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Background: Next-generation sequencing is used in cancer research to identify somatic and germline mutations, which
can predict sensitivity or resistance to therapies, and may be a useful tool to reveal drug repurposing opportunities
between tumour types. Multigene panels are used in clinical practice for detecting targetable mutations. However,
the value of clinical whole-exome sequencing (WES) and whole-genome sequencing (WGS) for cancer care is less
defined, specifically as the majority of variants found using these technologies are of uncertain significance.
Patients and methods: We used the Cancer Genome Interpreter and WGS in 726 tumours spanning 10 cancer types to
identify drug repurposing opportunities. We compare the ability of WGS to detect actionable variants, tumour mutation
burden (TMB) and microsatellite instability (MSI) by using in silico down-sampled data to mimic WES, a comprehensive
sequencing panel and a hotspot mutation panel.
Results:We reveal drug repurposing opportunities as numerous biomarkers are shared across many solid tumour types.
Comprehensive panels identify the majority of approved actionable mutations, with WGS detecting more candidate
actionable mutations for biomarkers currently in clinical trials. Moreover, estimated values for TMB and MSI vary
when calculated from WGS, WES and panel data, and are dependent on whether all mutations or only non-
synonymous mutations were used. Our results suggest that TMB and MSI thresholds should not only be tumour-
dependent, but also be sequencing platform-dependent.
Conclusions: There is a large opportunity to repurpose cancer drugs, and these data suggest that comprehensive
sequencing is an invaluable source of information to guide clinical decisions by facilitating precision medicine and
may provide a wealth of information for future studies. Furthermore, the sequencing and analysis approach used to
estimate TMB may have clinical implications if a hard threshold is used to indicate which patients may respond to
immunotherapy.
Key words: clinical genomics, whole-genome sequencing, cancer genomics, actionable mutations, tumour mutation
burden (TMB), microsatellite instability, precision oncology
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INTRODUCTION

Comprehensive genomic profiling of tumours provides insight
into genomic changes that drive tumourigenesis. International
consortia such as The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortia (ICGC)1,2 conduct
whole-genome sequencing (WGS) and whole-exome
sequencing (WES) of large cohorts of tumour samples,
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revealing genes,3 non-coding events4 and mutational pro-
cesses5 that drive cancer. As our knowledge of cancer genomics
accumulates, there are increased opportunities to enable
precisionmedicine,whereby apatient’s tumourgenomecanbe
used to predict response or resistance to available drugs. In
support of this, the Food and Drug Administration (FDA) has
recently approved drugs targeting genomic features of a
tumour rather than the tissue of origin.6,7 Ideally, comprehen-
sive sequencing of a patient’s tumourmay reveal biomarkers of
response or resistance for on-label drugs, or drugs currently
approved or under investigation in another indication.

In a clinical setting, genomics is being used to identify
tumour-specific somatic and germline mutations that indi-
cate response to targeted therapies. Somatic mutation
testing using hotspot mutation or comprehensive gene
panels (CGPs) provides rapid, cost-efficient identification of
mutations that may inform clinical decisions for approved
therapies. The benefits of a panel include small data volume,
the ability to profile degraded DNA from formalin-fixed
paraffin-embedded (FFPE) tumour samples and cost-
effective deep sequencing to allow profiling of samples
with low tumour purity or the identification of sub-clonal
mutations. The major limitation of panel assays is the
requirement of a priori knowledge to select the genes or
genomic regions to be assayed.

