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Abstract
The coronavirus disease of 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS 
CoV-2), that already appeared as a global pandemic. Presentation of the disease often includes upper respiratory symptoms 
like dry cough, dyspnea, chest pain, and rhinorrhea that can develop to respiratory failure, needing intubation. Furthermore, 
the occurrence of acute and subacute neurological manifestations such as stroke, encephalitis, headache, and seizures are 
frequently stated in patients with COVID-19. One of the reported neurological complications of severe COVID-19 is the 
demolition of the myelin sheath. Indeed, the complex immunological dysfunction provides a substrate for the development 
of demyelination. Nevertheless, few published reports in the literature describe demyelination in subjects with COVID-19. 
In this short narrative review, we discuss probable pathological mechanisms that may trigger demyelination in patients with 
SARS‐CoV‐2 infection and summarize the clinical evidence, confirming SARS-CoV-2 condition as a risk factor for the 
destruction of myelin.
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Introduction

The outbreak of novel coronavirus disease known as severe 
acute respiratory syndrome coronavirus-2 (SARS-CoV-2), 
first identified in Wuhan, China, in December 2019. Previ-
ously, other coronaviruses were recognized to cause severe 
respiratory disease in humans and were associated with 
epidemic prevalence, such as the severe acute respiratory 
syndrome coronavirus (SARS-CoV) and the Middle East 
respiratory syndrome coronavirus (MERS-CoV), both 
enhancing the risk of mortality [1]. The average diameter of 
the COVID virus is almost 100 nm and is spherical or oval 
in shape. The large spikes of membrane glycoproteins of the 
virus are located on the viral surface, and these negatively 
stained virus particles are expressed as typical crown-like 
shapes under electron microscopy [2]. The viral genome 
encodes several important structural proteins, including 
spike, membrane, envelope, and nucleocapsid proteins [3]. 

Similar to the previously identified SARS and MERS dis-
eases, the main indications of COVID-19 are one or a com-
bination of fever, fatigue, dry cough, and shortness of breath, 
followed by other symptoms like headache, nasal conges-
tion, sore throat, myalgia, or arthralgia [4, 5]. However, extra 
respiratory complications such as neurological findings have 
been reported. Neurological manifestations, including head-
ache, disturbed consciousness, paresthesia, and seizures are 
appeared in almost 36.4% (78/214) of patients suffering from 
COVID-19 [6]. On March 4, 2020, Beijing Ditan Hospital, 
for the first time, reported a patient with viral encephalitis 
instigated by a novel coronavirus attacking the central nerv-
ous system (CNS). This study illustrated the potential effect 
of COVID-19 in triggering damage to the nervous system 
[7]. According to accumulating evidence, the different types 
of Coronaviruses can induce neurological disorders such as 
polyneuropathy, encephalopathy, ischemic stroke, and demy-
elinating lesions, like Multiple sclerosis (MS) and Guillain-
Barré syndrome (GBS) [8, 9]. The neurological problems 
could be presented delayed to respiratory signs [8], and 
severely affected patients are more vulnerable to neurologi-
cal manifestations related to patients with mild or moderate 
disease [10]. Amongst neurological impairments, demoli-
tion of myelin appears as a visible complication in patients 
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with severe COVID-19 [6]. MS is an acquired inflamma-
tory immune-mediated disorder of the CNS, characterized 
by the focal demyelination associated with various degrees 
of neurodegeneration [11]. GBS, as another demyelinating 
disease, is an acute/subacute inflammatory polyneuropathy 
and immune-mediated disease triggered by a preceding bac-
terial or viral infection [12]. To support this assumption, 
the existence of demyelination in cases with COVID-19 has 
been reported, as well as particles of the SARS-CoV virus 
and genome sequences have been found in autopsy reports 
[13, 14]. Therefore, this review discusses the involvement of 
COVID-19 in triggering immunological host response and 
demyelination in central and peripheral nervous systems.

