impaired, while angiogenic VEGFA
levels, hypoxia and vascular leakiness are increased (Passaro
et al., 2017; Duarte et al., 2018; Figure 3). These findings are
supported by the transcriptomic analysis of ECs after human
AML engraftment, revealing reduced endothelial expression of
tight junction components that are required for vessel integrity
(Passaro et al., 2017). Xenografts of AML patients show an
increase in perivascular hypoxia that increases endothelial ROS
and NO levels, impairs HSC function and promotes cell death
and HSC egress from the BM (Passaro et al., 2017). Inhibition of
endothelial remodeling in AML rescues HSC loss and increases
chemotherapeutic efficiency and survival (Duarte et al., 2018).

Primary Bone Tumors
Osteosarcoma is the most common primary bone tumor
(Broadhead et al., 2011a). It is considered highly vascularized
and is characterized by early metastatic dissemination through
intratumoral vessels. The lungs and bone represent the most
common sites of metastasis (Broadhead et al., 2011a; Kunz et al.,
2015). Microvascular density analysis of osteosarcoma patient
biopsies revealed increased survival rates and responsiveness to
chemotherapy in patients with low osteosarcoma vascularization
(Kunz et al., 2015). Similar to other blood and bone cancers,
osteosarcoma cells have a strong angiogenesis-inducing
function that increases with intratumoral vessel size and length
(Uehara et al., 2014). Tumor angiogenesis is facilitated by a
hypoxic and acidic microenvironment around proliferating
osteosarcoma cells, which stimulates HIF-1α and subsequent
VEGF upregulation (Broadhead et al., 2011a). Antiangiogenic
factors and proteins, including thrombospondin-1, TGF-β (Ren
et al., 2006) and pigment epithelial-derived factor (PEDF) (Cai
et al., 2006) are downregulated in osteosarcoma. PEDF has
shown promising results as an anti-tumor agent (Table 1).
Multiple studies have demonstrated suppression of tumor
growth, angiogenesis and metastasis upon overexpression (Ek
et al., 2007b) and systemic administration of PEDF in vivo and
in vitro (Ek et al., 2007a; Broadhead et al., 2011b).
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Upregulation of the proangiogenic protein CYR61 in
osteosarcoma, crucially contributes to primary tumor
vascularization (Habel et al., 2015; Table 1). Silencing CYR61
decelerates tumor growth and reduces tumor vasculature and
the expression of proangiogenic factors, including VEGF,
PECAM and angiopoietins. Simultaneously, silencing of CYR61
upregulates thrombospondin-1 and other antiangiogenic
factors (Habel et al., 2015; Table 1). Interestingly, CYR61
downregulation is associated with decreased MMP2 expression,
an essential regulator of metastatic osteosarcoma capacity (Habel
et al., 2015). MMPs play an important role in degrading the
ECM to enable tumor invasion into the surrounding tissue (Oh
et al., 2001; Broadhead et al., 2011a). Membrane-type 1 matrix
metalloproteinase (MT1-MMP) is crucial for cell migration and
has been shown to promote tumor cell migration and invasion
(Itoh et al., 2001; Itoh, 2006). They also remodel the vascular
network and decrease vessel wall integrity to allow tumor
cell passage into the bloodstream (Oh et al., 2001; Broadhead
et al., 2011a) and stimulate tumor angiogenesis via releasing
ECM-bound VEGF (Bergers et al., 2000).

Tumor cells further express NGF, which has similar angiogenic
effects as VEGFA (Nico et al., 2008). NGF induces tumor
angiogenesis by enhancing endothelial growth, migration and
permeability (Romon et al., 2010). Inhibition of NGF with siRNA
significantly reduces tumor progression and angiogenesis in
breast cancer (Adriaenssens et al., 2008), while overexpressing
TrkA increases tumor development and angiogenesis (Lagadec
et al., 2009). Both VEGFA and NGF promote MMP production
(Pufe et al., 2004; Shan et al., 2013) facilitating tumor invasion
and cancer angiogenesis (Belotti et al., 2003; Okada et al., 2004).

