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Abstract: Based on a bio-heuristic algorithm, this paper proposes a novel path planner called
obstacle avoidance beetle antennae search (OABAS) algorithm, which is applied to the global path
planning of unmanned aerial vehicles (UAVs). Compared with the previous bio-heuristic algorithms,
the algorithm proposed in this paper has advantages of a wide search range and breakneck search
speed, which resolves the contradictory requirements of the high computational complexity of the
bio-heuristic algorithm and real-time path planning of UAVs. Besides, the constraints used by the
proposed algorithm satisfy various characteristics of the path, such as shorter path length, maximum
allowed turning angle, and obstacle avoidance. Ignoring the z-axis optimization by combining with
the minimum threat surface (MTS), the resultant path meets the requirements of efficiency and
safety. The effectiveness of the algorithm is substantiated by applying the proposed path planning
algorithm on the UAVs. Moreover, comparisons with other existing algorithms further demonstrate
the superiority of the proposed OABAS algorithm.

Keywords: UAVs; path planning; obstacle avoidance; MTS; optimization algorithms

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly being used in military and civilian
environments to perform critical tasks [1,2] because of their ability to complete missions under
dangerous conditions or extreme weather [3]. UAVs are often better suited to perform dangerous
missions and require real-time updates to avoid drones being discovered or crashed, so we chose
drones as our experimental subjects. Computationally efficient planning that generates high quality
paths is important for UAVs, which are time-varying nonlinear dynamic systems [4]. Since the moving
aircraft and vehicles have high-speed dynamics [5,6], it is an essential requirement to meet the low
complexity of planning [7], i.e., to plan the required path in a short time.

UAV path planning can be divided into five types: sampling methods, node-based, mathematical
models, bio-heuristic algorithms and multi-fusion algorithms. Sampling based methods include
probabilistic roadmaps (PRM) [8], Voronoi maps [9], corridor map [10] and artificial potential field
(APF) [11]. These types of algorithms usually need to pre-process the map, grid or sample the map,
and then randomly search for paths. These types of path planning algorithms have a time complexity
of O(n log n) to O(n2), which is reasonably fast and can be applied to real-time path planning.
Node-based path planning algorithms methods include Dijkstra [12], A* [8], lifelong planning
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algorithm (LPA) [13], harmony search [14], and theta star [15]. These types of path planning have a time
complexity between O(log n) and O(n2). Due to the low time complexity of these algorithms, real-time
path planning is possible. Path planning algorithms based on mathematical models have mixed integer
algorithms [16], binary linear algorithm [17] and nonlinear algorithm [18]. The time complexity of such
algorithms is described by a polynomial equation and are generally time-consuming, therefore most of
these types of algorithms are used in offline planning. The fourth category is bio-heuristic algorithms,
including neural networks (NN) [19], genetic algorithm (GA) [20], particle swarm optimization
(PSO) [21], ant colony optimization (ACO) algorithm [22] and hybrid leapfrog optimization [23].
These types of path planning have a time complexity of O(n2), which can only be applied in static
environments for offline path planning. The last category is multi-fusion based algorithms, including
PRM node based on optimal algorithm [8], geography informations system (GIS) based 3D path
planning algorithm [24], visibility node based on optimal algorithm [25] and 3D path planning robust
algorithm [26]. Their time complexity is greater than O(n log n). Their low time complexity makes
them applicable to online path planning.

The heuristic algorithm can solve the NP-hard problem that traditional linear programming can’t
solve. We found that heuristic algorithms are often applied to static path planning. Because heuristic
algorithms take a long time, it is difficult to cope with real-time dynamic path planning scenarios.
Therefore, a bio-heuristic algorithm with fast computation speed and low computational complexity
has positive significance for solving the path planning problem of UAV.

1.1. Related Work

The path planning of the UAVs needs to meet multiple constraints in a complex environment,
and the purpose of these constraints is to enable UAVs to find short and safe paths efficiently.
Bio-heuristic algorithms are the methods inspired from biological organisms to solve a problem.
People have summarized the behavioral characteristics of organisms that have been continuously
evolved by natural selection, so this type of algorithms are efficient.

At present, the primary investment sources and applications of UAVs are in the field of national
defense, but they also have great potential for development in the civilian sector. Kroumov et al. [27]
proposed a novel potential field based 3D path planning technique for differential drive mobile robots,
moving in known environment. Passino [28] provides a tutorial on biology of bacterial foraging
optimization (BFO), including an overview of the biology of bacterial foraging. Yang et al. [29] propose
a new metaheuristic method, the bat algorithm (BA), based on the echolocation behaviour of bats.
These algorithms have strong search performance but have the downside of large time-consumption.
Li et al. [30] proposed distributed recurrent neural networks for cooperative control of manipulators.
Gawel et al. [31] use UAVs to perform aerial data mapping on heterogeneous grounds using point
clouds. In recent years, more and more researches have begun to use bio-heuristic algorithms for path
planning of UAVs. This kind of planning method does not need to build a complex environment model
but provides a very effective way for path optimization. Researchers have explored the path planning
of UAVs in 2D and 3D space. Xu et al. proposed the application of chaotic artificial bee colony (ABC)
methods to path planning [32], Duan et al. proposed the application of the hybrid ACO approach to
path planning in 3D space [33]. Duan et al. [34] proposed the application of max-min adaptive ACO to
the path planning of multiple UAVs. Mittal et al. [35] proposed an offline path planning method based
on a multi-objective evolutionary algorithm. Roberge et al. [36] compared the performance of UAV
path planning implemented by PSO and GA.

Our algorithm works similarly to PSO and genetic algorithms, so we briefly introduced how
they work. The PSO algorithm is group-based and moves individuals in the group to a suitable area
based on fitness to the environment. Genetic algorithm is a search algorithm used in computational
mathematics to solve optimization. It is a kind of evolutionary algorithm. The intelligent algorithm
uses all the path point sets as the optimization target and obtains the best path with the fitness value
through the respective search methods.
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1.2. Organization and Contributions

The structure of this paper is as follows. The problem description is introduced in Section 2,
including the definition of path planning and the selection of obstacles. In Section 3, we introduce the
methodology, including the path representation, the definition of the cost function and the description
of the obstacle avoidance beetle antennae search (OABAS) algorithm. In Section 4, we show the
simulation results and compare the performance of this algorithm with other evolutionary algorithms
in path planning. In Section 5, we summarize the full paper. Before the end of this section, the main
contributions of this article are listed as follows.

