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Diagnostic accuracy in FDG-PET imaging highly depends on the operating procedures. In this clinical study on de-
mentia, we compared the diagnostic accuracy at a single-subject level of a) Clinical Scenarios, b) Standard FDG
Images and c) Statistical Parametrical (SPM)Maps generated via a new optimized SPM procedure. We evaluated
the added value of FDG-PET, either Standard FDG Images or SPMMaps, to Clinical Scenarios. In 88 patients with
neurodegenerative diseases (Alzheimer3s Disease—AD, Frontotemporal Lobar Degeneration—FTLD, Dementia
with Lewy bodies—DLB andMild Cognitive Impairment—MCI), 9 neuroimaging experts made a forced diagnostic
decision on the basis of the evaluation of the three types of information. There was also the possibility of a deci-
sion of normality on the FDG-PET images. The clinical diagnosis confirmed at a long-term follow-up was used as
the gold standard. SPMMaps showed higher sensitivity and specificity (96% and 84%), and better diagnostic pos-
itive (6.8) and negative (0.05) likelihood ratios compared to Clinical Scenarios and Standard FDG Images. SPM
Maps increased diagnostic accuracy for differential diagnosis (AD vs. FTD; beta 1.414, p = 0.019). The AUC of
the ROC curve was 0.67 for SPM Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images. In the MCI
group, SPMMaps showed the highest predictive prognostic value (mean LOC= 2.46), by identifying either nor-
mal brain metabolism (exclusionary role) or hypometabolic patterns typical of different neurodegenerative
conditions.

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The correct identification of dementia subtypes represents a
major challenge for clinicians, since an early differential diagnosis
may be difficult on clinical grounds only. The use of biomarkers in
the different neurodegenerative processes (e.g., Alzheimer3s Disease
(AD), Frontotemporal Lobar Degeneration (FLTD) or Dementia with
Lewy bodies (DLB)) can help obtain more accurate diagnosis, also in
the prodromal stages of the diseases (Anchisi et al., 2005; Galluzzi
et al., 2013). Distinctive topographic and pathophysiological markers
have been thus included in the new proposed research and clinical
criteria for dementias (Sperling et al., 2011; Albert et al., 2011; Jack
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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et al., 2011; McKhann et al., 2011; Dubois et al., 2010; Dubois et al.,
2014; Gorno-Tempini et al., 2011; Rascovsky et al., 2011; McKeith
et al., 2005), comprising changes in Aβ and tau protein values in the
cerebrospinal fluid, structural brain changes visible on brain Mag-
netic Resonance Imaging (MRI) and metabolic changes seen with
18-fluorodeoxyglucose positron emission tomography (FDG-PET).

In AD, the pathophysiological process starts decades before the clin-
ical onset of cognitive impairments in at risk individuals (Bateman et al.,
2012; Mosconi et al., 2014). Therefore, the concept of the “AD patho-
physiological process”has been teased apart from that of “ADdementia”
(Dubois et al., 2013)”. The current research criteria for AD encourage
translating the results from biomarker studies into guidelines for
diagnosis (Sperling et al., 2011; Albert et al., 2011; Jack et al., 2011;
McKhann et al., 2011; Dubois et al., 2010; Dubois et al., 2014). As far
as imagingmarkers of AD are concerned, there is awidespread evidence
for an increase in diagnostic accuracy for metrics-based assessment
(Frisoni et al., 2013). Among the topographic imaging markers, the
best MRI marker in AD, even at the prodromal stage, i.e. hippocampal
volume, might be influenced by several potential confounders, such as
aging (Fjell et al., 2013), concomitant pathologies affecting the medial
temporal lobe (e.g., diabetes or sleep apnoea) (Fotuhi et al., 2012),
and the presence of hippocampal sclerosis or other dementia types
that might also show hippocampal atrophy (de Souza et al., 2013).
FDG-PET instead shows high sensitivity in detecting typical and reliable
patterns of brain metabolic dysfunction, also in the early AD phase
(Anchisi et al., 2005; Herholz et al., 2002; Prestia et al., 2013). It has
been considered to be more sensitive than MRI in the typical AD patho-
logical cascade (Jack et al., 2010), since the pathological phenomena
leading to neuronal synaptic dysfunction affect glucose consumption
prior to causing cell death and detectable atrophy (Bateman et al.,
2012; Chételat et al., 2008; Perani, 2014).

The typical AD pattern represented by hypometabolism in temporo-
parietal regions, precuneus and posterior cingulate cortex is closely
related to cognitive impairment (Perani, 2008) and allows the early
identification of the downstream neuronal degeneration, in prodromal
phase before the full onset of dementia (Mosconi et al., 2008; Herholz,
2010), and many years before in at risk individuals (McKeith et al.,
2005; Bateman et al., 2012). Moreover, on the basis of the specific pat-
terns of topographic distribution of the metabolic changes, FDG-PET
can also help to recognize and differentiate other dementia types
(Teune et al., 2010; Bohnen et al., 2012). Therefore, FDG-PET imaging
has been included also in the supportive criteria for non-AD dementias,
such as FTLD and DLB (Gorno-Tempini et al., 2011; Rascovsky et al.,
2011; McKeith et al., 2005).

The PET imaging recommendations for dementia diagnosis are
largely referring to FDG-PET literature based on subjective methods
for evaluating metabolic FDG-PET changes (i.e., visual inspection).
These approaches greatly depend on the observer3s experience and
may reduce sensitivity and specificity especially in those centres where
advanced expertise in image reading is unavailable, due to the lack of an
objective cut-off between normal and pathologicalfindings. A lower diag-
nostic confidence may arise, especially for the earliest disease stages
when only subtle metabolic abnormalities may be present. To overcome
these limitations, FDG-PET images have been assessed using statistical
image analysis, such as AD t-sum (Herholz et al., 2002), Stereotactic
Surface Projection (SSP) statistics (Neurostat®) (Foster et al., 2007;
Minoshima et al., 2001) and Statistical Parametrical Mapping (SPM)
(Signorini et al., 1999; Patterson et al., 2010). Other methods have been
reported and compared in accuracy (Caroli et al., 2012).