Interestingly, cancer cells integrate into the vasculature
and fuse with ECs, to contribute to the tumor vasculature,
acquiring an EC-like phenotype, a process termed as “vascular
mimicry” (Maniotis et al., 1999; Cogle et al., 2014). Trans-
differentiation of CSCs into pericytes is reported to occur via
endothelial production of CXCL12 and TGF-β (Cheng et al.,
2013; Figure 3 and Table 1). The acidic tumor microenvironment
increases CXCL12 production (Nakanishi et al., 2016), stimulates
angiogenesis, tumor proliferation and chemoresistance (Meng
et al., 2018). Vascular mimicry has been described in numerous
types of solid tumors, including osteosarcoma and Ewing
sarcoma and is involved in cancer progression, dissemination and
metastasis (Ge and Luo, 2018).

Bone Metastasis
The BM vascular niche acts as a protective and supportive site
for cancer cells (Ninomiya et al., 2007). BM hematopoietic cells
express VEGFR1, thereby forming a pre-metastatic niche that
attracts cancer cells (Kaplan et al., 2005; Table 1). Due to its
intrinsically high vascular density, the BM enables increased
crosstalk between cancer cells and ECs, supporting tumor cell
proliferation (Virk and Lieberman, 2007).

Endothelial thrombospondin-1 production creates a stable
BM vascular niche for disseminated tumor cells (DTCs).
Integrated into this niche, DTCs remain in a dormant
state over a long period (Ghajar et al., 2013; Kusumbe,
2016; Qu et al., 2019). The large vessel diameter and

low sinusoidal blood flow of the BM vasculature facilitate
DTC dormancy and therapy resistance (Kopp et al., 2005;
Kusumbe, 2016). Co-culture of AML cells with BM ECs
increases the proportions of quiescent AML cells (Cogle
et al., 2014). Integrin-mediated interaction between DTCs and
endothelial-derived von Willebrand factor and VCAM1 is a
crucial factor in DTC chemoresistance (Carlson et al., 2019).
Inhibiting these interactions via integrin-blocking antibodies
sensitizes DTCs to chemotherapy and prevented bone metastasis
(Carlson et al., 2019).

Endothelial PDGF-B signaling is another key regulator of
tumor cell dormancy and therapy resistance (Singh et al.,
2019; Table 1). Radiation and chemotherapy induces a bone-
specific expansion of pericytes via endothelial PDGF-B signaling.
Expanding pericytes further support therapy resistance of
quiescent DTCs in the BM by secreting quiescence-inducing
factors such as CXCL12 (Singh et al., 2019). DTC dormancy is
guided by microenvironmental cues similar to those involved
in adult stem cell dormancy (Risson et al., 2020). For
instance, MSC-specific deletion of CXCL12 promotes LSC
division and expansion while reducing normal HSC numbers
(Agarwal et al., 2019).

Remodeling of the tumor BM microenvironment such as
the age-related loss of perivascular PDGF-B signaling reactivates
dormant DTCs and induces their proliferation (Ghajar et al.,
2013; Singh et al., 2019). Therefore, bone is one of the
most common sites of metastasis even after decades of
latency (Kusumbe, 2016; Singh et al., 2019). Quiescent DTCs
retain transcriptional plasticity that enables them to reactivate
different regulatory programs, allowing reversible growth arrest
and survival (Risson et al., 2020). Induction of cell cycle
expression in AML cells renders them susceptible to therapy,
leading to tumor regression (Bosse et al., 2016). Moreover,
inhibiting VEGFA signaling improves chemotherapy efficiency
(Poulos et al., 2014).

Furthermore, bone metastasis is the most common cause of
pain in cancer (Mercadante, 1997). NGF plays an important
role in modulating bone cancer pain and is expressed by tumor,
immune and inflammatory cells (Dollé et al., 2003; Sevcik
et al., 2005; Table 1). Treatment with an anti-NGF antibody
significantly reduces bone cancer pain behaviors in a mouse
model of femoral osteosarcoma (Sevcik et al., 2005). The NGF
monoclonal antibody tanezumab has also shown promising
results in the treatment of chronic pain in patients with metastatic
bone cancer (Sopata et al., 2015).