WES is another cost-effective approach that enables rela-
tively deep sequencing of the coding genome, which is ad-
vantageous for profiling samples with low tumour content and
for detecting sub-clonal mutations. However, WES has several
drawbacks: exome enrichment kits can introduce various ar-
tefacts and biases,8 affecting copy number (CN) calling,9

although the performance of newer tools has reduced these
issues significantly.10 Additionally, chromosome rearrange-
ments resulting in fusion genes can be missed by WES, when
chromosome breakpoints fall outside of exonic regions.11 The
most comprehensive form of next-generation sequencing is
WGS, which provides a relatively even coverage to identify
variants across the genome, including non-coding regions, and
detects complex genomic rearrangements. However, there are
several challenges to the adoption of WGS in the clinic, such as
large data volume. Previous studies have compared WGS and
WES in both paediatric cancers12 and germline sequencing in
Mendelian disease13 and found thatWES failed to detect indels
and single-nucleotide variants (SNVs) at specific regions iden-
tified in WGS and that WES had a higher false-positive call rate
than WGS.

In this study, we explore potential opportunities for drug
repurposing in a range of cancer types. Additionally,
through in silico down-sampling of WGS data, we compare
the ability of CGPs, WES and WGS to identify therapeutic
targets and call tumour mutation burden (TMB) and mi-
crosatellite instability (MSI).

PATIENTS AND METHODS

Whole-genome datasets

We compiled 10 WGS datasets with a total of 726 samples,
comprising primary tumours from high-grade serous
2 https://doi.org/10.1016/j.esmoop.2022.100540
ovarian cancer14 (n ¼ 76), familial breast cancer15 (n ¼ 77),
breast cancer from TCGA16 (n¼ 98), cutaneous melanoma17

(n ¼ 97), mucosal melanoma18 (n ¼ 49), pancreatic ductal
adenocarcinoma (PDAC)19,20 (n ¼ 133), pancreatic neuro-
endocrine tumour (PNET)21 (n ¼ 93), oesophageal adeno-
carcinoma22 (n ¼ 45), mesothelioma23 (n ¼ 49) and lung
adenocarcinoma (n ¼ 9) (Supplementary Table S1, available
at https://doi.org/10.1016/j.esmoop.2022.100540).

Collection and preparation of lung cancer samples

Patients presented with a high pre-test likelihood of a ma-
lignant mediastinal or hilar lymph node and underwent
endobronchial ultrasound-guided transbronchial needle
aspiration for formal diagnosis of lung cancer and for mo-
lecular testing. A sample of the aspirate was collected in
RNAlater or was snap frozen for research purposes from
consenting patients. Institutional Review Board from the
Royal Brisbane and Women’s Hospital granted approval for
the collection and use of samples (HREC/17/QRBW/301),
ratified by other institutes involved in the study. DNA was
extracted from the research specimen using the AllPrep
DNA/RNA Mini Kit (Qiagen, Australia) and from a blood
sample using the QIAamp DNA Blood Mini Kit (Qiagen).
WGS was carried out using the TruSeq DNA Nano library
preparation and 150 bp paired-end, NovaSeq 6000
sequencing to a target read depth of 30x for normal and 60x
for tumour samples.

WGS analysis and down-sampling to simulate WES and
panel sequencing

The WGS analysis for all datasets was carried out as pre-
viously described.18 Sequence data were aligned to GRCh37
using BWA-MEM.24 Somatic SNVs and indels were identified
using a dual calling strategy of qSNP25 and GATK.26 Somatic
mutations were annotated with their gene consequence
using SNPeff.27 Copy number alterations (CNAs) were
identified using ascatNgs28 and structural variants (SVs) with
qSV.22 To simulate in silico WES and panels, the mutations
detected by WGS were down-sampled to filter somatic
mutations in relevant regions. The TruSeq DNA Exome kit
(Illumina, San Diego, CA) regions were used for WES
(covering 37 105 146 bases). The TruSeq Amplicon Cancer
Panel (Illumina) was used for the hotspot gene panel (HGP)
(covering 16 951 bases), and a CGP was included that
covered 2 628 876 bases (see Supplementary Table S2,
available at https://doi.org/10.1016/j.esmoop.2022.
100540, for a bed file of regions targeted by the CGP).
The bedtools application (version 2.25.0) was used to
extract the regions covered by the exome and panel kits.

