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Skeletal muscle has a remarkable capacity to regenerate following injury, a property
conferred by a resident population of muscle stem cells (MuSCs). In response to injury,
MuSCs must double their cellular content to divide, a process requiring significant
new biomass in the form of nucleotides, phospholipids, and amino acids. This new
biomass is derived from a series of intracellular metabolic cycles and alternative routing
of carbon. In this review, we examine the link between metabolism and skeletal muscle
regeneration with particular emphasis on the role of the cellular microenvironment in
supporting the production of new biomass and MuSC proliferation.
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INTRODUCTION

Skeletal muscle has a remarkable potential to regenerate following injury, a property conferred by
a population of local somatic stem cells termed muscle stem cells (MuSCs). In response to damage
or trauma, local MuSCs are quickly activated and undergo extensive rounds of proliferation,
differentiation, fusion and maturation in order to repair and/or replace damaged tissue (Charge
and Rudnicki, 2004; Relaix and Zammit, 2012; Wosczyna and Rando, 2018). The extent of the
MuSC response varies depending on the severity of the initial insult; ranging from a minor strain to
major trauma from laceration, ischemia-reperfusion, or myotoxicity. Importantly, the proliferative
response of MuSCs to injury is dependent on the capacity of these cells to double their cellular
content, requiring synthesis of new biomass in the form of nucleotides, phospholipids, and non-
essential amino acids (NEAA) (Koopman et al., 2014; Hosios et al., 2016). Synthesis of these
molecules requires a ready supply of carbon-based precursors, satisfied by nutrients in the local
extracellular tissue environment.

In this review, we will discuss recent findings linking cellular metabolism and the extracellular
environment to cell division, and how efficient carbon routing is critical for MuSC proliferation
and successful skeletal muscle regeneration. First, we will provide a brief overview of skeletal
muscle regeneration.

AN OVERVIEW OF SKELETAL MUSCLE INJURY AND REPAIR

Muscle injuries can result from physical insults, diseases, toxins, and following ischemia (Souza
and Gottfried, 2013). Although mechanical damage to muscle fibers can occur with daily activities
and exercise, more severe injury can result in an irreversible loss of functional capacity. These
more severe injuries include; contusion, strain, or laceration (Järvinen et al., 2005). Contusions are
the most common mechanical insult, arising from a blunt, non-penetrating force that can rupture
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blood vessels and cause hematomas (Crisco et al., 1994). Strain
injuries arise from high external loads that overstretch activated
myofibers, damaging their structure and in more severe cases,
the interconnections between muscle-tendon and tendon-bone
(Nikolaou et al., 1987). A higher risk of strain injuries comes with
advancing age or diseases that render muscles more vulnerable
to damage (Lynch, 2004; Baker, 2017). Laceration is caused by
a penetrative or crushing force, often leading to tissue loss and
formation of scar tissue (Garrett et al., 1984). These severe muscle
injuries require longer periods of regeneration and carry an
increased risk of incomplete muscle repair.

Muscle regeneration is complex, requiring the coordinated
activity of inflammatory cells, fibroblasts, mesenchymal cells, and
MuSCs to ensure complete restoration of vasculature, nerves, and
myofibers (Christov et al., 2007; Dumont et al., 2015). As mature
myofibers are post-mitotic, muscle regeneration is dependent on
an adequate population of viable MuSCs.

In the absence of injury, MuSCs typically exist in a
quiescent state outside of the cell cycle, residing between
the plasma membrane of a myofiber and the basement
membrane (Mauro, 1961). During homeostasis, MuSCs do
not actively proliferate and typically account for 2–10% of
myonuclei, depending on age, sex, and muscle type (Dumont
et al., 2015). Upon activation, MuSCs produce a progeny
of myogenic cells that can differentiate, culminating in the
formation of mature muscle fiber (Figure 1). During this
process, MuSCs typically become specified to the myogenic
lineage after activation and then undergo multiple rounds
of proliferation to generate sufficient myonuclei to support
protein synthesis and mature muscle formation (Bischoff, 1990).
These proliferating myogenic precursors (myoblasts) then exit
the cell cycle and terminally differentiate to myocytes which
subsequently fuse to form myotubes. Muscle regeneration is
completed through further rounds of myoblast fusion and muscle
fiber maturation (Knudsen and Horwitz, 1977). Importantly, a

small subpopulation of myoblasts return to quiescence so as to
restore the MuSC pool.