The entrance of SARS‑CoV‑2 virus 
into the CNS

Similar to other Coronaviruses, two possibilities appear for 
penetration of SARS-CoV-2 into the CNS, including (1) 
hematogenous dissemination of SARS-CoV-2 and rapidly 
spreading through the cerebral circulation, where the slower 
blood flow accelerates the capillary endothelium dam-
ages and makes the brain accessible, and (2) gaining entry 
through the cribriform plate and olfactory bulb [15]. Here, 
infectious agents like coronaviruses can spread through cra-
nial nerves, including the olfactory, the trigeminal, the glos-
sopharyngeal, and the vague nerves, via retrograde axonal 
transport [16]. Notably, the entrance of SARS-CoV-2 into 
the brain through the olfactory nerves infects neurons that 
control breathing [17]. Similar to SARS-CoV, the SARS-
CoV-2 and a host receptor, Angiotensin-converting enzyme 
2 (ACE2) have a stronger binding capacity [18]. ACE2, as 
a cardio-cerebral vascular protection factor, is capable of 
converting the angiotensin (Ang) I to Ang II that activates 
Ang II receptor type1 (AT1R), promoting the blood pres-
sure, inflammation, and even neurodegeneration [19]. This 
receptor is present in human endothelial cells, neurons, 
respiratory epithelia, pulmonary parenchyma, small bowel 
cells, renal cells, and nerve cells, enabling the dispersal of 
SARS-CoV-2 into the host cells [20, 21]. Thus, the wide 
expression of the ACE2 receptor on nerve cells and capillary 
endothelium allows the direct access of SARS-CoV-2 to the 
CNS [22–24], where the virus binds to nerve cells via attach-
ment between the spike glycoprotein and the existent ACE2 
receptors [25]. On the other hand, the interaction of SARS-
CoV-2 with ACE-2 receptors in the vascular endothelial 
cells may be conductive of the blood–brain-barrier (BBB) 
destruction, leading to the direct virus entry into the brain 
[26, 27]. In addition to ACE2, basigin (BSG; CD147) and 
neuropilin-1 (NRP1) act as docking receptors for SARS-
CoV-2 virus, while several proteases including transmem-
brane protease serine 2 (TMPRSS2), cathepsin B and L 

(CatB/L), and furin are implicated in the virus entry to cell 
and replication [28]. NRP1, a transmembrane receptor lack-
ing a cytosolic protein kinase domain, is highly expressed 
in the olfactory epithelium and improves the SARS-CoV-2 
entry into the brain [29]. CD147 (also known as Basigin is 
an alternative receptor for SARS-CoV-2 invasion into the 
brain, which is present on neural cells [30]. Furthermore, 
other endosomal cysteine proteases, namely CatB/L con-
tribute in priming of the spike protein of SARS-CoV-2 virus 
[31]. Hoffmann et al. demonstrated that SARS-CoV-2 uses 
ACE2 for entry and needs the TMPRSS2 for S protein prim-
ing to efficiently enter the cell, and TMPRSS2 inhibitor can 
block virus entry to exert a treatment effect [32]. TMPRSS2 
is expressed throughout olfactory epithelial cells and choroid 
plexus of both mouse and human [33, 34]. The other results 
indicated that TMPRSS2 and lysosomal cathepsins are capa-
ble of activating SARS-CoV-2 entry; moreover, furin has 
cumulative effects on this process [35].

Furthermore, another avenue for the accession of SARS-
CoV-2 to the host cells is binding to integrins. These recep-
tors are present on the surface of different cells in the body 
and contribute in triggering several signaling pathways [36].

Evidence of Covid‑19 virus involvement 
in demyelination

Accumulating evidence confirms the SARS-CoV-2 viral 
infection as a risk factor of demyelination both in the periph-
eral and central nervous systems. In agreement with this 
idea, Zanin et al. reported a case of COVID-19 admitted 
for interstitial pneumonia and seizures. Brain MRI indicated 
newly diagnosed demyelination injuries. However, treatment 
with high-dose steroid resulted in respiratory and neurologi-
cal recovery. They postulated that SARS-CoV-2-induced 
delayed immune response was a causative factor for the 
demolition of the myelin sheath [37].