The Cancer Genome Interpreter and repurposing analyses

Somatic mutations were annotated using the Cancer Genome
Interpreter (CGI)29 to identify somatic mutations with evi-
dence for treatment response. Additionally, as CGI’s Cancer
Biomarker Database (CBD) was last updated in February 2018,
biomarkeredrug pairs approved by the FDA and National
Comprehensive Cancer Network (NCCN) were also included
Volume 7 - Issue 4 - 2022
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from OncoKB.30 Somatic SNVs, indels and CNAs with CN �6
were considered as amplifications and those with CN <1
were considered homozygous deletions and were annotated
using CGI. For SVs, all entries with a consequence predicted to
have a loss of function were annotated as ‘deletions’, while
intra-intron fusions were excluded due to the unknown sig-
nificance of this type of variant. Gene fusion events predicted
to create a viable gene fusion product were also submitted to
CGI. Only ‘complete’ alterations that were also annotated as
driver events (alterations that match the specific amino acid
change in the gene which constitutes an actionable variant for
a specific drug) were included in our analysis; passenger
events and non-protein-affecting variants were excluded. Ev-
idence levels specified by CGI include ‘FDA guidelines’, ‘NCCN
guidelines’, ‘Late trials’, ‘Early trials’, ‘Case Report’ and ‘Pre-
clinical’. For the repurposing analysis, actionable variants were
classified as: FDA-approved cancer-specific (on-label), FDA-
approved non-cancer-specific (off-label), clinical trials
cancer-specific (on-label) or clinical trials non-cancer-specific
(off-label).

TMB and MSI calculation. To calculate TMB, the total
number of somatic SNV and indels for each sample was used
to calculate the number of mutations per megabase (Mb) of
the genome. For estimation of TMB using the WGS, muta-
tions were divided by 3000 to obtain mutations per Mb. To
simulate the in silico exome and panel TMB estimation, the
total number of SNV and indels within the down-sampled
regions was divided by the number of bases covered by
only the exome capture kit, comprehensive and HGP regions
(37.105146 Mb, 2.628876 Mb and 0.016951 Mb, respec-
tively). To calculate TMB using the non-synonymous muta-
tions only, a filter from Variant Effect Predictor (VEP)31 was
used to annotate all somatic mutations as synonymous or
non-synonymous and then down-sampled as mentioned
previously. MSIsensor32 was used to predict MSI using the
matched tumour-normal bam files as input. For in silico WES
and panel down-sampling, only the microsatellite regions
which fall within the relevant loci were included. Thresholds
to classify samples as MSI-high (MSI-H) were used as sug-
gested in the original paper that used endometrial data.32
RESULTS

Evidence for repurposing potential across various cancer
types in the CBD

The CBD utilized by CGI contains information about genomic
events that have been reported in specific tumours as bio-
markers or actionable variants that confer drug sensitivity or
resistance.We undertook an analysis of the CBD to survey the
biomarkeredrug pairs for different tumour types. Some
tumour types such as chronic myeloid leukaemia, non-small-
cell lung cancer (NSCLC), breast adenocarcinoma and cuta-
neous melanoma have a large number and percentage of
biomarkeredrug pairs that are FDA/NCCN approved
(Figure 1A and B). In contrast, other tumour types such as
endometrial cancer and myeloma primarily only have drugs
with pre-clinical or case report-based evidence (Figure 1A).
Volume 7 - Issue 4 - 2022
Within the CBD, there are tumour types which lack FDA/
NCCN-approved drugs or drugs in clinical trials specific to
that tumour type; however, there are mutations with
approved drugs in other tumour types. Therefore, we
explored the potential of drug repurposing between different
tumour types based on shared actionable variants.We found
that the number of drugswhich could potentially be allocated
to a specific tumour based on a specific biomarker can be
expanded and includes drugs that have been approved
(Figure 1B) or in clinical trials (Figure 1C). Moreover, the
number of drugs available for potential repurposing per
tumour type increaseswhen drugs in various stages of clinical
trials are included (Figure 1C), suggesting that numerous
repurposing opportunities exist at the clinical trial level.
Within these tumour types, many share a number of genomic
biomarkers with each other (Supplementary Figure S1A,
available at https://doi.org/10.1016/j.esmoop.2022.
100540). However, the number of shared approved drugs is
low (Supplementary Figure S1B, available at https://doi.org/
10.1016/j.esmoop.2022.100540). Taken together, these data
allude to an opportunity to repurpose approved targeted
therapies for some tumour types, due to the presence of
shared biomarkers.
Off-label repurposing may offer benefits for patients in
some tumour types