RADIATION AND CHEMOTHERAPY

Radiation is a commonly used therapy for hematological
malignancies, that causes tissue damage, reduces hematopoietic
populations and promotes HSC mutations. Despite its common
prescription, the effects of radiation therapy on the BM
microenvironment remain poorly understood. Microcomputed
tomography and immunohistological studies of irradiated
murine bone show a severe decline of bone volume with an
increase in number and activity of bone-resorbing osteoclasts
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(Willey et al., 2008; Kondo et al., 2009; Batsivari et al.,
2020). Radiation also damages the BM vasculature, particularly
depleting sinusoidal ECs and increasing vascular dilation
and permeability. Transcriptomic analysis revealed substantial
changes in EC transcriptomes in response to radiation, including
genes associated with vascular niche function (Chen et al., 2019).
Furthermore, expansion of Apln-expressing ECs occurs upon
radiation treatment. This subpopulation of bone ECs has the
ability to generate arterial ECs and contribute to BM vascular
regeneration after irradiation (Chen et al., 2019) and represents a
subset of type H ECs. Moreover, radiation significantly enhances
the BM adipocyte compartment (Hooper et al., 2009; Zhou et al.,
2017; Figure 1). Regeneration of sinusoidal ECs post-irradiation
is partially mediated by VEGFR2 signaling and is essential for
the restoration of normal hematopoiesis (Hooper et al., 2009;
Table 1).

Another commonly used therapy for hematological
malignancies is chemotherapy. Most chemotherapies have
similar effects on the BM microenvironment as radiation,
depleting osteoblasts, increasing adipocyte numbers and
damaging BM endothelium (Zhou et al., 2017; Batsivari et al.,
2020). Tracking gene expression profiles of BM cells after 5-FU
treatment revealed an upregulation of adipogenesis-associated
genes accompanied by a downregulation of osteolineage-
associated genes. Chemotherapy is further associated with
a general loss of vascular and perivascular cells in the BM
(Tikhonova et al., 2019). Myeloablation via radiation or
chemotherapy increases expression of inflammatory cytokines
such as IL-6, G-CSF, and GM-CSF that promote HSC
differentiation and lineage commitment (Rafii et al., 2016). In
contrast, myeloablation downregulates vascular Notch delta
ligands, Dll1 and Dll4. Dll4 is a regulator of hematopoietic
differentiation, causing transcriptional reprogramming and
myeloid priming of HSCs in its absence (Tikhonova et al.,
2019; Table 1). After myeloablation, ECs upregulate their
production of VEGFA, FGF-2, and other angiogenic factors to
facilitate HSC regeneration. These angiocrine factors activate
Akt and upregulate the Notch ligand Jagged-1 (Kobayashi
et al., 2010), suggesting a key role of Notch activation in
HSC regeneration. Transplantation of Akt-activated BM
ECs enhances hematopoietic recovery after myeloablation
(Poulos et al., 2015). Further, co-activation of endothelial Akt
with MAPK induces HSC differentiation and expands the
hematopoietic progenitor pool, demonstrating a key role of Akt
in hematopoietic regeneration (Kobayashi et al., 2010; Rafii et al.,
2016). Collectively, these findings demonstrate significant BM

vascular niche remodeling during hematological malignancies,
myeloablation and hematopoietic recovery.

CONCLUDING REMARKS

Bone marrow ECs and perivascular cells form a heterogeneous
and nurturing microenvironment for stem and progenitor cells
of various lineages and produce various factors to support
hematopoiesis and osteogenesis. Aging, inflammation and other
stress factors can alter vascular morphology and function and
disrupt angiocrine crosstalk in vascular niches. Pathological
processes including arthritis, osteoporosis, bone pain and cancer
are associated with bone angiogenesis. Vascular niche remodeling
in response to stress can severely affect HSCs, hematopoiesis
and bone lineage cells and may contribute to metastatic
relapse and chemoresistance. Detailed knowledge of the BM
microenvironment could provide new insights into pathological
processes in the skeletal system and holds the potential to provide
strategies for the clinical management of hematological disorders
and bone diseases. Thus, future research should further unravel
the impact of stress on the BM vascular niche to improve our
understanding of vascular niche function and interactions.
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Sözen, T., Özışık, L., and Başaran, N. Ç (2017). An overview and management of
osteoporosis. Eur. J. Rheumatol. 4, 46–56. doi: 10.5152/eurjrheum.2016.048