It is important to note the balance between differentiation
and maintenance of the MuSC pool during regeneration. While
the majority of MuSCs will undergo activation and proliferation
after injury, a sub-population of MuSCs must be maintained for
regeneration of subsequent injuries (Collins et al., 2005; Sacco
et al., 2008). To maintain this population, MuSCs may undergo
symmetric or asymmetric division, respectively, producing either
two identical daughter cells or both a single undifferentiated
daughter cell and a committed myogenic precursor (Dumont
et al., 2015). Control of differentiation versus self-renewal of
MuSCs is governed by transcription factors, epigenetics and
signaling pathways, and achieving an appropriate balance is
key to sustaining muscle plasticity and regenerative capacity
(Yin et al., 2013).

When muscle fibers are damaged, MuSCs are activated by
both physical and chemical signals. With severe mechanical
muscle injuries, ruptured blood vessels cause local hematoma
and affected myofibers seal off damaged portions of the cell to
prevent the spread of necrosis (Carpenter and Karpati, 1989;
Hurme et al., 1991). Resident mast cells release cytokines that
increase blood flow and attract circulating inflammatory cells.
These cells phagocytose necrotic debris and release cytokines
that promote survival of damaged cells (Pillon et al., 2012).
The rate of muscle regeneration is also highly dependent on
angiogenesis, as blood vessels and endothelial cells supply
nutrients and mitogens for MuSC growth (Järvinen, 1976;
Christov et al., 2007). Direct damage to the basal lamina or
expression of matrix metalloproteinase stimulated by nitric
oxide release, may further release trapped growth factors in the
extracellular matrix that also encourage activation of MuSCs
(Dimario et al., 1989; Tatsumi, 2010). These signals cause
MuSCs to leave quiescence, migrate to the site of injury and
begin proliferating.

FIGURE 1 | Muscle stem cell (MuSC) mediated skeletal muscle regeneration. Following injury, quiescent MuSCs are activated and undergo rapid proliferation,
followed by differentiation into myocytes, which fuse and mature to generate new muscle fibers.
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After sufficient proliferation, myocytes fuse to form new,
immature myotubes or fuse to existing injured fibers (Knudsen
and Horwitz, 1977). Immature myotubes are centrally nucleated
and gain functional capacity as they increase in size and
express contractile proteins. This fusion is supported by
the infiltrated inflammatory cells, as they adopt an anti-
inflammatory phenotype that prevents excess damage to
remaining healthy tissue (Arnold et al., 2007). The maturation
and hypertrophy of myotubes is also supported by the release
of insulin-like growth factor 1 (IGF1) from anti-inflammatory
M2 macrophages, stimulating protein synthesis through the
activation of the Akt-1/mTOR signaling pathway (Rommel et al.,
2001; Park and Chen, 2005).

The role of metabolism and the local microenvironment in
muscle regeneration has recently received attention (Ryall et al.,
2015a; Pala et al., 2018; Yucel et al., 2019), but a comprehensive
analysis is lacking. Given the active role of metabolism in the
proliferation and differentiation of tumor cells and ESCs (Yanes
et al., 2010; Lunt and Vander Heiden, 2011), exploring the
link between the microenvironment and MuSC metabolism may
help identify novel targets to improve both the rate and extent
of muscle repair after injury. Additionally, as many skeletal
muscle pathologies are linked to a shift in the local metabolic
environment (Chi et al., 1987; Joseph et al., 2018), and many
metabolic disorders result in impaired skeletal muscle repair
(D’Souza et al., 2016; Monaco et al., 2018), it is critical that
we understand the link between MuSCs and their local tissue
microenvironment.

A LINK BETWEEN METABOLISM AND
SKELETAL MUSCLE REGENERATION

All cells require energy (in the form of ATP) to sustain
the critical enzymatic reactions which support life (Bonora
et al., 2012; Petersen and Verkhratsky, 2016), with the loss
or significant depletion of ATP resulting in necrosis and cell
death (Eguchi et al., 1997). Cellular ATP is primarily generated
via either glycolysis or oxidative phosphorylation (OxPhos) in
the mitochondria, a process linking the acetyl-coA produced
from either glycolysis or fatty-acid oxidation to the tricarboxylic
acid (TCA) cycle and the electron transport chain. However,
in addition to producing ATP dividing cells must double their
cellular content, imposing a large demand for the generation of
new biomass in the form of nucleotides for DNA/RNA, amino
acids for proteins, and phospholipids for cellular membranes
(Lunt and Vander Heiden, 2011). Therefore, it is unsurprising
that both the local metabolic environment and innate cell
metabolism can dictate processes such as the rate of proliferation
and/or differentiation (DeBerardinis et al., 2008; Ryall and Lynch,
2018; Zhu and Thompson, 2019).