To examine the repurposing potential in patient data, we
annotated WGS data from 726 tumours from 10 cancer
types using CGI. We first sought to determine the per-
centage of cases that harboured somatic events associated
with sensitivity to an approved drug. In the cutaneous
melanoma, oesophageal, ovarian, breast, lung adenocarci-
noma and familial breast cancer datasets, 28.8%, 13.3%,
11.8%, 26.5%, 22.2% and 13% of cases, respectively, con-
tained biomarkers that indicate cancer-specific on-label
prescriptions (Figure 2A). These on-label therapies include
BRAF kinase inhibitors such as dabrafenib and vemurafenib
in cutaneous melanoma due to the high frequency of BRAF
mutations, anti-human epidermal growth factor receptor 2
(HER2) therapy such as trastuzumab33 for breast and
oesophageal cancers based on ERBB2 amplifications and
poly (ADP-ribose) polymerase inhibitors in ovarian and
breast cancer based on BRCA1/2 mutations. Amplification
of ERBB2 or overexpression of the HER2 protein product has
been reported in 18%-20% of breast cancers.34 We found
ERBB2 amplification in 26.5% of breast cancers and 13% of
familial breast cancers (Supplementary Figure S2A, available
at https://doi.org/10.1016/j.esmoop.2022.100540); the
higher prevalence detected in breast cancer may be due to
the threshold we used to define an amplification (of >6
copies with no correction for ploidy), while the lower
presence in the familial breast cancers is due to the pres-
ence of familial BRCA-associated tumours which tend to be
HER2 negative. In lung adenocarcinoma, cancer-specific al-
locations consisted exclusively of epidermal growth factor
receptor (EGFR) mutations. When off-label drugs were
considered, an additional 12%, 11.1%, 8.9%, 6.6% and 6.1%
https://doi.org/10.1016/j.esmoop.2022.100540 3
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Figure 1. Overview of drugebiomarker pairs per tumour type within the Cancer Biomarker Database used by the Cancer Genome Interpreter. (A) Bars which are to
the right of the vertical line represent drugs which are either approved or in clinical trials, while bars to the left of the vertical line represent drugs which are either in
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FDA, Food and Drug Administration; NCCN, National Comprehensive Cancer Network.
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of cutaneous melanoma, lung adenocarcinoma, oesopha-
geal cancer, ovarian cancer and breast cancer cases,
respectively, contained biomarkers for targeted therapies.