• This paper solves the shortest path and obstacle avoidance problem by proposing a novel path
planning algorithm, termed OABAS algorithm.

• A linear loss function is designed as a cost function of the OABAS algorithm according to the
constraints of UAVs.

• The proposed algorithm is applied to the UAV model and compared with the existing algorithms
to verify the feasibility and efficiency.

2. Preliminaries

Path planning has a long history of research in robotics. Before the advent of the electric-driven
robots, many classic path planning problems, such as the traveling salesman problem (TSP) [37] and
the Chinese postman problem [38], have been a focus of academic research. In response to these classic
problems, various solutions have been proposed. Since then, along with the emergence of various
types of robotic arms [39,40], wheeled robots [41], and humanoid robots [42,43], there is a requirement
to study the path planning problems of such devices.

2.1. Path Definition and Generation

In this section, we need to present two keywords that are used in robot navigation.

Navigation: the task of navigation is to move a robot from one location to another. In the
process of navigation, the robot movement needs a path that is gradually determined.
During the navigation, it is often necessary to rely on the sensor data to update the
information about position of the surrounding obstacles and to update the position and
direction information of the robot.

Path planning: in general, the work that path planning needs to do is to collect relevant data
information and generate available paths based on constraints. We use the cost function to
constrain the path. The cost function can generally be determined by the length of the path,
possibility of collides with obstacles, the load of the robot, and other conditions that cause
danger. From this, it can be inferred that reducing the numerical value of the cost function
can plan an efficient, feasible and safe path.

According to the working environment with mobile robots, we can divide path planning into
two types. One type is the global path planning of the model in a state where the environmental
conditions are all known, and can also be called offline path planning. The other is local path planning,
also known as online path planning. Local path planning uses the concept of navigation, mentioned
above, to update the information about surrounding environment based on the sensor data and
perform path planning in real-time to reach a specified destination.

We combine the concept of minimum threat surface (MTS) to ignore the optimization of the flight
height value which means that the altitude value of the aircraft is determined by the environment
and threat information and the tasks performed by the aircraft. This operation reduces the range of
optimization required, and the generation time of the path is significantly reduced.

We specify the starting point and the target point of the UAV and the path planning is performed
according to the specified points. This method is described in detail in Section 3, which generates
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whole path at a time, then uses the proposed OABAS algorithm to adjust the points of the path until
these points meet the planning requirements of the path.

2.2. Obstacle Sensing and Avoidance in Path Planning

In the global path planning, we can obtain some static target information in the environment,
such as mountains and air defense threats. In order to not lose the generality, we used many different
types of obstacle environments. We used obstacle-free, a single regular obstacle, multiple regular
obstacles, a single irregular obstacle, multiple irregular obstacles and mixed obstacles (including
multiple regular and irregular obstacles) for simulations. Such an obstacle environment setting can
effectively prevent the algorithm from being useful only in a specific obstacle environment. Since the
algorithm can reflect whether the obstacle is successfully avoided (there is a corresponding penalty
value to record if it crosses the obstacle successfully), we can count the success rate and compare it
with other path planning algorithms. In Section 4.1, we used a bit representation method to represent
the presence of a virtual obstacle. In Section 4.4, we used a static cylindrical range to represent the air
defense threat in space. In dynamic obstacles, such as abnormal weather areas and flocks, because of
their shape uncertainty, we create a minimum enveloping cylinder to represent their range of influence.
The moving direction of these dynamic obstacles is to simulate the movement of birds and unusual
weather in nature to move.

3. Methodology

Now, we will present a method for path planning in a known environment as shown in Figure 1.
First, we read the map information and generated a random initial path, then used this path as
input to the OABAS algorithm which adjusted the waypoints until the path met the convergence
condition. Finally, we output the qualified path to the UAV for execution. The core of this method is
the formulation of the cost function and the optimization of the fitness value by OABAS algorithm.
The following content is divided into three parts to introduce this method. Section 3.1 introduces the
path generation and the acquisition of environmental information, Section 3.2 explains the structure
and meaning of the cost function in detail, and Section 3.3 introduces the proposed OABAS algorithm.

Figure 1. Flowchart of obstacle avoidance beetle antennae search (OABAS) algorithm applied to path
planning of unmanned aerial vehicles (UAVs).

3.1. Path Representation

Search techniques (e.g., simulated annealing [44], A* [45]) are generally used to find the optimal
solution for a particular function, but large-area path planning in a high-dimensional space is a typical
large-scale optimization problem. With the expansion of the search space, the computational cost
of searching for the best path in 3D space exponentially increases, therefore this problem is usually
called a non-deterministic polynomial-time (NP)-hard problem. When the drone is performing a
mission, we can assume that the aircraft maintains a minimum safety clearance with the land plane.
The literature [46,47] proposes the concept of the MTS during the movement of the drone, indicating
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that flying on this surface will have the property that the terrain threat is minimal and the path of the
drone is on this surface. This assumption transforms the original 3D path planning problem to a 2D
path planning on the MTS. Therefore, in the path planning and path recording of the drone, it is not
necessary to record the altitude information of the aircraft. In other words, the altitude information of
the aircraft does not need to be involved and recorded in the coding process of the path planning.

F(x, y) = hu + f (x, y) + Q(x, y). (1)

Equation (1) enables the UAV to have a minimal threat surface so that it can avoid obstacles
in the vertical direction. Note that F(x, y) is the height of the aircraft, f (x, y) is the terrain profile,
and hu is the specified terrain clearance. The distance hu between the ground and the aircraft can
be a special function of the downrange. Also, the obstacles can be defined as Q(x, y). As expressed
in Equation (1), the minimum threat surface generated by MTS takes into account terrain, threats,
and obstacles. If the ground suddenly rises, the F(x, y) value at this position becomes very large.
So according to the concept that our aircraft only fly on the smallest threat surface, we are not inclined
to cross large obstacles. From the concept of the MTS mentioned above, the path we need to plan
must be on this surface. Since we fixed the starting point and target points of the flight path and
connect the path points of each step, the resulting path is also a curve. By projecting the curve onto
the MTS according to the corresponding relationship of the projection, the track corresponding to the
optimal path on the MTS can be easily obtained. According to the references [48–50], we define the
drone path planning here. In this paper, we assume that the UAV’s flight path is projected onto a 2D
plane, making this space as workspace U ∈ Rk×k (k is the size of map). There are often obstacles in
the workspace, so we need to define them. We defined obstacles as O ⊂ U, and the space of U that is
free of obstacles is represented as Ufre = U \O. The starting point is xsta ∈ Ufre, and the target point
is xend ∈ Ufre. We define the path [51] as a vector ~γ ∈ Rs (s is the number of path points) with the
following definitions.