AD t-sum score provides a measure of scan abnormality associated
with a preset threshold for discrimination between AD patients and con-
trols. This method, however, based on the sum of t-values in predefined
regions typically affected by AD, does not allow differential diagnosis in
dementia conditions and the identification of whole-brain patterns of
hypometabolism (Herholz et al., 2002; Prestia et al., 2013) at difference
with SPM procedures (Signorini et al., 1999; Patterson et al., 2010).
Neurostat® (Minoshima et al., 2001) is an atlas-based method
allowing a whole-brain parametric analysis of FDG-uptake, yielding
z-scores as a result of the voxel by voxel comparison between an in-
dividual subject and a predefined control group. The Neurostat®
(Minoshima et al., 2001) package uses surface projection technology
to generate and display an entire statistical map on a projection of
brain surfaces in different views. Neurostat® (Minoshima et al., 2001)
uses four different intensity normalization methods, including global
intensity normalization, as well as normalization to the thalamus, cere-
bellum and pons. A limit is that the individual FDG-PET scan is normal-
ized to the Talairach and Tournoux atlas space and 3D rendering of
statisticalmap of glucose hypometabolism are visualized through a cor-
tical surface projection technology. In addition, despite the possibility of
statistically inferring upon the pattern of FDG metabolism through a
colour bar, p-values for single voxels or clusters of voxels are not avail-
able and this procedure does not allow the detection of metabolic
changes in deep brain structures (i.e., basal ganglia or midbrain).

SPManalysis of FDG-PET images has been also used in the evaluation
of brain metabolic changes in neurodegenerative conditions showing
specific topographic patterns associated with cognitive decline and de-
mentia (Anchisi et al., 2005; Signorini et al., 1999; Patterson et al., 2010;
Yakushev et al., 2009). In brief, each individual FDG-PET scan is first
warped in the standard MNI space using a template image for spatial
normalization and subsequently smoothed with a 3D Gaussian kernel.
Parametric analysis of FDG-uptake in SPM is obtained using voxel-
level statistical parametric mapping at the whole-brain level, in the
framework of the general linear model by means of a two-sample t-test,
comparing each subject against images pertaining to a reference control
group. The comparison between each individual and the reference
group yields a contrast t-map testing for areas with relative decreases in
metabolism(i.e., hypometabolism) compared to the controls. Significance
values from the voxel-wise t-test are finally reported.

One of the main advantages of the SPM approach resides in the use
of metrics evaluated at a predefined significance statistical threshold
to define the topography of hypometabolism, thus drastically reducing
the chance for false positives and increasing specificity (Silverman
et al., 2003). The presence of false positives is particularly detrimental
at the single-subject level, when it is crucial to exclude neurodegenera-
tive conditions and to effectively discriminate between the different de-
mentia conditions. These patterns can also be easily read even by
intermediate-skilled readers.

The aim of this study was to assess and validate at a single-subject
level the sensitivity and specificity of a new SPM procedure compared
to subjective visual inspection of FDG-uptake distribution maps and to
the sole clinical information. Voxel-based SPM hypometabolism maps
were produced bymeans of spatial normalization to a new standardized
FDG-PET template that showed to increase reliability and accuracy of
estimated brain metabolic patterns (Della Rosa et al., 2014). Statistical
analysis was based on a large normal dataset (112 control scans) for
single-subject comparisons. A group of neuroimaging experts was indi-
vidually asked to provide a forced diagnosis and indicate their level of
confidence on the basis of a) summary of clinical data, b) visual inspec-
tion of Standard FDG Images, and c) assessment of SPM t-maps, in a
large series of patients with clinical diagnosis of neurodegenerative
disorders (i.e., AD, FTLD and DLB), and in subjects with Mild Cognitive
Impairment—MCI.

2. Material and methods

2.1. Subjects

A series of 88 subjects was retrospectively pooled from the popula-
tion database of the Neurology Centres for Cognitive Disorders in the
SanRaffaeleHospital (Milan, Italy).Medical history andneurological ex-
amination were provided by neurologists and neuropsychological as-
sessment by expert neuropsychologists within the above centres.
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The clinical information (medical history, neurological examination
and neuropsychological assessment) was evaluated by three neurolo-
gist experts in dementia diagnosis (AM, SFC, GM) that examined the
whole medical records related to the entire clinical course of each sub-
ject in order to correctly assign the clinical diagnosis at the follow-up,
which was used as gold-standard. Only subjects with the clinical
follow-up and complete diagnostic agreement by the three expert neu-
rologists (AM, SFC, GM) were included.

According to the diagnosis at the clinical follow-up (27.6 ± 4.1
months; range 22−35months) (gold-standard), we identified patients
fulfilling consensus criteria for AD (Jack et al., 2011; McKhann et al.,
2011; Dubois et al., 2010; Dubois et al., 2014) (n= 27; men 16, female
11; mean age = 67.40 ± 6.68; MMSE b 22; CDR global score range 1−
2), DLB (McKeith et al., 2005) (n = 9; men 3, female 6; mean age =
74.11 ± 6.90; MMSE b 23; CDR global score range 1−2) and for the
FTLD spectrum (n = 24; men 11, female 13; mean age = 68 ± 6).
FTLD patients included 10 behavioural variant of frontotemporal de-
mentia (bvFTD) (Rascovsky et al., 2011) (MMSE b 28; CDR global
score range 0.5−1), 5 primary progressive aphasias (PPA) (Gorno-
Tempini et al., 2011) (MMSE range 23−29; CDR global score range 0.5
−1), and 9 corticobasal degeneration syndrome (CBS) (Armstrong et
al., 2013) (MMSE b 21; CDR global score range 1−2). In addition, 28
subjects were classified at the baseline as MCI (Petersen et al., 2009)
(amnestic single-domain, non-amnestic single domain and
multidomain; men 16, female 12; mean age = 71.32 ± 5.67; MMSE
range 25–28; CDR global score 0.5). Among these, 7 subjects progressed
to dementia at follow-up (27.6±4.1months); while 6 reverted to cogni-
tive normal condition and 15 remained stable.