Conversely, when factoring in putative approved off-label
allocations, 16.3% of patients harboured a candidate target
including 10.2% of mucosal melanoma cases containing KIT
mutations, which confer sensitivity to imatinib (Figure 2A).
Currently, imatinib is only approved for gastrointestinal
stromal tumours with oncogenic KIT mutations. In the
mucosal melanoma dataset, 4.1% of patients had BRAF
mutations, predicting sensitivity to BRAF inhibitors. In the
PNET dataset, 3.3% of cases harboured TSC1 or TSC2 mu-
tations conferring sensitivity to the mammalian target of
rapamycin (mTOR) inhibitor, everolimus, currently approved
for renal angiomyolipomas and giant cell astrocytomas. The
mesothelioma dataset showed a distinct lack of actionable
biomarkers. Gene fusions with an approved therapy
occurred at a low frequency in all datasets. In the
4 https://doi.org/10.1016/j.esmoop.2022.100540
oesophageal cancer dataset, one case was found to have an
NTRK1 fusion, for which entrectinib and larotrectinib are
now approved in a solid tumour-agnostic manner. One
oesophageal cancer case harboured an FGFR2 fusion, pre-
dicting sensitivity to erdafitinib and pemigatinib, which are
approved in cholangiocarcinoma and bladder cancers.
Lastly, a PDAC case was found to have an RET fusion, for
which RET kinase inhibitors such as selpercatinib and pral-
setinib are currently approved in NSCLC and thyroid cancer.

When considering variantedrug combinations which are
currently in early and late clinical trials, the potential benefit
of repurposing is more evident (Figure 2B). Up to 97% of
ovarian cancer patients harbour biomarkers for cancer-
specific clinical trials, driven primarily by TP53 mutations.
Although targeting TP53-mutated cancers is challenging,
several tumour-specific clinical trials are currently active for
TP53-mutated ovarian cancer (NCT02272790 and NCT011
64995), both of which assess the efficacy of combination
Volume 7 - Issue 4 - 2022
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treatment with Wee-1 kinase inhibitors and chemotherapy.
Results from one of these clinical trials showed enhanced
efficacy of carboplatin in combination with AZD1775 in
epithelial ovarian cancer patients who were refractory or
resistant to first-line therapy.35 Nonetheless, the benefit of
therapies in clinical trials is contingent on their proven effi-
cacy, so care must be taken when estimating the repurposing
potential of drugs in clinical trials.

Resistance biomarkers primarily consisted of KRAS mu-
tations, which confer resistance to anti-EGFR therapies,
occurring in 89.5% of PDAC cases, and NRAS mutations in
the melanoma datasets (Figure 2C, Supplementary
Figure S2B, available at https://doi.org/10.1016/j.esmoop.
2022.100540). Therefore, cases with sensitivity biomarkers
for cetuximab such as EGFR activation will require consid-
eration for the presence of resistance biomarkers that may
preclude the use of cetuximab. Similar to responsive
markers, the number of patients with biomarkers indicating
resistance to treatment was higher when considering clin-
ical trial evidence (Figure 2D).

Taken together, these data show that although some
tumour types such as mucosal melanoma may strongly
benefit from off-label repurposing of approved therapies,
others such as PNET and mesothelioma may remain chal-
lenging to treat with currently available targeted therapies.
Additionally, while currently available approved drugs may
not benefit certain tumour types, this may change if targeted
therapies currently in clinical trials are approved in future.
Volume 7 - Issue 4 - 2022
The percentage of patients with an actionable variant
identified by each platform

To determine the ability of WGS,WES and panel sequencing
to detect actionable mutations, we filtered mutations from
the WGS data to select those that fall within the capture of
WES, a CGP and an HGP and annotated the data using CGI.
In this analysis, we assumed that the HGP could not detect
CNAs, and that only WGS and CGP were able to detect gene
fusions. Overall, these data revealed that for approved
therapies, the HGP, CGP,WES and WGS approaches perform
well for the detection of actionable variants in most tumour
types (Figure 3A-C, Supplementary Table S3, available at
https://doi.org/10.1016/j.esmoop.2022.100540). However,
when considering drugebiomarker combinations with clin-
ical trial evidence, WGS identified more patients with bio-
markers than other platforms. The higher number of
patients with an actionable mutation from WGS was driven
by the inclusion of SVs causing gene fusions or a predicted
gene loss-of-function events. In terms of actionable SNV
and indel variants, WES identified all but three approved
actionable markers detected by WGS. The three variants
were of low pre-clinical evidence and consisted of a splice
acceptor variant and two splice donor variants in MLL2
(Supplementary Table S4, available at https://doi.org/10.
1016/j.esmoop.2022.100540). Mesothelioma had the few-
est patients with actionable variants, which may be due to
its unusual genomic landscape lacking oncogenic mutations
and characterized predominantly by loss of tumour
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suppressor genes.36 Cutaneous melanoma and lung
adenocarcinoma contained the largest number of patients
with an approved actionable marker detected by all
sequencing types which was due to the high prevalence of
BRAF V600 hotspot and EGFR mutations, respectively.