Definition 1. Path plan: initialize a path ~γ, where γ1 = xsta and γs = xend. If there is a process φ(·) : U→ Rs

that satisfies ~γ(τ) ∈ Ufre, for all τ ∈ 1, 2, . . . , s, then φ is called path planning.

Definition 2. Path optimization: We give an initialization path ~γ. Under the constraint of cost function
Equation (2), if we satisfy the Definition 1, we find a path ~γ′, and f (γγγ′) = min{ f (~γ), ~γ ∈ Γ =

{γ1, γ2, . . . , γm}}, m is the number of iterations of path planning, then ~γ′ is the optimized path, and φ′

is the path planning optimization.

3.2. Cost Function

Since the relationship between the UAVs being detected, destroyed, and the state of the aircraft
has not been explicitly studied so far, there is no accepted mathematical expression for the UAV’s path
cost function. From the cost function of cruise missiles [52–55], we make corresponding modifications,
and apply the previous research results to the trajectory planning cost function of the aircraft, and then
summarize the following constraints. First, the trajectory of the aircraft should as short as possible.
This constraint reduces flight time, enhances safety and improves energy efficiency. Additionally,
the UAVs usually have a maximum turning angle [4]. The maximum turning angle imposes more
performance constraint on the aircraft. Last, the aircraft path cannot be too close to obstacles or known
threats, because the close spacing between the aircraft and the obstacles can easily lead to accidental
collisions. In accordance with these limitations, we propose an improved aircraft path planning
cost function

f (~γ) =
s

∑
i=2

(k1Li + k2Hi + k3Ti). (2)
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In Equation (2), k1 represents the penalty coefficient of the distance, k2 represents the penalty
coefficient of the maximum corner, and k3 represents the penalty coefficient of the obstacle collision.

Li =
√

x2 + (γi − γi−1)2. (3)

Equation (3) denotes the contents of Li which represents the distance cost of the ith path point,
where x represents the displacement of the aircraft moving forward each time step (they are equal
between themselves). The values γi and γi−1 represent the projected length of the distance between
the two path points of the aircraft in the y-axis direction

Hi =

{
1, if x > Li cos θ,

0, otherwise,
(4)

where Hi is a corner penalty factor. When a certain flight path forms an angle larger than the specified
maximum angle θ of the aircraft, this value is activated (set to be unity). We assume that the direction
at which the aircraft starts is parallel to the positive x-axis direction. This imposes a penalty on path
cost if the angle become larger than θ.

Ti =

{
1, if zi ∈ O,

0, otherwise,
(5)

where Ti is an obstacle penalty parameter. This value is activated (set to be unity) when there are
obstacles near the path to keep away from the obstacles. The parameter zi is the detection range.
Due to the concept of MTS mentioned above, the flight altitude is guaranteed to be optimal, and other
threat indices depend directly on the constraints. Also, all node coordinates of the path ~γ restrict each
other. Therefore, the path planned by the proposed method not only enables the aircraft to reach
the destination in a short time under the condition of safely avoiding the obstacle, but also meet the
performance index constraint of the aircraft.

3.3. OABAS Algorithm

Recently, a new metaheuristic strategy called beetle antenna search (BAS) for function optimization
was proposed in [56]. After setting the appropriate parameters, this strategy can quickly find the
fitness value close to optimal of the objective function. Compared with the bio-heuristic algorithms
mentioned in Section 1.1, it has tremendous search speed. We believe that the fast search performance
of the BAS strategy fits well with the real-time requirement of the path planning. We improved the
path planning algorithm on the basis of BAS and name it OABAS algorithm, and the description of
OABAS algorithm is as follows. Figure 2 shows the flow chart of our proposed OABAS algorithm.

First, we get the initial path ~γ and calculate the objective fitness value f (~γ) to be optimized
according to Equation (6).

f (~γ) =
s

∑
i=2

(k1

√
x2 + (γi − γi−1)2 + k2Hi + k3Ti). (6)
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Figure 2. Flowchart of the proposed OABAS algorithm.

The more the path points s are used, the higher the accuracy of the planned path, but the path
planning will take a long time. Randomly generate the beetle’s search direction ~d and normalize it.
In each dimension, the beetle has a corresponding exploration direction. The random direction is

~d =
rands (s, 1)
‖rands (s, 1)‖2

, (7)

where rands(·) is a function that generates s-dimensional random numbers, through which we obtain
the normalized direction vector. Then we compare the left and right antenna’s value of the beetle by
the following equations {

~γm
rig = ~γm−1 + δm~d,

~γm
lef = ~γm−1 − δm~d,

(8)

where

δm = ζmc, (9)

where δm is the length of the beetle’s step size after m iterations, and setting this initial value
appropriately can make the algorithm have better search performance.

ζm = ζm−1η, (10)



Sensors 2019, 19, 1758 8 of 25

where ζm is the antennae length after m iterations, which is a value that changes as the number of
iterations increases. The change of δ is determined by the decay rate η (typically between 0 and 1).
Note that c is the ratio of the length of the step to the length of the beetle’s antennae. The beetle’s next
exploration location is updated by

~γm = ~γm−1 + sign
(

f
(
~γm−1

rig

)
− f

(
~γm−1

lef

))
δm−1~d, (11)

where f
(
~γm−1

rig

)
and f

(
~γm−1

lef

)
indicate the fitness values of the beetle’s left and right antennae after

m− 1 iterations, and function sign(·) is

sign (x) =


1, if x > 0,
0, if x = 0,
−1, otherwise.

(12)

The algorithm is based on BAS, and its prototype algorithm is improved to be used for UAV
path planning.

In order to explain the OABAS algorithm more clearly, we have detailed the steps of the OABAS
algorithm in Algorithm 1. The explanation of variables and steps is as follows: δ0 represents the initial
exploration step size, and ζ0 represents the initial length of antennae. The optimal fitness value of the
cost function is initialized to infinity, and γ0 represents initial path, which is continuously optimized
by OABAS algorithm. When ~γ satisfies the convergence condition, the optimized solution φ is output
and the optimal fitness value fbes is saved. The remainder of variables are same as as described above.

Algorithm 1: Obstacle avoidance beetle antennae search (OABAS) algorithm for path planning
of UAVs.