In one of the first studies to investigate metabolism and
MuSC biology, Rocheteau et al. (2012) observed that MuSCs
freshly isolated from uninjured skeletal muscle contained variable
levels of mitochondria, with an inverse correlation between
mitochondria density and the expression of the transcription
factor Pax7. The authors observed that Pax7Hi cells contained the

lowest level of mitochondria, while Pax7Lo contained the highest.
More recently, quiescent MuSCs have been found to transition
between quiescence and an intermediate phase termed GAlert,
with MuSCs rapidly shifting to this alert phase following injury
(Rodgers et al., 2014). Of relevance to the current discussion
was the finding that MuSCs in the alert phase were larger and
exhibited a greater level of mitochondrial DNA. Whether the
Pax7Lo MuSCs identified by Rocheteau et al. (2012) were in the
GAlert phase has yet to be confirmed.

In the context of skeletal muscle injury and repair, MuSCs
undergo a metabolic switch from fatty-acid oxidation in
quiescence to an increased reliance on glycolysis during in vitro
activation and proliferation (Ryall et al., 2015b). This shift toward
glycolysis in activated MuSCs has been confirmed in vivo by
Pala et al. (2018), who performed an extensive characterization
of metabolism in quiescent and active MuSCs and found
that the extracellular acidification rate (ECAR, a measurement
of glycolytic activity) and oxygen consumption rate (OCR, a
measure of OxPhos), was highest in MuSCs isolated from skeletal
muscle 3 days post-injury. This peak in metabolic activity occurs
during a period of rapid MuSC proliferation (Gayraud-Morel
et al., 2009; Quintero et al., 2009; Kimura et al., 2015; Hardy et al.,
2016; Xiao et al., 2016). Interestingly, the first 24–48 h of MuSC
activation are marked by a significant increase in autophagic
flux, with inhibition of autophagy leading to a delay in MuSC
activation (Tang and Rando, 2014). The precise role of this
acute rise in autophagy, and its importance in terms of MuSC
proliferation has yet to be determined.

The peak in ECAR in MuSCs has been observed to decline
by day five post-injury, without a concomitant decrease OxPhos,
suggesting that a transition toward OxPhos may be required
as MuSCs return to a quiescent state (Pala et al., 2018).
A similar switch has been observed in many other proliferating
cell types including ESCs, hematopoietic stem cells (HSCs),
induced pluripotent stem cells (iPSCS) and most notably in
cancer cells, and is termed “aerobic glycolysis” or “The Warburg
Effect” (Warburg, 1956; Suda et al., 2011; Zhang et al., 2012;
Moussaieff et al., 2015).

Professor Otto Warburg first defined the process of aerobic
glycolysis in highly proliferative tumor cells, after observing that
even in the presence of saturating levels of oxygen, these cells
consumed large amounts glucose and extruded lactose (Warburg,
1956). Since this seminal work, researchers have found a link
between elevated glucose consumption and cell proliferation in
a wide range of cell types including embryonic kidney cells,
cancer cells, vascular smooth muscle cells, mesenchymal stem
cells, and ESCs (Saki et al., 2013; Han et al., 2015; Shao et al.,
2018). While differentiated cells typically convert one molecule of
glucose into two molecules of ATP and two molecules of pyruvate
which are then used to drive OxPhos in the mitochondria to
produce an additional 30–34 molecules of ATP, proliferating cells
re-route glycolytic intermediates to drive anabolic reactions and
the production of new biomass (Vander Heiden et al., 2009).
Under these conditions, each molecule of glucose generates
significantly less than two molecules ATP and two molecules
of pyruvate. Therefore, proliferating cells must carefully balance
their production of biomass with the need for ATP.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 October 2019 | Volume 7 | Article 254

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00254 October 25, 2019 Time: 17:18 # 4