Prediction of TMB and MSI by WGS and in silico WES and
panel sequencing
Immune checkpoint blockade therapies such as those targeting
programmed cell death protein 1 (PD-1) and cytotoxic
T-lymphocyteeassociated antigen 4 are effective for the
treatment of skin, lung, mesothelioma, bladder and kidney
cancers.37,38 Immunohistochemistry of programmed death-
ligand 1 is used as a predictive biomarker for immune check-
point therapy; however, other suggested genomic markers of
immunotherapy response are high TMB or MSI.39 We calcu-
lated the TMB and MSI from the genomic data within the 10
tumour cohorts. As expected, tumours with the highest TMB
were cutaneous melanoma, while some cases within tumour
types that classically show lower TMB andMSI, such as ovarian
cancer, contained a subset of cases that exhibited high TMB
(TMB >10 mutations/Mb) (Figure 4A and Supplementary
Table S1, available at https://doi.org/10.1016/j.esmoop.2022.
sequencing platform.WES, CPanel and Panel represent in silico down-sampled region
Solid diamonds joined by solid lines represent percentage of patients with variants
centage of patients with variants for drugs which are in clinical trials. Drug allocatio
CN, copy number; CPanel, comprehensive panel; Panel, hotspot panel; WES, whole-e
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100540) and MSI (Supplementary Figure S3 and Table S1,
available at https://doi.org/10.1016/j.esmoop.2022.100540).
As expected, TMB estimated from WES showed a very strong
correlation with WGS when considering all mutations; how-
ever, the absolute TMB value tended to be lower in WES for
some cancer types (Figure 4A). For WES, we observed a strong
correlation between the TMB estimated from all coding mu-
tations and non-synonymous mutations (Figure 4B).

The CGP used in our study targets 2.62 Mb; therefore, we
compared TMB estimations of the CGP with WES and WGS.
We found that in tumour types with a high number of mu-
tations, such as cutaneous melanoma, the correlation be-
tween WGS and the CGP was very strong (R ¼ 0.98)
(Figure 4C). However, when the number of total mutations
within the datasets was low, the correlation weakened. In
particular, the mesothelioma (R¼ 0.25) and PDAC (R¼ 0.48)
datasets showed poor agreeability between TMB estimated
from WGS and CGP. This was also reflected when comparing
TMB estimations using non-synonymous mutations between
WES and CGP (Figure 4D) and between non-synonymous and
allmutations in the CGP (Figure 4E), suggesting that this trend
does not improve when selecting non-synonymous muta-
tions only. In almost all tumour types, there was a strong
s of the exome capture kit, comprehensive panel and hotspot mutation panel kit.
for approved drugs only, and open diamonds with dashed lines represent per-
ns used are non-cancer-specific (off-label).
xome sequencing; WGS, whole-genome sequencing.
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correlation between TMB predicted by WGS, in silico WES
and in silico CGP. Furthermore, when a threshold of 10 mu-
tations/Mb was used, eight oesophageal cancer samples and
nine cutaneous melanoma samples exhibited a TMB of >10
for WGS, while showing a TMB<10 for in silicoWES and CGP
(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2022.100540).