In another report, Mehta et al. detected demyelinating 
lesions associated with the neurological damage in a case 
with COVID-19. The brain and spine MRI of the patient 
exhibited a new onset of multiple, non-enhancing demyeli-
nating lesions. They assumed that following SARS-CoV-2 
infection, the pro-inflammatory environment induced by the 
cytokine storm might be responsible for the activation of 
glial cells with subsequent demyelination [38]. Furthermore, 
Zoghi et al. reported a 21-year-old male with encephalomy-
elitis after experiencing intermittent 4 days vomiting and 
malaise that showed upper respiratory indications 2 weeks 
before this presentation. Brain MRI revealed bilateral pos-
terior internal capsule lesions expanding to the ventral part 
of the pons and a marbled splenium hyperintensity pattern. 
In their study, Cervical and thoracic MRI showed the siz-
able transverse myelitis [39]. In another report, Gilles et al. 
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stated a 54-year-old woman affected to SARS-CoV-2 with 
brain lesions representing acute demyelination. The brain 
CT scan of the patient confirmed hypodense lesions, involv-
ing supratentorial white matter and pallidum bilaterally. A 
brain MRI showed lesions with restricted diffusion without 
any hemorrhage or enhancement. The thalamus, the stria-
tum, and the posterior fossa were spared. A follow-up MRI 
displayed no new lesions, and the spinal cord MRI was with-
out abnormalities [40].

In another case report, A 33-year-old male suffering from 
morbid obesity, diabetes mellitus, and hypoxemic showed a 
respiratory failure secondary to COVID-19 affection. MRI 
presented widespread foci of the demolition of the myelin 
with restricted diffusion, most located in the corpus callo-
sum and the pericallosal white matter [41]. Furthermore, 
Karapanayiotides et al. described a 57-year-old male affected 
by COVID-19 along with particular localization and a con-
centric demyelination pattern. MRI documented the occur-
rence of hemosiderin deposits concurrent with a concentric 
demyelination pattern [42].

A recent study described a COVID-19 patient with iso-
lated symmetrical demyelinating lesions of bilateral poste-
rior internal capsules that presented stroke-like clinical dem-
onstration. The lack of grey matter damage and absence of 
hemorrhage or cavitation confirmed demyelination, rather 
than encephalomyelitis [43].

In support of the involvement of SARS-CoV-2 infection 
in GBS and consequent demyelination, Bracaglia described 
a 66-year-old woman with acute demyelinating polyneu-
ritis related to asymptomatic SARS-CoV-2 infection. She 
was unable to walk, speech and swallow, as well as tendon 
reflexes were abolished. The patient showed normal vital 
signs, adverse medical history and no report of the previous 
month infection. They assumed GBS and conducted nerve 
conduction studies consistent with demyelinating polyneu-
ropathy [44].

Immunological host response 
against SARS‑CoV‑2 infection

It is worth noting that the severe form of COVID-19 causes 
not only the viral infection, but also leads to an abnormal 
and aggravated immunological host response, resulting in 
severe systemic damage [45]. SARS-CoV-2 infection is 
capable of triggering innate and adaptive immune responses. 
Uninhibited inflammatory innate responses and debilitated 
adaptive immune responses may cause harmful locally and 
systemically tissue damage [46]. Accordingly, unpredictable 
effects of acute viral infection on the host immune response 
is probably an important reason for nervous tissue damage 
[47].

The immunopathological pathway resulting in COVID-19 
mortality contains three stages, that progress rapidly from 
onset of disease to death over 16–18.5 days. Stage 1 is the 
initiation phase, with early signs of systemic inflammation, 
early induction of predominant chemokines, and decreased 
peripheral lymphocyte counts. Stage 2 is the amplification 
phase, with a massive production of inflammatory cells, 
including macrophages, monocytes, and neutrophils to 
intensify the immunopathological process. Stage 3 is the 
consummation phase. In this stage, the peripheral neutrophil 
counts further increase, while lymphopenia worsens with 
continuous enhancement of inflammatory mediators and 
cytokine storm, leading to the widespread organ damages 
[48].