Nguyen et al. Metabolic Regulation of Muscle Regeneration

Cell division in proliferating cells is achieved via progression
through the cell cycle, comprising an initial gap (G1) phase
where cells double their cellular content, an S phase whereby
DNA is replicated, a second gap (G2) phase where replicated
DNA is checked, and finally mitosis (M phase) where cells
undergo division. Importantly, as cell division is a metabolically
demanding process several checkpoints exist, and only allow a cell
to proceed when certain conditions are met. One such checkpoint
exists in the late G1 phase where increased glycolytic flux is
required prior to the G1 to S transition (Kalucka et al., 2015). In
addition to ensuring sufficient supply of biomass to dividing cells,
this increased reliance on glycolysis during cell-division is also
likely a mechanism to reduce the production of reactive oxygen
species (ROS) to protect against DNA damage.

While cell-cycle progression is regulated by metabolite
availability, the cycle itself can directly regulate the activity of
several key metabolic enzymes. In one such study, Wang and
colleagues found that cyclin D3 activation of cyclin-dependent
kinase 6 (CDK6) phosphorylated and inhibited the catalytic
activity of phosphofructokinase 1 (PFK1) and pyruvate kinase
M2 (PKM2) (Wang et al., 2017). The inhibition of these two
enzymes allowed for the accumulation of glycolytic intermediates
and increased flux through the pentose phosphate pathway (PPP)
to support nucleotide synthesis.

NUCLEOTIDE SYNTHESIS THROUGH
THE PENTOSE PHOSPHATE PATHWAY

Nucleotides are essential components of molecules such as ATP,
GTP, cAMP, cGMP, and in the synthesis of RNA and DNA
(Lane and Fan, 2015), including purines (adenine and guanine)
and pyrimidines (cytosine, uracil, and thymine) which differ
by the inclusion of either a double carbon and nitrogen ring
(purines) or a single carbon ring (pyrimidines). Nucleotide de
novo generation is achieved via the PPP, one of the first alternate
carbon cycles to branch from the main glycolytic pathway and
requires simple precursor molecules to be converted to complex
nucleic acids (Riganti et al., 2012; Kowalik et al., 2017). In
the PPP, glucose-6-phosphate (G6P) undergoes several oxidative
carboxylation reactions to form ribose-5-phosphate (R5P) and
nicotinamide adenine dinucleotide phosphate (NADPH). R5P
serves as a nucleotide precursor, whereas NADPH has a key role
in protecting cells from oxidative damage and serves as the major
electron donor in many reducing reactions (Meitzler et al., 2014).
The flow of glucose into the PPP is first catalyzed by the enzyme
glucose-6-phosphate dehydrogenase (G6PD), which irreversibly
leads to the oxidative decarboxylation of G6P (Figure 2).

The critical importance of G6PD and the PPP in supporting
cell proliferation has been confirmed in several studies
demonstrating that its inhibition leads to a significant reduction
in tumor and plasmodium cell proliferation (Hu et al., 2015; Xu
et al., 2016; Zhang et al., 2017). In contrast, increased activity of
G6PD such as that observed in tumor cells, is typically linked
with rapid cell proliferation (Du et al., 2013). Interestingly,
embryonal rhabdomyosarcoma (ERMS), an aggressive form
of cancer involving muscle cells that fail to differentiate,

express high levels of G6PD. In contrast, following the forced
differentiation of these tumorigenic cells, G6PD was one of the
most highly downregulated genes (Coda et al., 2015). In the
context of MuSCs, several whole transcriptome studies in mice
have revealed a specific enrichment of G6pd2 and G6pdx in
proliferating compared to quiescent MuSCs (Liu et al., 2013;
Ryall et al., 2015b). These results strongly support a key role for
G6PD in regulating myogenic cell proliferation, likely through
provision of new nucleotides.

In addition to de novo nucleotide synthesis through the
PPP, nucleotides can be generated through recycling or salvage
pathways (Figure 2), which predominate during quiescence and
differentiation when only low levels of nucleotide synthesis are
required (Fairbanks et al., 1995). The nucleotide salvage pathway
recycles intermediates derived from the breakdown of DNA and
RNA and converts them to purines and pyrimidines. Importantly,
the salvage of nucleotides requires only one molecule of ATP
per pyrimidine synthesized, compared with seven molecules
required by de novo synthesis (Nyhan, 2014; Marsac et al.,
2019). The core of the purine salvage pathway relies on the
regeneration of nucleobases adenine, inosine, and guanine which
can be used to generate ATP, IMP, and GTP, respectively. Of
these three nucleotides, IMP exhibits the greatest flexibility
with the ability to be converted into GMP or AMP when
required (Ljungdahl and Daignan-Fornier, 2012; Peifer et al.,
2012). This is important during tissue homeostasis and for cells
to utilize a low energy pathway to maintain nucleotide levels.
This is observed in terminally differentiated neurons, which
rely on salvage pathways to maintain nucleotide homeostasis
(Fasullo and Endres, 2015).