Input: Path point xsta and xend, domain U and O, and the number of path points s;
Output: Planning path φ;

1 Initialize c, m, k1, k2, k3, δ0, ζ0, γ0, η, fbes, and ~γbes;
2 for p = 1 to m do
3 Generate ~d according to Equation (7);
4 Calculate ~γr and ~γl according to Equation (8);
5 Update ~γm according to Equation (11);
6 Save ~γm and fitness f (γm) after mth iteration;
7 if fbes > f (~γm) then
8 fbes = f (~γm) ;
9 ~γbes = ~γm ;

10 Update δm and ζm according to Equations (9) and (10);

11 φ = ~γbes;

4. Simulation Studies and Experimental Results

In this section, we apply the proposed OABAS algorithm to a simulated model of a UAV to test
their real-world performance in path planning. In simulations, we use a volumeless and massless
particle to simulate UAVs to reduce calculation time. Considering the actual volume of UAVs, we set a
minimum safety gap in the algorithm to ensure that UAVs can complete the task of obstacle avoidance.
The maps used in the simulation are equal in length and width, and the map information includes
only two types of the domain: the feasible domain and the infeasible domain. We use black areas
to represent obstacles, and the white area represent free space. In Section 4.1, we apply OABAS
algorithm in different types of environments to verify that OABAS algorithm is effective in real-world
scenario. In Section 4.2, we set different parameters for the algorithm to obtain the optimal algorithm
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performance, and also show the statistical effect diagram of the path planning. In Section 4.3, we apply
the proposed OABAS algorithm, the conventional ABC and PSO algorithm in same environments and
conduct comparative simulations. In Section 4.4, we implemented dynamic obstacles of different sizes
and shapes in high-resolution maps by pre-planning future paths, and we assume that these obstacles
are only detected when approaching the aircraft.

4.1. UAV Path Planning in Different Environments

In this subsection, we apply the OABAS algorithm for obstacle avoidance. Due to the complex
environments in the real-world scenarios, whether obstacle avoidance is effective in various types of
environments needs to be verified. We set up six types of environments for simulations: obstacle-free,
a regular obstacle, multiple regular obstacles, an irregular obstacle, multiple irregular-mixed obstacles.

4.1.1. In Obstacle-Free Environment

This subsection is used to verify that the convergence of the OABAS algorithm are same as in path
planning. In this part, we used a map with the length of x = 36 and the width of y = 36. The starting
point γ1 and the target point γs were set to the leftmost and rightmost centers of the map. The path
was a straight line between two points, the theoretical optimal value was f ( ~γbes) = 35. After acquiring
the map information, we generated a random path according to the algorithm described in Figure 1.

According to the curve in Figure 3a, as the number of iterations increased, the generated path had
a trend of convergence to the optimal straight line path. We optimized this fitness value to make the
UAVs follow the best path under constraint conditions. Figure 3b shows the change in fitness of the
planned path.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35 1 iteration

100 iterations

1000 iterations

2000 iterations

(a) Comparison of the paths generated on the same map and
different iterations

0 500 1000 1500 2000 2500
0

100

200

300

400

500

(b) Trend of optimal fitness value

Figure 3. The performance in an environment without obstacles.

From the simulation, we find that the OABAS algorithm only takes about 1000 iterations to plan a
better path. Based on the results of Table 1, convergence takes time around 0.01 s. Table 1 is a statistical
result for UAV path planning in an environment without obstacles. We set the step size δ to be a
variable, and 100 simulations are performed using the method of controlling variables. Under different
step size δ, we set the decay rate η = 0.99995. Then we count the average convergence steps mave,
the average convergence time t, average fitness value fave after 100 convergences. Table 1 shows the
best fitness value fbes obtained in 100 tests, the standard deviation fStd of the batch test, and finally we
analyze the result and determine if the step is convergence to a reasonable value. The convergence
criterion we use here is fave 6 50, and if the condition is true, we conclude it to be a reasonable
step size.



Sensors 2019, 19, 1758 10 of 25

Table 1. Relationship between step size and OABAS algorithm performance in an environment
without obstacles.

δ mave T (s) fave fbes fStd Con.

0.5 10,503 0.029 35.51 35.30 0.010 Yes
1.0 20418 0.057 35.47 35.29 0.008 Yes
1.5 23,873 0.067 35.60 35.40 0.010 Yes
2.0 24,077 0.067 35.92 35.54 0.035 Yes
2.5 24,122 0.067 36.40 35.85 0.077 Yes
3.0 23,957 0.067 36.97 36.03 0.105 Yes
3.5 24,128 0.067 37.53 36.31 0.265 Yes
4.0 24,031 0.067 38.24 36.98 0.366 Yes
4.5 24,243 0.068 39.11 37.70 0.816 Yes
5.0 24,103 0.067 40.05 37.50 1.131 Yes
5.5 24,085 0.067 40.76 38.48 1.429 Yes
6.0 24,186 0.067 41.59 39.56 1.145 Yes
6.5 24,115 0.067 42.60 39.36 3.033 Yes
7.0 24,039 0.067 43.74 41.14 1.910 Yes
7.5 24,105 0.067 44.82 41.76 3.693 Yes
8.0 24,141 0.067 46.79 42.03 7.127 Yes
8.5 24,269 0.068 47.21 43.74 4.717 Yes
9.0 24,195 0.067 48.56 44.02 6.020 Yes
9.5 24,155 0.067 49.69 45.13 7.214 Yes
10 24,055 0.067 50.98 45.00 8.315 No

4.1.2. In Regular Obstacles Environment

In this subsection, we test the OABAS algorithm for environments with a single regular obstacle
and multiple regular obstacles.

As shown in Figure 4a, a black square in the center area is used to represent an obstacle. In order
to the visually observe the effect of obstacle avoidance, we set the connection points between the
starting point and the target, to pass point through the obstacle area. We can clearly understand that
the path we finally planned is successfully avoiding obstacles, and there is a certain safety distance
between the path and the obstacle to avoid collisions.

Figure 4b shows the number of iterations required for the algorithm to converge. It was more
than the obstacle-free environment in Section 4.1.1, which was roughly around 2.2× 104 iterations.
Later, we performed a more detailed performance test at Table 2 to show the relationship between step
size δ and OABAS algorithm performance in the environment with a regular obstacle. The specific
indicators were the same as those used in Section 4.1.1. In Table 2, we can see that the convergence in
the environment with a single obstacle was very fast, but a too small initial step size will cause the
algorithm to fall into the optimum local value prematurely. The convergence criterion we used here
was fave 6 100, and if the condition was true, we concluded it to be a reasonable step size. The reason
for algorithm falling into a local optimal value was that the fave value was large, proving that most of
the paths were not successfully planned.
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Figure 4. The performance in an environment with a regular obstacle.