MSI estimations were fairly concordant between WGS
and WES (Supplementary Figure S3, available at https://doi.
org/10.1016/j.esmoop.2022.100540), with the exception of
two familial breast cancer cases, a PDAC case and a cuta-
neous melanoma that were classified as microsatellite-
stable (MSS) by WES and MSI-high by WGS. Conversely,
there was only one oesophageal cancer case classified as
MSI-H by WES and MSS by WGS. These discordant cases,
although rare, might have implications when allocating
patients to immunotherapy based on MSI, as using a hard
threshold will likely exclude some patients who may benefit
from immunotherapy, or result in selection of patients un-
likely to respond to immunotherapy.
DISCUSSION

Genomics-guided cancer treatment requires a large selection
of therapies with actionable drugebiomarker combinations
to be successful. Here, we show that cross-cancer drug
repurposing may offer potential opportunity for a range of
solid tumours, especially when considering therapies which
are currently in clinical trials. Repurposing drugs is an ad-
vantageous approach, as the current costs associated with
the synthesis, development and testing of a novel drug are
estimated to be around $2-$3 billion.40 On the other hand,
the cost of repurposing currently available drugs is estimated
around $300 million.40 Part of this cost goes towards funding
clinical trials required to develop potential repurposing op-
portunities into regulatory body-approved clinical practice,
as such, future financial backing will be required for the goals
of precision medicine to be realized. By filtering somatic
mutations detected inWGS data to simulateWES and panels,
we show that depending on the approach, the number of
patients detected with an actionable variant may differ be-
tween tumour types, and the estimation of TMB or MSI
values may also vary. Our analysis also supports the need for
comprehensive databases and tools which, after variant
annotation, can browse through an up-to-date repository of
biomarkeredrug combinations that are approved or under-
going assessment in clinical trials.

A major challenge for repurposing drugs is whether a
drugebiomarker combination will show similar efficacy in
different cancer types. In this study, we have assumed that
the presence of a genomic biomarker could suggest clinical
efficacy across different cancer types; however, this is often
not the case in practice. For example, trastuzumab is a
monoclonal antibody which was first approved to treat
patients with HER2þ breast cancer, and was subsequently
approved in ERBB2-amplified NSCLC41 and HER2-over-
expressing gastric adenocarcinoma.42 However, in PDAC,
although ERBB2 is amplified in w2% of cases,43 in two
8 https://doi.org/10.1016/j.esmoop.2022.100540
separate trials, patients with late-stage PDAC treated with
trastuzumab in combination with gemcitabine44 and cape-
citabine45 showed poor response rates. An additional issue
for genomic-guided treatment is the extensive intratumour
heterogeneity in some cancers, which may give rise to sub-
clones harbouring multiple driver events or the emergence
of drug resistance sub-clones. Moreover, co-occurring mu-
tations within a tumour may affect the efficacy of targeted
therapy; therefore, it could be suggested that the effec-
tiveness of drug repurposing is contingent on thorough
molecular profiling of all targetable driver events within a
tumour. Despite these caveats, our analyses do highlight
putative actionable biomarkers in rare or understudied
tumour types that warrant further investigation. Together,
this emphasizes the need for robust biomarkers and inclu-
sion criteria to determine drug responsiveness to facilitate
patient selection and treatment efficacy.

We compared WGS, in silico WES and panel approaches
for detecting actionable mutations. In terms of detecting
approved actionable SNV and indel somatic variants, WGS,
WES and the panel approaches performed very comparably.
However, WGS was able to detect more patients with a
candidate actionable variant that had clinical trial or pre-
clinical evidence suggesting that WGS may be useful for
patients in a clinical trial setting who lack approved targets.
An obvious benefit of WGS is that because the whole
genome is sequenced the data can be re-interrogated if new
targets are approved; also the data can be used to discover
new candidate targets, which may inform future drug
development. Additionally, as more knowledge is gained
from regions outside the coding genome, we anticipate that
there will be more clinical utility from studying the whole
genome. In support of this, recent pan-cancer analyses of
WGS data2 identified non-coding somatic driver events4,46

and somatic SVs associated with regulatory regions that
impact gene expression.47 The challenges of implementing
WGS in the clinic to inform therapy for patients include a
higher cost and long turnaround times. Additionally, fresh-
frozen tissue is an ideal sample type for WGS, but this pre-
sents a major obstacle to effective clinical implementation as
tumour tissue samples are commonly prepared as FFPE
blocks. The process of fixing tissue in FFPE tissue blocks
degrades DNA, which is sub-optimal for WGS and may hinder
the identification of somatic mutations and CNA.48