Having two distinct pathways to synthesize nucleotides
(recycling and de novo) is an advantage for mammalian
cells (Lane and Fan, 2015), as it allows for cells to adapt
based on environmental stimuli such as nutrient and/or
substrate availability. During periods of cell stress such as
limited nutrient availability, cells utilize the salvage pathway to
facilitate nucleotide homeostasis. In contrast, cells undergoing
rapid proliferation cannot rely solely on de novo synthesis,
since this pathway is insufficient to facilitate the demand for
new nucleotides.

Nucleotide biosynthesis has received scant attention in skeletal
MuSCs, but a recent study by Tran et al. (2019) reported on
ribonucleotide reductase (RNR) knockout mouse. In this study
the authors developed a mouse model with exon 9 of the M1
subunit of RNR flanked by two loxP sites (Rrm1fl/fl) and bred
it with a mouse expressing Cre recombinase under the control
of muscle creatine kinase (Mckcre), with the resulting mouse
expressing a truncated and inactive form of RNR in cardiac
and skeletal muscle from embryonic day 13 (Tran et al., 2019).
As RNR is a key enzyme for de novo nucleotide synthesis,
its conditional ablation allowed the investigators to study the
importance of this pathway in skeletal and cardiac muscle.
Importantly, ablation of RNR was found to be lethal within a
few days of birth, with a median survival age of 11.5 days and
a maximal age of 27 days. In mice that survived to P15–P17,
the hearts were found to contain disrupted nucleotide levels with
a threefold decrease in dGTP and a twofold increase in dCTP
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FIGURE 2 | Nucleotide synthesis via the Pentose Phosphate Pathway. Glycolysis contributes to the synthesis of new purine and pyrimidine nucleotides through G6P,
which can be converted to the precursor R5P. Not all intermediate steps are shown. AMP, adenosine monophosphate; dATP, deoxyadenosine triphosphate; dGTP,
deoxyguanosine triphosphate; dTMP, deoxythymidine monophosphate; dTTP, deoxythymidine triphosphate; dUMP, deoxyuridine monophosphate; GMP, guanosine
monophosphate; IMP, inosine monophosphate; UMP, uridine monophosphate.

and dTTP compared to wildtype hearts. These results suggest
that (in the heart) de novo nucleotide synthesis is only critical
for the production of dGTP. While not described in detail, the
authors found that muscle fibers in the gastrocnemius muscles of
knockout mice were less than half the size of those observed in
wildtype mice. Additionally, the number of nuclei per fiber was
reduced by more than half (Tran et al., 2019). It will be critical
in future studies to determine whether a similar defect in dGTP
(as observed in cardiac muscle) is observed in skeletal muscle of
RNR knockout mice.

AMINO ACID SYNTHESIS VIA
GLYCOLYSIS, THE PPP, AND THE TCA
CYCLE

Protein accounts for the majority of dry cell mass and is
responsible for the formation of key cellular components
including antibodies, enzymes, and cell structures (Hosios et al.,
2016). Therefore, in addition to nucleotides, there is strong
demand for the synthesis of NEAAs during proliferation. In
mammalian cells there are nine “essential” amino acids (EAAs,
histidine, isoleucine, leucine, lysine, methionine, phenylalanine,
threonine, tryptophan, and valine) which cannot be synthesized
and must be taken up exogenously. The remaining 11 NEAAs
(alanine, arginine, asparagine, aspartic acid, cysteine, glutamic
acid, glutamine, glycine, proline, serine, and tyrosine) can

be synthesized in the cytoplasm through glycolysis and its
sidechains, and in the mitochondria through the TCA cycle.