Table 2. Relationship between step size and OABAS algorithm performance in the environment with a
regular obstacle.

δ mave t (s) fave fbes fStd Con.

0.5 6819 0.019 858.32 557.84 1.30× 104 No
1.0 4532 0.013 620.79 38.25 6.64× 104 No
1.5 7898 0.022 228.38 37.28 5.69× 104 No
2.0 12,284 0.035 104.18 37.33 1.94× 104 No
2.5 17,209 0.049 70.35 37.83 8.45× 103 Yes
3.0 19,065 0.054 55.54 37.71 3.21× 103 Yes
3.5 19,984 0.057 58.37 38.61 3.09× 103 Yes
4.0 21,096 0.060 53.17 39.17 3.45× 103 Yes
4.5 22,111 0.063 49.58 39.73 9.73× 103 Yes
5.0 22,851 0.065 53.79 39.80 3.05× 103 Yes
5.5 22,893 0.065 53.80 41.49 1.48× 103 Yes
6.0 23,313 0.066 51.11 41.58 1.62× 103 Yes
6.5 23,143 0.066 68.48 42.31 4.73× 103 Yes
7.0 23,556 0.067 68.72 42.66 4.44× 103 Yes
7.5 23,436 0.066 59.53 43.64 1.87× 103 Yes
8.0 23,476 0.067 75.87 44.90 3.98× 103 Yes
8.5 23,664 0.067 86.04 45.65 6.28× 103 Yes
9.0 23,605 0.067 114.23 47.07 2.35× 104 No
9.5 23,595 0.067 132.36 50.07 1.28× 104 No
10 23,508 0.067 153.99 51.96 1.10× 104 No

As shown in Figure 5a, we had set up a number of rectangular obstacles of different specifications.
In order to achieve the visual effect of obstacle avoidance, we set the connection points of the starting
point and the target point, to pass through several obstacle areas.

From Figure 5a, we can clearly understand that the path we finally planned is successfully
avoiding obstacles. Figure 5b shows that the algorithm converged at roughly the same speed as
the performance in an environment with a regular obstacle. Later, we performed a more detailed
performance test as shown in Table 3, and we calculated the effect of different step sizes on the
performance of OABAS algorithm in the case of multiple regular obstacles. As shown in Table 3,
the OABAS algorithm converged very quickly with a reasonable step size δ in the environment with
multiple obstacles, but an excessive initial step size δ made it challenging to converge to a better
value later. Therefore, the step size of the algorithm should be set within a reasonable range to avoid
setting a huge initial step size for a wide range of searches. The convergence criterion we use here was
fave 6 100, and if the condition was true, we concluded this it to be a reasonable step size.
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Figure 5. The performance in the environment with multiple regular obstacles.

Table 3. Relationship between step size and OABAS algorithm performance in an environment with
multiple rule obstacles.

δ mave t (s) fave fbes fStd Con.

0.5 4897 0.014 46.04 42.41 2.99× 102 Yes
1.0 6292 0.018 46.31 42.78 4.02× 102 Yes
1.5 9382 0.027 51.73 42.83 6.31× 102 Yes
2.0 12,627 0.036 50.30 42.38 4.47× 102 Yes
2.5 15,906 0.045 48.06 42.84 2.23× 102 Yes
3.0 18,766 0.053 51.87 42.77 8.54× 102 Yes
3.5 20,210 0.057 55.10 43.29 1.27× 103 Yes
4.0 21,267 0.060 54.54 43.75 1.04× 103 Yes
4.5 22,036 0.063 62.07 43.74 2.76× 103 Yes
5.0 22,445 0.064 71.34 44.34 1.43× 104 Yes
5.5 23,327 0.066 66.52 44.60 2.65× 103 Yes
6.0 23,063 0.065 93.94 46.28 2.79× 104 Yes
6.5 23,468 0.067 116.06 46.03 4.88× 104 No
7.0 22,938 0.065 176.84 47.59 8.61× 104 No
7.5 23,541 0.067 147.41 49.04 4.92× 104 No
8.0 23,613 0.067 181.11 47.65 3.59× 104 No
8.5 23,581 0.067 164.87 50.87 1.86× 104 No
9.0 23,522 0.067 302.28 54.17 9.23× 104 No
9.5 23,794 0.067 267.42 54.26 3.56× 104 No
10 23,399 0.066 393.70 54.07 1.25× 105 No

4.1.3. In Irregular Obstacle Environments

As we have verified, OABAS algorithm has good simulation results in the environment without
obstacles and in the environment with regular obstacles. In this subsection we simulation with the
environment with irregular obstacles.

In the first simulation, we add a large irregular obstacle to test more comprehensive performance.
We use black areas to represent obstacles that are continuous in the center of the map. In order to
visually observe the effect of obstacle avoidance, we set the starting point γ1 and the target point γs such
that the straight line between them passes through the obstacles. It can be seen from Figure 6, OABAS
algorithm can accomplish the requirements of the short path, avoiding obstacles and maintaining
safe separation from obstacles. Figure 6 shows that when we plan the path in an environment with
an irregular obstacle, the number of iterations for convergence is about twice that of the previous
simulations. In this environment, we find from Table 4 that it is different from the previous environment.
At the same time, the failure rate in this environment has also increased significantly, so the convergence
criteria is appropriately adjusted to fave 6 150.
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Figure 6. The performance in an environment with an irregular obstacle.

Table 4. Relationship between step size and OABAS algorithm performance in an environment with a
single irregular obstacle.

δ mave t (s) fave fbes fStd Con.