There are several limitations to our study. A key limitation is
the assumption that WGS, WES and the CGP were able to
detect SNV, indel, CNA and SV events with the same sensi-
tivity, but this will not always be the case. For example,WGS
may not detect all mutations identified by WES and panel
sequencing due to themuch larger sequence read depth used
in these approaches; similarly, all gene fusion events may not
be detectable by the CGP. Additionally, some studies show
that identification of CNA from WES can be problematic due
to the heterogeneous enrichment of exons, resulting in some
regions with very low coverage which may lead to missed or
incorrect CNA calls49 or may be more prone to batch effects
thanWGS.50 Issues pertaining to uneven coverage have been
reported in multiple other studies13,51-54; however, there
Volume 7 - Issue 4 - 2022
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have been substantial improvements in library preparation
methods to overcome these issues, and bioinformatic tools
such as Sequenza have shown high sensitivity and accuracy
for CNA detection from WES.55 Another assumption made
was that the HGP was not able to detect CNAs. The HGP we
used in this study was based on the TruSeq panel which is not
designed to detect CNA; however, newer targeted panels
such as the AmpliSeq� for Illumina Focus Panel are able to
interrogate SNVs, indels and CNAs from 52 genes relevant to
multiple solid tumour types. Future studies that undertake
sequencing of the same DNA samples using WGS, WES and
panels should be conducted to directly compare approaches
to identify actionable events and assess the clinical benefit
they may provide.

The ability to detect somatic mutations will influence the
estimation of TMB. The Cancer Research TMB Harmoniza-
tion Project is bringing together a team of experts to
establish a uniform approach to measure and report TMB
across different sequencing panels.56 A high TMB may
indicate patients who will respond to checkpoint blockade
immunotherapy, and as such, the FDA has approved the use
of PD-1 inhibitors as a therapy for all solid tumours with a
TMB �10 mutations/Mb as measured by the Foundatio-
nOne CDx assay. Even so, in the literature, the definition of
what constitutes a high TMB is not clear, as some studies
have suggested that a TMB of >1657 has a survival benefit,
while others used 10 mutations/Mb as a cut-off.58 Report-
ing of TMB calculations has not been consistent, with some
studies using different platforms to estimate TMB.59 Within
the literature, the approach used to calculate TMB is not
uniform, with some studies using all mutations and others
using only non-synonymous mutations.59 We agree with
previous studies reporting that TMB estimations from CGP
correlate well with WES and WGS60; however, this was only
true for some cancer types, as similar to other studies we
found that correlations are poor for tumour types with low
TMB, even with larger panels.61-63 Despite TMB correlations
being poor in tumour types with low mutation frequency, it
can be argued that these tumours are unlikely to respond to
immunotherapy and thus may not be clinically relevant.
Nonetheless, our results support the need for harmoniza-
tion of TMB estimations across sequencing platforms, and
we suggest caution in the use of TMB thresholds when
considering patients for immunotherapy.

In summary, genomics is becoming a cost-effective tool
that can enable precision medicine by indicating which
drugs may be most suitable for cancer patients. Many drugs
that are approved or in testing have been developed for
specific cancer types; however, there is a large opportunity
to repurpose cancer drugs. Comprehensive sequencing is an
invaluable source of information to guide clinical decisions
by facilitating precision medicine and provides a wealth of
information for future studies.
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