Besides the generation of ATP, several intermediates of
glycolysis can be used to generate amino acids, including 3-
phosphoglyceric acid (3PG) and pyruvate (Locasale, 2013). 3PG
can contribute carbons to the generation of cysteine, glycine,
and serine through the one carbon (1C) cycle while pyruvate
can be converted into alanine (Olson et al., 2016; Figure 3).
Serine derived from the 1C cycle can combine with the folate
cycle to form glycine or it can be utilized in the synthesis of
phospholipids as phosphatidylserine (PS) (Glinton et al., 2018).
The serine biosynthesis pathway is commonly upregulated in
highly proliferative tumors to support growth (Mattaini et al.,
2016) and is critical to support MuSC proliferation, as its
depletion has been found to prevent MuSCs from transitioning
from G1 to S-phase of the cell-cycle (Thalacker-Mercer et al.,
2019). Furthermore, Ryall et al. (2015b) have found that multiple
enzymes in the serine biosynthesis pathway (including Phgdh,
Psat1, Psph, Shmt2) are all enriched in proliferating MuSCs in
mice. Together, these results provide strong evidence for a key
role of serine biosynthesis in regulating MuSC proliferation.
Whether this pathway may also play a role beyond the simple
provision of NEAAs to dividing cells is an exciting topic
deserving of further research.

Recently, the EAA methionine was identified as a powerful
anabolic agent capable of regulating cell proliferation. In
this study, Walvekar et al. (2018) identified that methionine
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FIGURE 3 | Amino acid synthesis via glycolysis and the TCA cycle. NEAAs can be synthesized through various intermediate metabolites of glycolysis including 3PG,
PEP, pyruvate, and the TCA cycle through oxaloacetate and αKG. Note: not all intermediate steps are shown. 3PG, 3-phosphoglyceric acid; hCYS, homocysteine;
meTHF, 5,10-methylene THF; mTHF, 5-methyl THF; PEP, phosphoenolpyruvate; SAH, S-adenosyl homocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate.

supplementation alone could increase cell proliferation in yeast
cells grown in an amino acid depleted medium. Strikingly, this
methionine-dependent increase in proliferation was greater than
the anabolic response provided through supplementation of any
of the other 18 non-sulfur amino acids. These authors confirmed
that methionine increased amino acid synthesis and de novo
nucleotide synthesis through the PPP and glutamate synthesis
pathways (Walvekar et al., 2018). In a related study, Gao et al.
(2019) found that dietary methionine restriction alone could
significantly reduce tumor growth in mice, and identified a
potential mechanism through disruption of de novo nucleotide
synthesis and the cellular redox balance.

While the importance of methionine in muscle regeneration
has yet to be examined, it raises an important question as to
whether dietary methionine supplementation alone may improve
muscle growth and repair. Interestingly, dietary methionine
supplementation in rainbow trout promoted hyperplasia and
muscle growth (Alami-Durante et al., 2018), but in chickens

only marginal effects on protein synthesis and degradation
were reported (Zeitz et al., 2019), indicating that the effect of
methionine on skeletal muscle growth and regeneration requires
further investigation.

During the proliferating phase of an immortalized murine
myogenic cell line (C2C12 myoblasts), glutamine is the second
most highly consumed nutrient besides glucose and plays a key
role in anaplerosis (Hosios et al., 2016), and amino acid and
nucleotide biosynthesis (DeBerardinis et al., 2007). Following
transport into the cell, glutamine undergoes a deamination
reaction catalyzed by the enzyme glutaminase to produce
glutamate. This process, known as glutaminolysis, is critical
for cell proliferation (Choi and Park, 2018). Glutamate can
then be either converted into glutathione or α-ketoglutarate via
oxidative deamination to supply the TCA cycle. Unsurprisingly,
glutamine is added to cell culture media to support cell growth
as its deprivation leads to cell cycle arrest at the S phase
(Gaglio et al., 2009).
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PHOSPHO/LIPID SYNTHESIS VIA
GLYCOLYSIS AND THE TCA CYCLE

Lipids constitute key components of the cellular plasma
membrane, act as an energy source/store, and play key signaling
roles through the production of hormones (Watt and Hoy, 2011;
Hubler and Kennedy, 2016; Yao et al., 2016). Therefore, lipid
metabolism is another critical process for rapidly proliferating
cells, including cancer cells and neural stem/progenitor cells
(NPSCs) which exhibit elevated exogenous lipid uptake and de
novo lipid synthesis (Natter and Kohlwein, 2013; Knobloch, 2017;
Zhao et al., 2017; Yi et al., 2018).