Sugimura, R. (2018). The significance and application of vascular niche in the
development and maintenance of hematopoietic stem cells. Int. J. Hematol. 107,
642–645. doi: 10.1007/s12185-018-2450-2

Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006). Maintenance of the
hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone

Frontiers in Cell and Developmental Biology | www.frontiersin.org 18 November 2020 | Volume 8 | Article 602269

https://doi.org/10.1016/j.immuni.2010.08.017
https://doi.org/10.1016/j.immuni.2010.08.017
https://doi.org/10.1111/j.1365-2613.2009.00640.x
https://doi.org/10.1111/j.1365-2613.2009.00640.x
https://doi.org/10.1073/pnas.1116110108
https://doi.org/10.1016/j.ccell.2017.08.001
https://doi.org/10.1016/j.ccell.2017.08.001
https://doi.org/10.7150/thno.34126
https://doi.org/10.1016/j.stem.2015.02.015
https://doi.org/10.1182/blood-2004-07-2909
https://doi.org/10.1182/blood-2004-07-2909
https://doi.org/10.1016/j.stemcr.2015.08.018
https://doi.org/10.1016/j.exphem.2014.08.003
https://doi.org/10.1016/j.exphem.2014.08.003
https://doi.org/10.1172/JCI93940
https://doi.org/10.1172/JCI93940
https://doi.org/10.3324/haematol.2016.151209
https://doi.org/10.3324/haematol.2016.151209
https://doi.org/10.1002/path.1527
https://doi.org/10.1186/s12943-019-0992-4
https://doi.org/10.1210/jc.2008-1879
https://doi.org/10.1210/jc.2008-1879
https://doi.org/10.1038/nature17040
https://doi.org/10.1155/2017/5046953
https://doi.org/10.1038/ncomms13601
https://doi.org/10.1038/nature13146
https://doi.org/10.1098/rstb.2006.1894
https://doi.org/10.1098/rstb.2006.1894
https://doi.org/10.1038/nm.4103
https://doi.org/10.1016/j.bbcan.2005.11.002
https://doi.org/10.1007/s00109-009-0477-9
https://doi.org/10.1038/s43018-020-0088-5
https://doi.org/10.1038/s41556-019-0304-7
https://doi.org/10.1186/1476-4598-9-157
https://doi.org/10.1186/1476-4598-9-157
https://doi.org/10.1038/s41598-019-53249-4
https://doi.org/10.1038/s41598-019-53249-4
https://doi.org/10.1038/s41556-019-0418-y
https://doi.org/10.1038/leu.2014.68
https://doi.org/10.1146/annurev.cellbio.15.1.551
https://doi.org/10.1146/annurev.cellbio.15.1.551
https://doi.org/10.1016/j.pain.2005.02.022
https://doi.org/10.1016/s1995-7645(13)60146-7
https://doi.org/10.1172/jci112806
https://doi.org/10.1172/jci.insight.125679
https://doi.org/10.1016/j.bone.2016.01.014
https://doi.org/10.1016/j.bone.2016.01.014
https://doi.org/10.1098/rsob.190144
https://doi.org/10.1098/rsob.190144
https://doi.org/10.7554/eLife.50770
https://doi.org/10.1111/imm.12717
https://doi.org/10.1097/j.pain.0000000000000211
https://doi.org/10.5152/eurjrheum.2016.048
https://doi.org/10.1007/s12185-018-2450-2
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-602269 November 21, 2020 Time: 13:25 # 19

Stucker et al. Bone Angiogenesis in Stress

marrow stromal cell niches. Immunity 25, 977–988. doi: 10.1016/j.immuni.
2006.10.016

Sugiyama, T., and Nagasawa, T. (2012). Bone marrow niches for hematopoietic
stem cells and immune cells. Inflamm. Allergy Drug Targets 11, 201–206. doi:
10.2174/187152812800392689

Sun, S. L., Shu, Y. G., and Tao, M. Y. (2020). LncRNA CCAT2 promotes
angiogenesis in glioma through activation of VEGFA signalling by sponging
miR-424. Mol. Cell Biochem. 468, 69–82. doi: 10.1007/s11010-020-03712-y