We selected 93 cognitively normal subjects by the European
Alzheimer Disease Consortium (EADC)-PET dataset (http://www.eadc.
info/) and 19 cognitively normal subjects that were previously acquired
in the Nuclear Medicine Dept of the San Raffaele Hospital. All of them
were included in the SPM procedure for statistical comparisons. Cogni-
tive health was established in each PET centre bymeans of a structured
clinical and a neuropsychological battery and subjects were followed up
for more than a year, as specified in a previous paper (Morbelli et al.,
2012).

The Institutional Ethical Committee at the University-Hospital San
Raffaele of Milan approved this study.

2.2. FDG-PET image acquisition procedure

FDG-PET acquisitions of the whole patient group and of 112 cogni-
tively normal subjects were performed according to the guidelines of
the European Association of Nuclear Medicine (EANM) (Morbelli et al.,
2012; Varrone et al., 2009).

All FDG PET images of the patients were acquired at the Nuclear
Medicine Dept., San Raffaele Hospital (Milan, Italy), with a Discovery
STE (GE Medical Systems, Milwaukee, WI) multi-ring PET tomography
(PET-CT) system (time interval between injection and scan start =
45 min; scan duration = 15 min).

2.3. SPM-FDG-PET image pre-processing

In order to obtain voxel-based statistical parametric hypometabolic
maps, each FDG-PET brain image scan was pre-processed using SPM5
(http://www.fil.ion.ucl.ac.uk/spm/software/SPM5/), running in Matlab
7.6 (MathWorks Inc., Sherborn, MA).

Functional normalization procedure allowed to place the images in
the standard MNI space using a new FDG-PET dementia-specific tem-
plate for spatial normalization, based on images derived from both neu-
rological patients (sample of scans representative of the various forms
of dementia in the population) and age-matched controls, developed
by Della Rosa et al. (2014), available to download in the “Templates”
section (on the SPM official website http://www.fil.ion.ucl.ac.uk/spm/).
We created this new [18F]-FDG PET population-specific template for
spatial normalization, since the standard spatial normalization requires
a non-linear registration of PET images to a [15O]-H2O template provided
with the SPMsoftware. FDGuptake (i.e., the pattern of signal intensities in
the [18F]-FDG PET image)may not be represented properly by the pattern
of signal intensities in the standard [15O]-H2O PET template which is
based on blood flow.

This Dementia-Specific FDG-PET template (Della Rosa et al., 2014)
was built by averaging and smoothing (with an 8-mm FWHMGaussian
filter) a number of 100 intensity and spatially normalized FDG-PET im-
ages (50 controls and 50 patients). This template was used to spatially
transform FDG-PET patient images to the MNI (Montreal Neurological
Institute) reference space, as it has been shown to provide a higher de-
gree of accuracy for spatial normalization of FDG-PET scans and a higher
statistical sensitivity at the single-subject level in SPM5, useful for clin-
ical purposes (Della Rosa et al., 2014).

Prior to normalization, we first performed approximate manual
image re-orientation and positioning to MNI space of each subject
FDG-PET image. To spatially normalize the FDG-PET patient images to
the Dementia-Specific FDG-PET template, we used the normalization
algorithm provided by SPM5 with the following parameter settings in-
cluding 12-parameters3 affine transformation, 7 × 8 × 7 discrete cosine
transform basis functions, no template and source weighting; discrete
cosine transform cut-off: 25 mm; 16 non-linear iterations and the
non-linear regularization term set to 1. No modulation (“preserve
concentrations”) and trilinear interpolation were used during final
reslicing.

Normalized images were written in the default SPM5 bounding box
with an isotropic voxel size of 2 mm. Visual inspections of normalized
images allowed to ensure registration quality and convergence of the
normalization procedure. Spatially normalized images of all subjects
were subsequently smoothed with an isotropic 3D Gaussian kernel of
8 mm FWHM before entering statistical analysis.
2.4. SPM-FDG-PET image single-subject analysis

A single-subject analysis for comparison to a cognitively normal con-
trol group (n = 112; age range 50–80 years) was performed using
SPM5 for all the included subjects.

In the application of SPMapproach, usually the number of images in-
cluded as control reference is very small (≤20) (Signorini et al., 1999),
and limited by ethical constraints dealing with the PET acquisition of
normal controls. It has been shown however, that increasing the sample
size of control database for comparison, improves the diagnostic perfor-
mances (Chen et al., 2008).

The control database used for comparison in our new approach
amounts to 112 images, which allows to use higher andmore conserva-
tive significance thresholds at both the voxel (p= 0.05 FWE-corrected)
and cluster level (extent N 100 voxels) and, even more importantly, to
correct formultiple comparisons (i.e., FWE: family-wise error correction).
This reduces the false positive rate and allows for more robust inference
on FDG patterns of hypometabolism when assessing neurodegenerative
diseases.