0.5 2076 0.006 839.27 440.39 8.31× 103 No
1.0 4833 0.014 578.47 45.59 8.40× 104 No
1.5 9304 0.026 235.70 45.79 8.58× 104 No
2.0 15,680 0.044 185.26 45.01 6.73× 104 No
2.5 21454 0.061 117.10 45.91 3.33× 104 Yes
3.0 27,507 0.078 127.29 45.32 2.67× 104 Yes
3.5 31,483 0.089 136.02 45.31 3.38× 104 Yes
4.0 35,306 0.100 137.72 45.12 2.75× 104 Yes
4.5 37,304 0.106 187.19 44.38 4.92× 104 Yes
5.0 44,019 0.125 136.82 44.42 2.51× 104 Yes
5.5 47,124 0.134 130.63 45.73 2.52× 104 Yes
6.0 48,738 0.138 159.98 44.61 3.49× 104 No
6.5 50,540 0.143 145.77 45.68 3.29× 104 Yes
7.0 53,528 0.152 134.59 45.33 2.69× 104 Yes
7.5 55,753 0.158 157.71 45.14 3.58× 104 No
8.0 58,812 0.167 129.98 45.34 2.51× 104 Yes
8.5 59,677 0.169 185.15 45.04 4.78× 104 No
9.0 62,318 0.177 178.01 45.54 4.70× 104 No
9.5 64,671 0.183 145.06 46.25 3.24× 104 Yes
10 66,818 0.190 153.18 45.71 3.79× 104 No

In the second simulation, we generated multiple irregular obstacles located in the middle and
back of the map. It can be seen from Figure 7a that the algorithm can complete the task of obstacle
avoidance with an environment with multiple irregular obstacles. Figure 7b shows that the time spent
was roughly the same as spent in the environment with a single irregular obstacle. In this simulation,
we find from Table 5 that irregular obstacles needed more iterations to converge, but had a higher
success rate. We still set the convergence criterion in this environment to be fave 6 100.
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Figure 7. The performance in an environment with multiple irregular obstacles.

Table 5. Relationship between step size and OABAS algorithm performance in an environment with
multiple irregular obstacles.

δ mave t (s) fave fbes fStd Con.

0.5 17,100 0.049 1131.63 1011.86 5.84× 102 No
1.0 14,902 0.042 1029.72 667.69 9.34× 103 No
1.5 8053 0.023 700.90 44.30 7.98× 104 No
2.0 12,208 0.035 324.22 44.21 7.84× 104 No
2.5 18,918 0.054 112.02 43.19 1.64× 104 No
3.0 23,355 0.066 107.40 43.46 9.18× 103 No
3.5 29,487 0.084 92.42 44.40 6.57× 103 Yes
4.0 35,404 0.100 75.76 43.80 3.76× 103 Yes
4.5 38,980 0.111 77.82 43.39 5.02× 103 Yes
5.0 41,242 0.117 93.62 43.02 6.82× 103 Yes
5.5 44,172 0.125 83.76 43.41 5.12× 103 Yes
6.0 48,920 0.139 86.69 43.28 4.53× 103 Yes
6.5 50,991 0.145 83.37 44.16 4.41× 103 Yes
7.0 52,113 0.148 82.61 44.49 3.44× 103 Yes
7.5 57,042 0.162 86.57 44.02 6.95× 103 Yes
8.0 55,957 0.159 96.58 44.46 7.09× 103 Yes
8.5 58,915 0.167 79.12 44.29 3.62× 103 Yes
9.0 61,916 0.176 84.94 42.79 5.25× 103 Yes
9.5 62,468 0.177 101.00 44.37 7.51× 103 No
10 66,231 0.188 70.62 44.01 3.26× 103 Yes

4.1.4. In Mixed Obstacle Environments

We placed both regular and irregular obstacles in the map to test the performance of OABAS
algorithm. As with the previous environment, it was necessary to avoid multiple obstacles in order to
reach the endpoint located in the midpoint on the right from the starting point in the lower left corner.

Figure 8a shows that OABAS successfully avoids obstacles and path length was short with short
part length. Figure 8b shows that in the convergence speed of the algorithm was roughly the same as
the environment with regular obstacles and obstacle-free.

Finally, we performed a more detailed performance test as shown in Table 6, which quantifies
the performance impact of different step sizes on OABAS algorithm in the case of mixed obstacles.
The OABAS algorithm converged very quickly in the environment with mixed obstacles, and the step
size δ should be set within a reasonable range for a wide range of searches.

From the above simulations, we can observe that the performance of the OABAS algorithm
changes in different types of environments. These simulations demonstrate that OABAS algorithm
performs well in different types of environments. Although there are some differences in the
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performance of the OABAS algorithm in different types of environments, most of the planned paths
have a high success rate and can converge quickly (visible in Section 4.1.3).
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Figure 8. The performance in an environment with mixed types of obstacles.

Table 6. Relationship between step size and OABAS algorithm performance in an environment with
mixed types of obstacles.

δ mave t (s) fave fbes fStd Con.

0.5 12,488 0.035 40.53 39.97 0.11 Yes
1.0 17,521 0.050 40.22 39.91 0.08 Yes
1.5 21,086 0.060 40.40 39.99 0.22 Yes
2.0 21,694 0.062 40.95 40.10 2.12 Yes
2.5 22,186 0.063 44.53 40.42 5.73× 102 Yes
3.0 22,336 0.063 47.37 40.49 8.52× 102 Yes
3.5 23,226 0.066 43.37 41.07 1.24× 102 Yes
4.0 23,170 0.066 49.39 41.67 8.93× 102 Yes
4.5 23,319 0.066 49.12 42.22 1.26× 103 Yes
5.0 23,189 0.066 58.41 42.75 2.70× 103 Yes
5.5 23,420 0.066 73.59 43.10 6.83× 103 Yes
6.0 23,131 0.066 67.96 42.91 3.91× 103 Yes
6.5 23,575 0.067 86.27 42.75 3.71× 104 Yes
7.0 23,796 0.067 100.55 44.47 2.71× 104 No
7.5 23,672 0.067 133.62 45.15 4.51× 104 No
8.0 23,706 0.067 135.61 46.58 2.00× 104 No
8.5 23,769 0.067 158.27 47.54 4.26× 104 No
9.0 23,803 0.068 205.10 50.41 5.27× 104 No
9.5 23,882 0.068 248.31 50.15 1.30× 105 No
10 23,799 0.068 395.42 51.71 1.39× 105 No

4.2. Cycle Batch Tests

The content of this section explores the impact of different step size δ and step attenuation rate η

on path planning success rates ψ. In order to find parameters that can generate as many successful
paths as possible, we performed multiple tests with different δ and η. In this experiment, we set the
number of iterations to 1000. A smaller number of iterations resulted in a more significant difference
in success rates, making it easier to select the optimal set of step and attenuation rate parameter
pairs. But this was not our actual planning success rate. The sample size of the simulation was 100.
Success rate ψ was calculated after OABAS algorithm generated 100 paths in the simulation of multiple
irregular obstacles. Finally, the optimal δ and η were obtained, and the targeted recurrence test was
carried out. That is, the simulation performed several times with the same value of δ and η which
generated a thousand paths and was used to represent the quality of paths visually.