Suri, S., Gill, S. E., Massena, de Camin, S., Wilson, D., McWilliams, D. F.,
et al. (2007). Neurovascular invasion at the osteochondral junction and in
osteophytes in osteoarthritis. Ann. Rheum. Dis. 66, 1423–1428. doi: 10.1136/
ard.2006.063354

Taichman, R. S., and Emerson, S. G. (1994). Human osteoblasts support
hematopoiesis through the production of granulocyte colony-stimulating
factor. J. Exp. Med. 179, 1677–1682. doi: 10.1084/jem.179.5.1677

Tarkka, T., Sipola, A., Jämsä, T., Soini, Y., Ylä-Herttuala, S., Tuukkanen, J., et al.
(2003). Adenoviral VEGF-A gene transfer induces angiogenesis and promotes
bone formation in healing osseous tissues. J. Gene Med. 5, 560–566. doi: 10.
1002/jgm.392

Taylor, D. K., Meganck, J. A., Terkhorn, S., Rajani, R., Naik, A., O’Keefe, R. J., et al.
(2009). Thrombospondin-2 influences the proportion of cartilage and bone
during fracture healing. J. Bone Miner. Res. 24, 1043–1054. doi: 10.1359/jbmr.
090101

Tikhonova, A. N., Dolgalev, I., Hu, H., Sivaraj, K. K., Hoxha, E., Cuesta-
Dominguez, A., et al. (2019). The bone marrow microenvironment at single-cell
resolution. Nature 569, 222–228. doi: 10.1038/s41586-019-1104-8

Tombran-Tink, J., and Barnstable, C. J. (2004). Osteoblasts and osteoclasts
express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators
of angiogenesis and matrix remodeling in the bone. Biochem. Biophys. Res.
Commun. 316, 573–579. doi: 10.1016/j.bbrc.2004.02.076

Tomlinson, R. E., Li, Z., Minichiello, L., Riddle, R. C., Venkatesan, A., and Clemens,
T. L. (2017). NGF-TrkA signaling in sensory nerves is required for skeletal
adaptation to mechanical loads in mice. Proc. Natl. Acad. Sci. U.S.A. 114,
E3632–E3641. doi: 10.1073/pnas.1701054114

Tootsi, K., Kals, J., Zilmer, M., Paapstel, K., and Märtson, A. (2016). Severity of
osteoarthritis is associated with increased arterial stiffness. Int. J. Rheumatol.
2016:6402963. doi: 10.1155/2016/6402963

Totoson, P., Maguin-Gaté, K., Nappey, M., Wendling, D., and Demougeot, C.
(2016). Endothelial dysfunction in rheumatoid arthritis: mechanistic insights
and correlation with circulating markers of systemic inflammation. PLoS One
11:e0146744. doi: 10.1371/journal.pone.0146744

Totoson, P., Maguin-Gaté, K., Prati, C., Wendling, D., and Demougeot, C. (2014).
Mechanisms of endothelial dysfunction in rheumatoid arthritis: lessons from
animal studies. Arthrit. Res. Ther. 16:202. doi: 10.1186/ar4450

Treps, L., Perret, R., Edmond, S., Ricard, D., and Gavard, J. (2017). Glioblastoma
stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular
vesicles. J. Extracell. Ves. 6:1359479. doi: 10.1080/20013078.2017.1359479

Turkiewicz, A., Kiadaliri, A. A., and Englund, M. (2019). Cause-specific mortality
in osteoarthritis of peripheral joints. Osteoarthr. Cartil. 27, 848–854. doi: 10.
1016/j.joca.2019.02.793

Uehara, F., Tome, Y., Miwa, S., Hiroshima, Y., Yano, S., Yamamoto, M., et al.
(2014). Osteosarcoma cells enhance angiogenesis visualized by color-coded
imaging in the in vivo Gelfoam R© assay. J. Cell. Biochem. 115, 1490–1494. doi:
10.1002/jcb.24799

Ulker, S., Onal, A., Hatip, F. B., Sürücü, A., Alkanat, M., Koşay, S., et al. (2000).
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