Furthermore, each FDG-PET scan of the healthy control group (n =
112) underwent an intensity rescaling and global count intensity nor-
malization (Della Rosa et al., 2014) to have the same mean intensities
(Friston et al., 1994; Buchert et al., 2005) in order to standardize the
magnitude of all voxel values in every image, thus accounting for poten-
tial sources of variability both between scanners (i.e., centre-specific
image scaling) or between individuals (i.e., patient weight, cardiac out-
put, the amount of injected radioactivity). Then, each FDG-PET scan of
the control group was normalized to the Dementia-Specific FDG-PET
template and tested for normality in a jack-knife approach, where
every normalized FDG PET scan was evaluated with respect to the re-
maining sample via the two sample t-test in SPM5 (Della Rosa et al.,
2014).

http://www.eadc.info
http://www.eadc.info
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/


448 D. Perani et al. / NeuroImage: Clinical 6 (2014) 445–454
Each FDG-PET patient image scan was tested for relative
‘hypometabolism’ by comparison with the reference group of 112 con-
trols on a voxel-by-voxel basis using the general linearmodel, bymeans
of the two sample t-test design of SPM5. Age was included as a covari-
ate. Due to the lack of any significant difference in metabolic activity
of male and female demented patients (Minoshima et al., 1997), gender
was not controlled in the analysis. The measurements were assumed to
be independent and have unequal variance between levels. Global nor-
malization of voxel values used proportional scaling to a mean voxel
value of 6.5 mg/100 mL/min (see Signorini et al., 1999 for details) to
minimize inter-subject variability. Proportional scaling basically scales
each image according to a reference count, which is the global brain ac-
tivity to a physiologically realistic reference value of 6.5 mg/100 mL/
min.

The thresholdwas left at the default 0.8 value (i.e., themean brain
intensity was computed from only those voxels with intensity above
0.8 of the mean over the entire scan). Voxel-wise comparisons were
made using an explicit FDG-PET mask (Ridgway et al., 2009). This
mask was created using the SPM masking toolbox to produce an
average binary mask, where the voxels from which to determine
the FDG-metabolism parameter estimates were restricted to an ex-
plicit mask. The latter resulted from optimal thresholding of voxels
in each image based on their correlation with an average image
(i.e., the average of FDG-PET images from the 112 healthy control
scans) with voxels not meeting the optimality criterion set to zero
(masked). This mask was applied (i.e., explicit masking option in
SPM5-GLMmodels) to restrict subsequent single-subject statistical anal-
yses only to within-brain voxels in order to eliminate variance due to
inter-subject variation and noise from outside the brain (Spence et al.,
2006).

The SPM comparison between each single FDG-PET scan and the
healthy control group of scans essentially provides regional differences
in relative glucose metabolism by means of a t-statistic for each voxel
(SPM-t maps). Clusters of decreased metabolism were considered sig-
nificant when they met a significance level of p = 0.05, corrected for
multiple comparisons with the family-wise error (FWE) option at the
voxel level, and contained more than 100 voxels.

2.5. Rating

Nine neuroimaging experts with an extensive experience in the de-
mentia diagnosis (DP, FF, EGV, AP, FN, SP, CC, VG, LG) were presented
with clinical and neuropsychological information (“Clinical Scenarios”)
(Fig. 1A), standard clinical display of FDG-PET images (“Standard FDG Im-
ages”) (Fig. 1B), and voxel-based statistical parametric hypometabolic
maps (“SPM Maps”) (see Fig. 1C). Raters were all experts in the field of
dementia research and diagnosis. They had a long lasting experience in
reporting of FDG-PET scans (i.e., visual assessment of Standard FDG Im-
ages and SPMMaps) togetherwith the clinical information. Theywere in-
formed that the study included patients who had at follow-up a clinically
confirmed diagnosis of AD, FTLD spectrum (including different subtypes),
DLB, as well as MCI subjects.

2.6. Rating materials

2.6.1. Clinical and neuropsychological information (Clinical Scenarios)
An anonymized score sheet grid was built for each patient at baseline

(near and before the FDG-PET scan). It summarized general clinical infor-
mation (onset, disease duration, age, education, comorbidity), neurologi-
cal signs, cognitive symptoms (impairments of memory, executive
functions, language, visuo-spatial, orientation, praxia), behavioural
changes (positive and negative symptoms, as well as sleep disorders),
global cognitive efficiency (i.e., Mini Mental State Examination (MMSE)
score), and functionality (i.e., Activities of Daily Living (ADL) and Instru-
mental Activities of Daily Living (IADL) scores) (Fig. 1A). Results of a de-
tailed neuropsychological battery were also provided for each subject
on a separate sheet. In particular, the administered testswere ReyAudito-
ryVerbal Learning Test, Rey3sfigure recall test, verbal andvisual digit span
tasks, attentive matrices, phonological and semantic fluency, Token test,
Aachener Aphasie Test (AAT) or “Batteria per l3analisi dei deficit afasici”
(BADA) subtests, Rey3s figure copy and Raven3s progressive matrices
scores.

2.6.2. Standard display of FDG-uptake (Standard FDG Images)
A standard anonymous display of FDG-PET distributionwas generat-

ed for each subject. Each image was reoriented to the AC–PC line and
then displayed in a 5 × 5matrix of transaxial images (i.e., 25 axial slices)
from rostral to ventral brain sections in a radiological convention
(i.e., left = right; right = left). Each axial slice covered 4 mm on the z-
axis. Images were shown as relative metabolic rates with the highest
and lowest pixel values in the scan placed at the highest value (100%
red–pink) or lowest value (0% blue–purple) according to a rainbow col-
our scale.

2.6.3. Voxel-based SPM hypometabolic maps (SPM Maps)
We provided raters with SPM-t coloured anonymous displays of

FDG-PET hypometabolic overlaid on a canonical MRI T1-weighted
structural brain scan in the MNI space. Each SPM map included the
same matrix (i.e., 5 × 5 matrix of transaxial images) used for the visual
inspection of the Standard FDG Images. SPM Maps were displayed in a
neurological convention (i.e., left = left; right = right). Each axial
slice covered 4 mm on the z-axis ranging from −40 to +56. Images
showed statistically significant reductions of metabolism with the sig-
nificant t-values in yellow/red scale.