Lipids can be divided into several separate classes based on
their chemical structure and properties, with each having distinct
roles within cells. The major classes of lipids incorporated
into mammalian cells comprise phosphatidic acid (PA),
phosphatidylinositol (PI), PS, phosphatidylethanolamine (PE),
phosphatidylcholine (PC), phosphatidylglycerol (PG), and
cardiolipin (CL; Calzada et al., 2016). Other lipid classes
include (but are not limited to) cholesterols, sphingomyelins,
cerebroside, gangliosides, phospholipids, and triacylglycerols
(TAGs). Importantly, many of these lipid classes have previously
been demonstrated to influence rates of cellular proliferation and
differentiation of myogenic cells (Mebarek et al., 2007; Gangoiti
et al., 2012). For example, Mebarek et al. (2007) found that
inhibition of ceramide synthesis in immortalized rat myogenic
cells (L6 myoblasts) led to an increase in the rate of differentiation
through the upregulation of phospholipase D, an enzyme
responsible for the generation of PA. Conversely, addition of
exogenous ceramides resulted in a reduction in the expression
of the transcription factor myogenin, a key regulator of myoblast
differentiation (Mebarek et al., 2007). Similarly, ceramides inhibit
anabolic growth in mature skeletal muscle through the inhibition
of IGF-1/Akt and mTORC signaling (Akhmedov and Berdeaux,
2013; Hsieh et al., 2014). Interestingly, ceramide-1-phosphate
(C1P, derived from ceramide) can induce proliferation of
C2C12 myoblasts through increased Akt and ERK1/2 signaling
(Bernacchioni et al., 2018). In this manner, ceramide can both
inhibit myogenic differentiation and, following conversion to
C1P, promote proliferation. However, it is important to note that
ceramide itself inhibits proliferation, highlighting the complex
nature of lipid signaling (Faustino et al., 2008).

In addition to conversion into C1P, ceramide can also be
reversibly converted into sphingosine. Both sphingosine and
ceramide are negative regulators of cell growth, and have
been linked to cell cycle arrest and apoptosis (Woodcock,
2006; Kanno et al., 2014). Similar to ceramide, sphingosine
can be phosphorylated to form S1P, which in C2C12 cells is
critical for both the inhibition of proliferation and initiation
of differentiation (Donati et al., 2004). In contrast to these
findings in C2C12 cells, Calise et al. (2012) found that S1P
supplementation stimulated proliferation in primary mouse
MuSCs. These authors attributed the discrepancy in their
results to differences in S1P receptor type availability between
C2C12 cells and primary MuSCs (Becciolini et al., 2006;
Calise et al., 2012).

In addition to regulating proliferation and differentiation,
sphingomyelin levels change following activation, as quiescent
MuSCs exhibit high levels of sphingomyelin within the plasma
membrane, which subsequently drop after activation (Nagata
et al., 2006). These results highlight the importance and
complexity of the ceramide/S1P axis in regulating MuSC
proliferation and differentiation during regeneration.

Similar to nucleotides and amino acids, proliferating cells
can meet the demand for new lipids by utilizing lipids in
the local extracellular environment or performing de novo
lipid biosynthesis from glycolytic intermediates The de novo
synthesis of all phospholipids (with the exception of PA), requires
pyrimidine nucleotide cytidine triphosphate (CTP), which is
synthesized in the PPP. Interestingly, CTP synthase, which
catalyzes the rate limiting step of de novo CTP synthesis,
is upregulated in many cancer lines (Williams et al., 1978),
and its inhibition reduces cell proliferation through impaired
nucleotide and phospholipid synthesis. Therefore, proliferating
cells require a coordinated effort of nucleotide synthesis for DNA
and phospholipids (Verschuur et al., 2000).

Glyceraldehyde-3 phosphate (G3P), an intermediate
metabolite of glycolysis, is intricately involved in the de
novo synthesis of phospholipids and TAGs (Alves-Bezerra
and Gondim, 2012; Figure 4). In this pathway, G3P is first
converted into dihydroxyacetone phosphate (DHAP), a reaction
catalyzed by the enzyme triosephosphate isomerase (TPI), with
TPI1 expression correlated with increased rates of proliferation
in gastric cancer cells (Chen et al., 2017). Interestingly,
overexpression of TPI1 in hepatocellular carcinoma cells impairs
proliferation (Jiang et al., 2017), suggesting the role of TPI may
be cell type specific. While the role of Tpi1 in MuSC proliferation
has not been directly assessed, several transcriptomic studies
conducted on freshly isolated and proliferating MuSCs have
revealed that elevated Tpi1 expression in proliferating MuSCs
(Ryall et al., 2015b). Further research is required to determine
the role of Tpi1 in myogenesis and skeletal muscle regeneration.