Most patients with COVID-19 display normal or 
decreased leukocyte count [49–51], and lymphopenia [52]. 
lymphopenia is a common feature in patients with severe 
COVID-19, but not in patients with a mild infection [53]. In 
this condition, the numbers of CD4 + T cells, CD8 + T cells, 
B cells, and natural killer (NK) cells subsets are extremely 
reduced in the lymph nodes and spleen of the patients 
(Fig. 1) [54]. Besides, in stage 2, the percentage of mono-
cytes and macrophages is increased following viral infec-
tion, which leads to the release of a large amount of pro-
inflammatory cytokines, referred to as cytokine storm [55, 
56]. This phenomenon is an enhancement of serum levels 
of pro-inflammatory cytokines including IL-6 and IL-1β, as 
well as IL-2, IL-8, IL-17, G-CSF, GM-CSF, IP10, MCP1, 
MIP1α (also known as CCL3), and TNF, which has found 
in most patients with severe COVID-19 [57]. Accordingly, 
a dysfunctional and disharmonic immune response in severe 
COVID-19 cases initiates an extensive lung and systemic 
inflammation by triggering cytokine storm, that possibly 
worsens infection in the brain [58]. The cytokine storm 
targets the CNS because the released cytokines are able to 
cross the BBB by disrupting the integrity of this structure 
[59]. This process allows the penetration of monocytes, 
macrophages, and T-lymphocytes into the brain [60]. The 
cytokine storm induced by SARS-CoV-2 infection, at least 
in part caused by the toll-like receptors (TLRs) involvement 
in the immune responses in the CNS (Fig. 2). In the normal 
innate immune system, various pattern recognition receptors 
(PRRs) are expressed in macrophages, monocytes, dendritic 
cells, and neutrophils that recognize pathogen-associated 
molecular patterns (PAMPs), which are expressed by infec-
tious agents. PRRs are the fundamental players in mediating 
innate immune response and comprise TLRs and nod-like 
receptors (NLRs) [61]. It has postulated that TLRs are the 
main PRRs, taking part in the induction of cytokine storm in 
the COVID-19-infected patients [61, 62]. Ten TLRs, TLR1-
10 have been recognized in humans, while TLR1-13, with 
the exemption of TLR10 are present in rodents [63]. It is 
remarkable that IL-6 and TNF-α, the main cytokines that 
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participated in severe COVID-19 cases, are downstream of 
the TLR4 signaling pathway [64]. TLRs are expressed by 
monocytes, astrocytes, macrophages, and dendritic cells, 
which are the primary operators of the innate immune sys-
tem and take part in host defense and the recognition of 
invading pathogens, suggesting the role of these receptors 
in MS pathophysiology [65]. Interestingly, these receptors 
identify viral particles and are involved in the moderation of 
the immune response in MS patients. Apparently, there may 
be an association between viral infections, such as corona-
virus, and the growth of demyelination [65]. Two necessary 
proteins that activate these receptors are the cluster of dif-
ferentiation 14 (CD14) and myeloid differential protein-2 
(MD-2), triggering two internal signaling pathways, includ-
ing the myeloid differentiating primary response gene 88 
(MyD88)-dependent and the MyD88-independent pathways, 
which is known as toll/interleukin-1 receptor (TIR)-domain-
containing adapter-inducing interferon-β (TRIF)-dependent 
signaling pathway (Fig. 2) [66]. With the exemption of 
TLR3, all other TLRs utilize the MyD88-dependent sign-
aling pathway. TLR3 uses the MyD88-independent signal-
ing pathway [67]. TLR4 is the only TLR that employs both 
the MyD88-dependent and the TRIF-dependent signaling 
pathways. TLRs trigger the internal signaling pathways to 
activate some transcription factors responsible for the gen-
eration of pro-inflammatory cytokines, like nuclear factor-kβ 
(NF- kβ), as well as interferon regulatory factors (IRF) that 
mediates the type I interferon (IFNs)-dependent antiviral 

response [62, 68]. Activation of TLRs initiates a cell signal-
ing cascade, leading to the release of several interleukins, 
interferons, and other pro-inflammatory cytokines [62]. 
Activation of diverse TLRs can lead to a robust enhancement 
in cytokine release, inducing the cytokine storm in the CNS 
[69]. The main cytokines involved in the cytokine storm in 
the CNS are IL-6, interferons and IL-10 that result from 
astrocyte and microglia TLR signaling. Microglial cells and 
astrocytes are CNS immune cells and the cytokine storm that 
mostly produced by microglia can increase BBB permeabil-
ity and may be responsible for neurological manifestations 
of COVID-19 [70, 71]. Some of the produced cytokines lead 
to the death of neurons and oligodendrocytes and, subse-
quently demyelination [71]. They also could increase glial 
activation and promote the expression of TLR in neural 
cells, exacerbating the cytokine storm and further inflam-
matory response [72]. Moreover, these signals are capable of 
attracting macrophages, NK cells, mast cells, and etc., which 
eventually may release reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) [73]. An additional mech-
anism of CNS involvement and demyelination caused by 
autoimmune encephalitis in COVID‐19 cases, a condition 
that results from extreme self‐response and antigen‐driven 
immune responses [74]. SARS-CoV-2 virus can elicit auto-
immune responses through several mechanisms, including 
molecular mimicry between viral proteins and host self-
antigens, epitope spreading due to T‐cell-mediated damage 
by the virus, bystander activation of T cells by the action 