2.7. Rating procedure

2.7.1. Step 1
Each rater independently evaluated one type of information for each

subject: a) Clinical Scenarios; or b) Standard FDG Images; or c) SPM
Maps. Thus, the raters were presented with the Standard FDG Images
or SPMMaps independently for any given subject and in both situations
were blinded to any clinical data. Raters were asked to make a forced di-
agnosis of AD, FTLD spectrum, or DLB, and also of negative PET scan, and
to indicate the degree of diagnostic confidence on a 3-point scale (1—poor
confidence, 2—mediumconfidence or 3—high confidence). Thediagnostic
labels assigned by each rater were compared to the clinical diagnosis at
follow-up (the gold standard).

All raters were then informed that all patients included in this study
had a follow-up clinically confirmed diagnosis of AD or DLB, FTLD sub-
types, stable MCI or MCI conversion or reversion, but they did not
know the proportion of subjects with each diagnosis.

Based solely upon the Standard FDG Images or the SPMMaps, raters
were first asked to grade the level of overall scan abnormality as normal,
uncertain or abnormal. Second, raters were instructed to report more
extensive details on brain metabolism, encompassing the involved
brain lobes, (i.e., frontal, temporal, parietal, occipital) and they had to
decide whether they were hypometabolic or not and /or if the pattern
of hypometabolism was bilateral or distributed in asymmetrical way
(i.e., Nleft hemisphere or Nright hemisphere). Third, raters were asked
to focus onmore specific brain areas critical to the differential diagnosis
of specific neurodegenerative diseases. Hypometabolism in specific brain
regions was rated, namely in the anterior cingulate cortex (ACC), medial
frontal cortex, orbito-frontal cortex, frontal operculum; in the inferior
and superior parietal lobules, parietal operculum, precuneus, posterior
cingulate cortex; in the temporal lateral cortex, temporo-medial cortex
and temporal pole and; in the medial and lateral occipital cortices. Sub-
cortical structures, namely the thalamus and basal ganglia, as well as
the midbrain were also included in the list of specific areas to be rated.
As in the former case, raters had to decide whether these areas were
hypometabolic or not and/or if the pattern of hypometabolismwas bilat-
eral or asymmetrical.



Fig. 1. Example of thematerial provided for each subject: A) a Clinical Scenario; B) a Standard FDG Image and C) an SPMMap of a patient affected by behavioural variant of frontotemporal
dementia. L = Left; R = right.
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2.7.2. Step 2
The procedure for evaluation of the Clinical Scenarios, the Standard

FDG Images and the SPM Maps was identical as those outlined above
for step 1. The only difference was that each rater saw for each subject
the Clinical Scenarios first and initially entered their diagnosis and de-
gree of diagnostic certainty based exclusively upon this information.
Second, the rater could be presented with the Standard FDG Images or
SPM Maps along with the Clinical Scenarios and was asked to evaluate
the combination of both types of information, either Clinical Scenarios
plus Standard Images or Clinical Scenarios plus SPM Maps, asking
them for assessments of overall degree of scan normality, the presence
of hypometabolism inmore extensive or specific regions and of a poten-
tial asymmetrical pattern. Finally, they were asked to make a forced di-
agnosis among the predefined disease categories added with their
degree of confidence independently from the one indicated solely on
the basis of the clinical information, thusmaybe resulting in a potential-
ly different diagnostic choice. The aim of step 2 was to assess the differ-
ential value of adding qualitative (Standard FDG Images) or quantitative
(SPMMaps) information to Clinical Scenarios as a support for both diag-
nostic accuracy and confidence.

Clinical Scenarios, Standard FDG Images and SPM Maps for steps 1
and 2 were sent independently to raters on separate dates (i.e., a
6 month time gap) and had different alphanumeric codes. In this way,
raters could not associate or compare information across subjects and
between the two steps.

2.8. Study design

The three types of information (i.e., Clinical Scenarios, Standard
FDG Images, and SPMMaps) were associated to each subject in a fac-
torial manner and arranged according to six possible permutations
(i.e., Clinical Scenarios−Standard FDG Images−SPM Maps, Clinical
Scenarios−SPM Maps−Standard FDG Images, Standard FDG Images−
Clinical Scenarios−SPM Maps, Standard FDG Images−SPM Maps−
Clinical Scenarios, SPM Maps−Clinical Scenarios−Standard FDG Im-
ages, and SPM Maps−Standard FDG Images−Clinical Scenarios). For

image of Fig.�1
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each diagnostic group, a comparable number of subjects was assigned
to each permutation (no. of subjects/no. of permutations), in order for
each permutation to be equally represented among considered demen-
tia conditions. The sequence according to which each permutation was
assigned to each successive subject in each diagnostic group was ran-
domized. This design was implemented in order to have the same
amount of subjects rated for each of the three types of information,
and to test agreement between different pairs of raters on the same in-
formation and between the same pair of raters on different types of
information.

Overall rater consensus was also evaluated independently for each
type of information by computing a contingency coefficient measuring
the association between the follow-up diagnostic category and the
rated disease category as indicated in the study.

A set of twelve subjects was used as a consistency sample in order to
assess reliability of the rating procedure.

2.9. Statistical analysis

2.9.1. Step 1
The diagnostic labels assigned by each rater were evaluated accord-

ing to the clinical diagnosis at follow-up (gold standard).
In order to assess the diagnostic power of each type of information,

sensitivity and specificity were computed independently for Clinical
Scenarios, Standard FDG Images and SPM Maps information and
expressed as percentages, averaged across the nine raters andweighted
by the number of subjects evaluated by each rater for each type of
information.