In another C2C12 based experiment, Lee et al. (2009)
demonstrated that supplementing proliferating cells with mono-
unsaturated FAs, n-6-polyunstaurated FAs, linoleic acid, gamma-
linoleic acid and arachidonic acid all enhanced proliferation.
Exogenous arachidonic acid has also been found to promote
myoblast differentiation through its conversion to prostaglandin
E2 (PGE2) in a COX-2 dependent-manner (Leng and Jiang,
2019). Of interest, PGE2 has been found to be rapidly synthesized
and released into the local muscle microenvironment following
damage. Ho et al. (2017) demonstrated that PGE2 is required
for successful regeneration, as inhibition of PGE2 synthesis led
to impaired MuSC proliferation and weakened muscles.

In contrast to mono-unsaturated fatty-acids, the saturated
fatty acid palmitate significantly inhibited C2C12 myoblast
proliferation through a reduction in both cyclin A and cyclin D1,
while promoting differentiation and increased myotube width
(Grabiec et al., 2015). Taken together, these results highlight
the importance of a regulated role for fatty acids, as the
dysregulation or excessive accumulation of fatty acids in the
MuSC microenvironment may negatively affect skeletal muscle
regeneration. This is evident in models of diabetes mellitus
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FIGURE 4 | Phospholipid and TAG synthesis via G3P. The glycolytic intermediate G3P, can contribute to phospholipid and TAG synthesis following its initial
conversion to DHAP. The nucleoside CTP is required for synthesis of all phospholipids except phosphatidic acid (PA). Key metabolites of this side pathway include
PA and diacylglycerol (DAG). Note: not all intermediate steps are shown. CDP-DAG, cytidinediphosphate-diacylglycerol; CL, cardiolipin; LPA, lysophosphatidic acid;
PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine.

and obesity, which are characterized by excess fatty acids in
the microenvironment, insulin resistance and impaired glucose
tolerance. Both models display impaired muscle regeneration
following injury (Hu et al., 2010; Nguyen et al., 2011; Akhmedov
and Berdeaux, 2013; D’Souza et al., 2015; Xu et al., 2018). In
one study, MuSC activation and proliferation was impaired in
insulin resistant ob/ob mice, and in another, myotube maturation
was delayed (Hu et al., 2010; Nguyen et al., 2011). Similar to
that observed for nucleotides, under nutrient-rich conditions,
mammalian cells tend to utilize de novo lipid synthesis for cellular
proliferation (Palm and Thompson, 2017), but this has yet to be
confirmed in MuSCs.

CONCLUSION

While metabolism has previously been thought to play a
passive role in myogenesis, it is now established as a key
regulator of both cell state and lineage progression. When
MuSCs undergo rapid proliferation, efficient carbon routing
through glycolysis (including its side branches) and the
TCA cycle is required for the generation of precursors
such as nucleotides, amino acids and lipids/phospholipids.
In addition, an adequate supply of nutrients or precursors
within the MuSC microenvironment is critical for these
metabolic pathways to proceed. Many studies have demonstrated
the regulatory effects of various metabolites on MuSCs and
other proliferating cell types in vitro (either through the
supplementation or deprivation), highlighting the importance
of a tightly regulated metabolic microenvironment. However,
metabolism and nutrient availability during regeneration remains
an understudied topic in vivo, with many of these effects yet to

be confirmed in regenerating skeletal muscle. Further RNAseq
studies examining the expression of genes encoding for enzymes
in these metabolic pathways combined with carbon-labeled flux
analysis will help identify critical genes and/or metabolites which
regulate these processes.

A better understanding of how the local metabolic
microenvironment may regulate MuSC biology has important
application for a broad range of fields, including synthetic
biology studies focused on volumetric muscle loss, regenerative
medicine and stem cell based therapies, agricultural research
attempting to maximize protein yield and even in the developing
field of cellular agriculture where researchers are attempting to
generate cultivated meat. Together, the studies discussed in this
review highlight an important role for metabolism in MuSC
biology, particularly in the regulation of proliferation.
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