The Table 7 is the result of the path generated by the combination of different parameters.
The horizontal axis represents the initial δ of 1 to 9, and the vertical axis represents η of 0.99991 to
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1 (a total of ten levels). The values in the table are the number of successful paths generated after
100 trials.

We visualize it as shown in Figure 9 to show its distribution. In this histogram, the effect of the
two parameters δ and η on the convergence effect is more obvious. The better results are concentrated
in, the more appropriate δ and η.

Table 7. Influence of step size and attenuation rate on the success rate of path planning.

η δ 1 2 3 4 5 6 7 8 9
0.99991 0 35 67 76 72 66 64 63 57
0.99992 0 35 72 79 77 73 61 58 68
0.99993 2 43 73 83 78 81 61 62 70
0.99994 1 51 79 78 76 76 73 63 63
0.99995 1 49 82 90 87 78 74 69 64
0.99996 1 55 87 89 82 76 60 56 39
0.99997 1 66 91 86 78 43 4 0 0
0.99998 2 76 80 46 2 0 0 0 0
0.99999 7 76 7 0 0 0 0 0 0
1.00000 10 12 0 0 0 0 0 0 0

1
0

2

20

0.99991
3

0.99992

40

0.99993
4

60

0.99994
5

0.99995

80

6
0.99996

7

100

0.99997
8

0.99998

0.99999
91

1
=0.99997, 

1
=3 

with 
1
=91%

Figure 9. Effect of step and decay rate on success rate of OABAS algorithm.

In Figure 10b,d, we used the blue part ψsuc to represent the number of excellent paths generated.
The green part ψfea is used to indicate the number of available paths generated which means this
types of the path with a longer path length, but satisfying the maximum turning angle and avoiding
the obstacles. Finally, we used the yellow part ψfai to indicate the number of failed paths generated.
According to the above statistical simulation, when δ1 = 4 and η1 = 0.99995, the path planning had a
success rate ψ1 = 93.7%. In addition, when δ2 = 3 and η2 = 0.99997, there was also a high success
rate ψ2 = 92.7%. The convergence properties of the OABAS algorithm were similar to those of the
BAS on the objective function, and both the appropriate δ and η were needed to achieve an optimal
convergence.
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(a) Path distribution of 1000 plans with δ1 = 4 and η1 = 0.99995.
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(b) The distribution of the quality of the planned path with
δ1 = 4 and η2 = 0.99995.

(c) Path distribution of 1000 plans with δ2 = 3 and η2 = 0.99997.
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(d) The distribution of the quality of the planned path with
δ2 = 3 and η2 = 0.99997.

Figure 10. Path distribution in the case of fixed step size and decay rate.

4.3. Comparisons with PSO and ABC

In order to compare the performance between the OABAS algorithm and traditional bio-heuristic
algorithms in the path planning, we need to make a more detailed evaluation. Unlike Section 4.2,
after obtaining the best parameters, our OABAS uses an iteration step of 50000 to ensure the reliability
of path planning.

We performed multiple simulations and took the average value to eliminate contingency and
ensure that the results were indicative of real scenarios. We wanted to get the path length as short as
possible. At the same time, the path planning success rate was also one of the evaluation criteria for
evaluating whether a path planning algorithm has good quality or not. The path planning algorithm
that does not have a reliable and stable result will lead to very serious consequences when the UAVs
are flying in the real world. Therefore, the higher the success rate of path planning, the better. So we
counted the following indicators of the algorithm in Tables 8 and 9, the average convergence time t of
the algorithm, the average convergence fitness value fave of the algorithm and the success rate ψ of
the algorithm.

On the map of size k, we set the number of path points s1 = k/2 and s2 = k. First, we set the path
point to s1. In this case, a show from the Table 8 that the OABAS algorithm leads the time indicator.
However, after the visual observation of the paths, we found that the UAVs will collide with obstacles.
After analysis, we believe that too few path point settings will lead to rough path planning so that
UAV will collide with obstacles.

After checking the path, fewer nodes were found to cause the flight path to avoid obstacles, so we
needed to set up more nodes for path planning. More nodes will lead to an increase in planning time.
We set the number of path points to s2 and tested again in the same situation. In the visualization
results, the path was successfully planned, in this case did not collide with the obstacle, which proves
that the number of path points we selected was reasonable. In Table 9, the OABAS algorithm was faster
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than other algorithms. The OABAS algorithm achieved a very high success rate in each case while the
PSO was challenging to converge due to too many path points. Under the premise of guaranteeing the
success rate, the efficiency of the OABAS algorithm was much better, and the time complexity of the
ABC algorithm was high.

Table 8. Performance comparisons of different algorithms in low dimensional situations.

Type of Obstacles Algorithms t (s) fave ψ (%)

Single regular
OABAS 0.059 17.63 100

PSO 0.606 19.54 100
ABC 0.356 17.29 100

Multiple regular
OABAS 0.083 17.37 97

PSO 2.254 19.30 97
ABC 0.279 17.32 100

Single irregular
OABAS 0.102 21.16 100

PSO 7.670 22.68 87
ABC 0.450 19.29 100

Multiple irregular
OABAS 0.065 19.69 100

PSO 17.285 19.52 63
ABC 0.571 19.90 100

Mixed
OABAS 0.088 19.56 100

PSO 0.536 21.54 98
ABC 0.325 21.64 100

Table 9. Performance comparisons of different algorithms in high dimensional situations.

Type of Obstacles Algorithms t (s) fave ψ (%)

Single regular
OABAS 0.301 36.94 100

PSO NA 57.04 52
ABC 49.729 40.47 96

Multiple regular
OABAS 0.371 41.77 99

PSO NA 51.18 38
ABC 32.382 48.48 100

Single irregular
OABAS 0.406 46.01 99

PSO 184.593 44.44 39
ABC 35.434 40.91 100

Multiple irregular
OABAS 0.428 41.71 95

PSO 251.506 40.88 12
ABC 56.813 41.36 48

Mixed
OABAS 0.345 39.91 100

PSO NA 57.04 92
ABC 46.956 48.93 100

4.4. Tested Results on High-Resolution Maps with Various Types of Obstacles

We used more high-resolution test maps from the GeoBase repository [57] and ran experiments
in a dynamic environment. By pre-planning the unpassed path, we implement a simple dynamic
path planning function. We assumed that there was a dynamic obstacle in the environment, and used
the dark green circle in the picture to represents it. We set the UAV’s sensing range 800 m in the
real environment, and obstacles within 800 m of distance from the UAV were be discovered. In the
experiment, the size of the UAV was generally small, so we did not consider its specific shape and
model it according to its specific size. We took the larger of the fuselage length and the length of the
wing as diameter to draw hollow circles to represent the UAV. For example, the Global Hawk has a
length of 13.5 m and a wing length of 35 m, so we chose 35 meters as the model’s parameters. In the
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experiment, we used 50 m as the diameter to draw hollow circles for modeling in Figures 11 and 12,
and used 100 m as the diameter of the UAV in Figure 13.