Moreover, for each type of information, we calculated both positive
and negative likelihood ratios (LR+ and LR−), which provide the
ratio between the probability of positive or negative test outcome in pa-
tients and the probability of positive or negative test outcome in true
negatives. LR+ ≥ 5 and LR−≤ 0.2 are agreed upon as being diagnosti-
cally useful (Frisoni et al., 2013).

The inter-rater agreement was calculated by rater for all possible
rater pairs evaluating the same subjects for each type of information.
An average phi-value between rater pairs and a chi-transformwas com-
puted independently for Clinical Scenarios, Standard FDG Images and
SPMMaps and tested for significance. Inter-rater reliability by subjects
was assessed using k-statistics calculated on the basis of the agreement
between the two raters judging each subject, independently from the
designated pair among all the possible rater pairs. The level of agree-
ment based on the k-statistics was classified as fair (k = 0.20–0.39),
moderate (k=0.40–0.59), substantial (k=0.60–0.79), and almost per-
fect (k = 0.80–1.00) (Foster et al., 2007).

Diagnostic accuracy was also assessed for Clinical Scenarios, Stan-
dard FDG Images and SPMMaps taking in consideration the percentage
of rated false negatives (FN%) for the two major dementia categories
here represented (i.e., AD and FTLD), and by means of a concordance
index using an unanimity rule for the rater pair (number of correctly
classified subjects when the rater pair is concordant). Three indepen-
dent logistical models were fit to a categorical variable representing
an AD or FTLD diagnosis at follow-up, using as predictor variable only
the correctly and concordantly classified AD or FTLD subjects by the
rater pair through Clinical Scenarios, Standard FDG Images or SPM
Maps in order to estimate a concordance index for each type of informa-
tion on the basis of diagnostic accuracy. Predicted group classification
probabilities were then used for ROC curves corresponding to Clinical
Scenarios, Standard FDG Images and SPMMaps in order to assess the av-
erage performance of the three types of information. The area under the
curve (AUC) was computed in order to test the accuracy of each infor-
mation type.

2.9.2. Step 2
Clinical information combinedwith the Standard FDG Images (Clinical

Scenarios plus Standard FDG Image) or SPMMaps (Clinical Scenarios plus
SPM Maps) was evaluated for each subject. The randomized procedure
for evaluation of the three types of information was identical for both
steps 1 and 2.

In order to measure the level of agreement between the raters for
Clinical Scenarios plus Standard FDG Images or Clinical Scenarios plus
SPM Maps on consistency subjects, we computed a generalized kappa
coefficient and used the z-statistic to test the null hypothesis, given
the equal number of ratings. We then compared in an ANOVA model
the level of confidence (LOC) inmaking a diagnostic choice only for cor-
rectly classified subjects in each disease category. In addition, consider-
ing only AD and FTLD groups, i.e. the two major dementia categories
here represented, we assessed the strength of Standard FDG Images or
SPM Maps in terms of correctly classifying those AD or FTLD subjects,
which were misclassified based solely upon Clinical Scenarios.

For both combinations (i.e., Clinical Scenarios plus Standard FDG Im-
ages or Clinical Scenarios plus SPM Maps), raters were also asked to
specify the hypometabolic brain regions as well as the whole-brain dis-
tribution of the pattern (i.e., bilateral or asymmetrical).

In order to quantify the contribution of the identification of selected
hypometabolic patterns through Standard FDG Images or SPM Maps to
the correct classification of AD and FTLD spectrum, we computed an
index, expressed as the differential % of incidence (DI) of localized
hypometabolism in disease-specific areas between Standard FDG Im-
ages and SPM Maps for either AD or FTLD. Only the AD and FTLD sub-
jects that were correctly and concordantly classified by each rater pair
were taken in consideration. The % difference between the number of
times an area was rated as hypometabolic through Standard FDG Im-
ages and SPM Maps was calculated for each specific area weighted by
the total number of correct classifications for either AD or FTLD, inde-
pendently for Standard FDG Images and SPM Maps. Only areas with
an index above 10% were considered.

Finally, LOC for correctly evaluating MCI was also compared be-
tween Standard FDG Images (Clinical Scenarios plus Standard FDG Im-
ages) or SPM Maps (Clinical Scenarios plus SPM Maps).

3. Results

3.1. Step 1

Raters3 performance for diagnostic accuracy and confidence levels is
illustrated in Figs. 2 and 3 (see also thefigure on the supplementaryma-
terials). Analysis of raters3 performances for diagnostic accuracy indicat-
ed higher sensitivity and specificity values for SPMMaps (96% and 84%),
compared to Clinical Scenarios (91% and 40%) and Standard FDG Images
(78% and 50%), considering the total sample of 88 subjects. Diagnostic
LR+ was better for SPM Maps (6.08) than for Standard FDG Images
(1.55) or Clinical Scenarios (1.52), exceeding the LR+ accuracy cut-off
(≥5) only for SPM Maps. LR-values were best for SPM Maps (0.05)
and very poor for Standard FDG Images (0.45) and Clinical Scenarios
(0.22), with only SPM Maps fell below LR-cut off (≤0.2) (see Fig. 4A
and 4B).

The chi-transforms of average phi-values measuring inter-rater
agreement between each rater pair were higher for SPM Maps (χ2 =
173.53, p b 0.001) than for Clinical Scenarios (χ2 = 126.04, p = 0.01)
and lowest for Standard FDG Images (χ2 = 79.29, p = 0.9).

The k-statistic measuring inter-rater reliability by subjects indepen-
dently of the rater pair was substantial for SPMMaps (k= 0.6), moder-
ate for Clinical Scenarios (k = 0.4) and fair for Standard FDG Images
(k = 0.3).