Fig. 1   Schematic representation 
of mechanisms that SARS-
CoV-2 infection may result 
in demyelination. One crucial 
way is the decreased number of 
CD4 + T cells, CD8 + T cells, 
B cells, and natural killer (NK) 
cells. Furthermore, enormous 
cytokine release creates a pro-
inflammatory condition that 
some of the produced cytokines 
lead to the death of neurons 
and oligodendrocytes, increase 
glial activation and promote the 
expression of TLR in neural 
cells. These signals are capable 
of attracting macrophages, NK, 
mast cells, and, etc., which 
eventually may release reactive 
oxygen species (ROS) and 
reactive nitrogen species (RNS). 
Another mechanism is sponta-
neous or provoked autoimmune 
reactions and the generation of 
auto-antibodies against SARS-
CoV-2 virus
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of virus-induced inflammatory cytokines, the presentation 
of cryptic antigens, poly-clonal B cell activation, and viral 
superantigens [75, 76]. The studies indicated the presence of 
high-level IgA and IgG antibodies (antineuronal antibodies) 
in the CSF and serum of patients, demonstrating that these 
antibodies can reach the brain [77, 78].

Thus, in patients with COVID‐19, antibodies that are 
produced against SARS‐CoV‐2 attack antigens presented 
in human endothelial or neural cells (through the inter-
rupted BBB), leading to cerebral edema and autoimmune 
encephalitis [25]. Given the evidence, SARS-CoV-2 
infection may take part in proceeding MS and demyeli-
nation via several mechanisms, including reduction in the 
number of CD4 + T cells, CD8 + T cells, B cells, and NK 
cells, enormous cytokine release, creating a pro-inflam-
matory condition, and provoked autoimmune reactions 
(Fig. 1) [11].

Conclusion

This narrative review briefly described the mechanisms of 
CNS affection, altering the host immunological function, 
and induction of demyelination by SARS-CoV-2 infec-
tion, and summarized the evidence of the myelin sheath 
demolition induced by this viral infection. In summary, 
SARS-CoV-2 can enter the host cells in the brain and exert 
the neurologic symptoms via the binding to ACE2 and 
integrins presented on existing cells. Given the evidence, 
SARS-CoV-2 infection is able to cause MS and demyelina-
tion via several mechanisms. One important mechanism is 
the decreased number of CD4 + T cells, CD8 + T cells, B 
cells, and NK cells. Another mechanism is provoked auto-
immune reactions, a condition which results from exces-
sive self‐response and antigen‐driven immune responses. 
Thus, in patients with COVID‐19, antibodies that are 
produced against SARS‐CoV‐2 attack antigens in human 
endothelial cells presented in cerebral vessels or neurons, 
leading to cerebral edema and autoimmune encephali-
tis. The most prominent type of mechanism is massive 
cytokines release by activating TLRs, which creates a 
pro-inflammatory environment. Some of the released 
cytokines induce neuronal and oligodendrocyte death and 
demyelination. They also could enhance glial activation 
and promote TLR expression in neural cells, intensifying 
the cytokine storm and inflammatory response.
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Fig. 2   Schematic representation of toll-like receptors (TLRs) acti-
vation and induction of cytokine storm. Two necessary proteins to 
activate these receptors are the cluster of differentiation 14 (CD14) 
and myeloid differential protein-2 (MD-2), triggering 2 internal sign-
aling pathways, including the MyD88-dependent and the MyD88-
independent pathways, which is known as TRIF-dependent signal-
ing pathway. TLRs trigger the internal signaling pathways to activate 
some transcription factors responsible for the generation of pro-
inflammatory cytokines, like nuclear factor-kβ (NF- kβ), as well as 
interferon regulatory factors (IRF) that mediate the type I interferon 
(IFNs)-dependent antiviral response
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