A red star indicates where the UAV is currently located. Green circles and line segments represent
pre-planned paths. The dark green dot represents an obstacle in the 2D environment that exists in the
minimum threat surface of the UAV and poses a threat to the path. In the iterative process, dynamic
path planning can try to plan a better pre-planning path while avoiding obstacles.
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in a 2D environment
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(c) Step 30 of UAV trajectory
in a 2D environment
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(d) Step 23 of UAV trajectory
in a 2D environment
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(e) Step 24 of UAV trajectory in a 3D environment
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(f) Step 27 of UAV trajectory in a 3D environment
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(g) Step 30 of UAV trajectory in a 3D environment

0

10000

9000

8000

7000

6000

Y
 (

m
)

5000

4000

3000

2000

1000

10000

X (m)

900080007000600050000
40003000200010000

250

Z
 (

m
)

500

(h) Step 33 of UAV trajectory in a 3D environment

Figure 11. 2D and 3D visualization of dynamic obstacle avoidance processes in the virtual map.
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(a) Planned path in an environment with dynamical
abnormal weather area

(b) Planned path in an environment with statical obstacle area

0

10000

9000

8000

7000

6000

Y
 (

m
)

5000

4000

3000

2000

1000

10000

X (m)

900080007000600050000
40003000200010000

250

Z
 (

m
)

500

Birds interference

(c) Planned path in an environment with the interference
of birds

(d) Planned path in an environment with mixed obstacles

Figure 12. 3D visualization of small size (with diameter being 35 m) UAV with various types of obstacle
avoidance in the virtual map.

In Figure 11, the magenta circles and line segments indicate where the UAV has passed, and they
will not change. Figure 11a–d show the planning effect of the algorithm in 2D space, and experimental
results show that the planned path can avoid obstacles and has a short total path length. We mapped
the planned paths in the 2D environment to the 3D environment. Figure 11e–h show our experimental
results for dynamic obstacles avoidance in high-resolution 3D maps. The golden sphere represents an
obstacle in the 3D environment that exists in the minimum threat surface of the UAV.
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(a) Planned path in an environment with dynamical
abnormal weather area

(b) Planned path in an environment with statical obstacle area
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Figure 13. 3D visualization of a large (with diameter being 100 m) UAV with various types of obstacle
avoidance in the virtual map.

From the experiment, we know that OABAS can perform dynamic obstacle avoidance and path
planning tasks in high-resolution maps. In the experiment, the time required for each re-planning took
less than one second. For example, the MiG-25 is one of the fastest flying fighters in the world [58].
It has a maximum flying speed of up to 1200 km/h at the sea level distance and can fly 333 m in one
second. The OABAS algorithm can quickly generate a longer track during one second, so there is
plenty of time to calculate the trajectory during the flight.

In general, surface-to-air missiles are mostly guided by radar or radar and infrared. Since the
missile poses a significant threat to the aircraft, we assume that the radar’s detection range is a static
cylindrical area whose radius is the radar’s detection range. In addition to this, birds often pose a
potential threat to UAV in the air. When the airborne radar can detect nearby birds, we establish
a minimum circle according to its distribution [59] and consider it as a single obstacle. Building a
regular model for an irregular obstacle simplifies the calculation process while avoiding the algorithm
spending too much time building the model. The flying speed of birds is between 40 and 80 km/h,
and our experiment set it to 80 km/h. In addition to ground threats and birds, there are also unusual
weather areas in space. Due to the complexity of the weather, we use a green cylindrical area to indicate
that there is unusual weather in the area. Referring to the general typhoon moving speed, we set the
moving speed to 36 km/h.

In Figure 12a, we use the green cylinder area to represent the abnormal weather area. We plan
an area of abnormal weather to move at a speed of 36 km/h, and the moving direction was random.
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From the graphical results, our path planning algorithm can effectively plan the path to avoid the
abnormal weather area. In Figure 12b, we use a red cylinder to represent a static obstacle, such as
surface-to-air missile threats and radar detection from the ground. As can be seen from the Figure 12b,
our planned path can avoid dangerous areas and plan a good path. In Figure 12c, we use yellow
scatter to represent the flock of birds. The speed at which the birds move was set to 80 km/h, and their
direction of movement is random. From the experimental results, we can see that our algorithm can
effectively avoid the interference of birds. In Figure 12d, we mixed a variety of obstacles for testing.
Specifically, it includes the ground threat represented by the red cylinder, the abnormal weather
area indicated by the green cylinder, and the bird group represented by the yellow scatter. From the
experimental results, we can still get a safe and short path.

In Figure 13, we used a larger size of the aircraft for obstacle avoidance experiments. Hollow
circles with a diameter being 100 m was established in the experiment to represent the aircraft model.
Even though the model we use was much larger than the real model of an ordinary drone, we can still
observe in the experiment that the path planned by the OABAS algorithm can maintain a safe distance
from the obstacles.

5. Conclusions

This paper has proposed a novel path planning algorithm called OABAS algorithm. Based on the
BAS strategy, a new UAVs path planner has been proposed. The constraints used in this algorithm have
taken into account the requirements of shorter path lengths, maximum turning angles, and obstacle
avoidance. This paper has combined the MTS to plan for efficient and secure requirements. Besides,
we have applied this intelligent path planning algorithm to UAVs simulations. Moreover, this paper
has verified the universal applicability of OABAS algorithm obstacle avoidance and compared it with
two other bio-heuristic algorithms to prove the effectiveness of the algorithm. As a final remark of this
paper, to the best of authors’ knowledge, this is the first work in the field of intelligent optimization that
can elegantly design an effective and fast path planner by leveraging the proposed OABAS algorithm.
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