The contingency coefficient (C) measuring general association be-
tween diagnosis at follow-up and rated category for all disease catego-
ries and overall rater consensus was higher for SPM Maps (C = 0.722,
p b 0.0001) than for Clinical Scenarios (C = 0.673, p b 0.0001) or Stan-
dard FDG Images (C = 0.678, p b 0.0001).

When considering only AD and FTLD, the average false-negative rate
for SPM Maps was 0%, for Clinical Scenarios 2% and for Standard FDG



Fig. 2. Mean raters3 performance for diagnostic accuracy and confidence level in dementia patients. Each horizontal bar represents the ratings in a single subject for each of the three
information (Clinical Scenarios, Standard FDG Images and SPMMaps). Clinical diagnoses judged to be correct are shown in shades of red (red= very confident, orange= somehow con-
fident, pale orange = unsure). Incorrect diagnoses are shown in shades of blue (dark blue = very confident, azure = somehow confident, sky blue = unsure).

Fig. 3.Mean raters3 performance for diagnostic accuracy and confidence level in MCI sub-
jects who converted to dementia or reverted to normal condition. Each horizontal bar rep-
resents the ratings in a single subject for Standard FDG Image (left column) and SPMMap
(right column) information. Clinical diagnoses judged to be correct are shown in shades of
red (red = very confident, orange = somehow confident, pale orange = unsure). Incor-
rect diagnoses are shown in shades of blue (dark blue = very confident, azure = some-
how confident, sky blue = unsure).
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Images 16%. Logistic regressions testedwhether SPMMaps is amore ro-
bust metric than Clinical Scenarios or Standard FDG Images in terms of
both concordance and accuracy for the classification of FTLD with re-
spect to AD. It revealed that the SPM Maps model (beta = 1.414; p =
0.019) correctly classified a significantly higher number of concordant
subjects in the FTLD group, compared to the Clinical Scenarios (beta =
0.671; p = 0.291) or Standard FDG Images (beta = −0.041; p =
0.945), considering AD classification as the reference. ROC curves mea-
suring of the goodness-of-fit of the SPM Maps, Clinical Scenarios and
Standard FDG Images models indicated that the AUC was 0.67 for SPM
Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images.
The asymptotic significance was inferior to 0.05 only for the SPM
Maps model (p = 0.039; Clinical Scenarios: p = 0.416; Standard FDG
Images: p = 0.955). This means that the logistic regression using the
SPM Maps information classified correctly and concordantly the FTLD
group significantly better than chance (see Fig. 5).
3.2. Step 2

The overall inter-rater diagnostic agreement based on a generalized
kappa coefficient for consistently rated subjects was substantial for
Clinical Scenarios plus SPM Maps combination (k = 0.6; z = 10.57,
p b 0.0001) and only moderate for Clinical Scenarios plus Standard
FDG Images (k=0.4; z=5.99, p b 0.0001). Viewing the Clinical Scenar-
ios plus SPM Maps combination (mean LOC = 2.4) significantly in-
creased the diagnostic confidence as compared to Clinical Scenarios
plus Standard FDG Images (mean LOC = 2.07) (p = 0.003). In the
case of the FTLD spectrum only a trend was present in the same
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Fig. 4. A) Sensitivity (blue) and specificity (red) values of Clinical Scenarios, Standard FDG Image and SPMMaps. B) Positive (LR+) (dark grey) and negative (LR−) likelihood (pale grey)
ratio for correct classification of patients, broken down by type of information.
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direction (Clinical Scenarios plus SPM Maps mean LOC = 2.26; Clinical
Scenarios plus Standard FDG Images mean LOC = 1.97, p = 0.078).

In the subjects with a correct diagnosis of AD, raters found
hypometabolism in the temporo-parietal (DI = +26%) and posterior
cingulate regions (DI = +38%) more frequently with SPM Maps than
Standard FDG Images. In the subjects with correct diagnosis of FTLD,
the anterior cingulate cortex (DI = +16%), the medial frontal cortex
(DI = +12%) and the superior anterior temporal cortex (DI = +18%)
in the left hemisphere were identified as hypometabolic much more
frequently with SPMMaps than with Standard FDG Images.
Fig. 5. ROC curve for Clinical Scenarios (area under the ROC curve (AUC) = 0.57), Standard FD
classification through SPM Maps.
3.3. MCI evaluation

Within the MCI group, the 7 subjects who progressed to dementia
(i.e., 5 AD and 2 FTLD)were all correctly classified by SPMMaps at base-
line. Only 2MCI subjects who progressed to ADwere correctly classified
by the Standard FDG Images. All MCI subjects classified as AD at
follow-up showed the typical hypometabolic pattern suggestive for
AD (Anchisi et al., 2005; de Souza et al., 2013; Herholz et al., 2002;
Teune et al., 2010) and characterized by bilateral temporo-parietal
hypometabolism, and also involving precuneus/posterior cingulate
G Images (AUC= 0.50) and SPMMaps (AUC= 0.67) models, showing the better correct
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cortex. One subject classified at baseline as executive non-amnestic
MCI presented frontal and anterior temporal hypometabolism with
prevalent involvement of ventro-medial prefrontal cortex, a pattern
suggestive of bvFTD (Rascovsky et al., 2011; Teune et al., 2010;
Salmon et al., 2003). One additional subject, clinically classified as
amnestic single-domain MCI at baseline showed predominant anterior
temporal polar hypometabolism, typically described in association
with the semantic variant of primary progressive aphasia (svPPA)
(Gorno-Tempini et al., 2011). The latter two subjects both fulfilled criteria
for respectively bvFTD and svPPA at follow-up (Gorno-Tempini et al.,
2011; Rascovsky et al., 2011). See also Fig. 3 for details.

SPM analysis identified also specific hypometabolic patterns sugges-
tive for different neurodegenerative conditions (i.e., AD, DLB, FTLD) in
15MCI subjectswho did not convertwithin the time frame of the present
clinical study. A longer follow-up would be necessary in these subjects to
obtain values in the prediction of disease progression.

The SPM Maps of six MCI individuals (3 amnestic single domain, 2
amnesticmulti-domain and 1 visuo-spatial non-amnestic) showed nor-
mal brain metabolism at baseline. On the basis of this information they
were all classified as negative by each rater. At follow-up, all these sub-
jects reverted to normal cognition.

Compared to Clinical Scenarios plus Standard FDG Images, the effect
of adding SPM Maps to Clinical Scenarios on ratings was significantly
morebeneficial for correctly classifying bothpositiveMCIwhoprogressed
and the negative MCI category (Clinical Scenarios plus SPM Maps mean
LOC = 2.46; Clinical Scenarios plus Standard FDG Images mean LOC =
1.81, p b 0.001).

4. Discussion

The main result of this single-subject study is that the SPM-based
tool for the analysis of FDG-PET imaging improved diagnostic accuracy
in dementia and pre-dementia conditions compared to visual inspec-
tion of FDG-uptake distribution, providing also additional value to clin-
ical information. Our data add solid evidence to the importance of
metrics in the clinical setting (Frisoni et al., 2013; Foster et al., 2007;
Perani et al., 2014).

In summary, analysis of performances showed very high sensitivity
and specificity for SPMMaps (96% and 84%) as compared to Clinical Sce-
narios (91% and 40%) and Standard FDG Images (78% and 50%) (Fig. 4A).
Independentmeasures of diagnostic accuracy (LR+and LR−)were bet-
ter for SPM Maps than Standard FDG Images with only SPM Maps ex-
ceeding the proposed cut-off value for dementia diagnosis (Fig. 4B).

Noteworthy, SPM Maps showed higher inter-rater agreement com-
pared to the other types of information. All this results in a substantial
reliability of SPM analysis for the diagnostic classification, confirming
that the assessment of SPM disease-specific hypometabolic patterns is
less influenced by the specific reader expertise than visual inspection.

In the case of the differential diagnosis between AD and FTLD, there
is evidence of a high percentage of false-negative with visual inspection
(16%). On the contrary, SPM analysis yielded no false negatives. ROC
curves showed that SPM information is a very robustmetric to correctly
and concordantly differentiate among diagnostic groups (see Fig. 5). In
particular, the ROC area under the curve (AUC) proves that SPM-t
maps classified FTLD subtypes better than visual inspection, underlining
the importance of voxel-based analysis for differential diagnosis, espe-
cially in the case of dementia subtypeswithmore heterogeneous genet-
ic and pathological signatures, such as those within the FTLD spectrum.

Moreover, SPM single subject information provides more diagnostic
strength to clinical information than Standard FDG Images. Noteworthy,
viewing the SPM Maps in combination with Clinical Scenarios signifi-
cantly increased diagnostic confidence as compared to the combination
of Clinical Scenarios and Standard FDG Images.

Finally, SPM analysis allowed a better delineation of the anatomical
signatures specific forADandFTLD spectrum, as shownby the diseasedif-
ferential indexes. Crucially, hypometabolism in the temporo-parietal and
posterior cingulate for AD subjects, and the anterior cingulate, medial
frontal and superior anterior temporal cortices for bvFTD subjects was
more frequently identified by SPMMaps than Standard FDG Images.

The assessment of measured level of confidence revealed that diag-
nostic confidence of clinical information was lower in FTLD variants, in
DLB and in some AD patients with atypical presentation. This could be
partially ascribed to the fixed format of the clinical scenario that might
have neglected some crucial clinical details. Nevertheless, the use of
SPMMaps added a further value to clinical evaluation providing the cli-
nician a higher degree of accuracy compared to Standard FDG Images.

The results of raters3 performances on the MCI group proved that
SPM Maps allow identifying with significantly stronger confidence dis-
tinct patterns of hypometabolism underlyingMCI condition at the base-
line, which predicted the further progression of cognitive decline to
different dementia conditions at the clinical follow-up. According to
previous findings, heterogeneous hypometabolic profiles may be recog-
nized using FDG-PET inMCI subjects developing into different dementia
diseases (Mosconi et al., 2008; Yakushev et al., 2009). In addition, the
MCI individuals who reverted to normal cognition at the follow-up
were all negative on SPM analysis at the baseline, thus supporting the
role of our new SPM tool as an exclusionary test. It has been highlighted
that a cognitively impaired subject with a negative PET scan has a low
chance in the progression of cognitive disorders towards dementia
(Silverman et al., 2008).

It is now known that different operating procedures of imaging bio-
markers (visual inspection vs. semi-quantitative/quantitative method)
can be responsible for the heterogeneous levels of their estimated diag-
nostic and prognostic accuracy (see Frisoni et al., 2013 and Perani et al.,
2014 for meta-analyses). Within the different operating procedures for
FDG-PET imaging, voxel-based analyses at a single-subject level are the
most accurate, thus mandatorily calling for an objective statistical anal-
ysis of FDG-PET brain images that allows to reach the highest sensitivity
and specificity (Perani et al., 2014).

Given that accuracy in dementia diagnosis highly depends not only
on which marker (topographic or pathological) is used, but also on
how it is measured (qualitative or semi-quantitative/quantitative)
(Frisoni et al., 2013), in this context, we showed that SPMMaps specif-
ically improve FDG-PET imaging in dementias.

Themain limitation of this study that resides in the lack of patholog-
ical confirmation needs to be acknowledged. Further studies are neces-
sary and some are in due course, in order to replicate the results in
multi-site trials.
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