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Abstract

Background: Cardiac fibroblasts, together with cardiomyocytes, occupy the majority of

cells in the myocardium and are involved in myocardial remodeling. The lysophospholipid

mediator sphigosine-1-phosphate (S1P) regulates functions of cardiovascular cells through

multiple receptors including S1PR1–S1PR3. S1PR1 but not other S1P receptors was upre-

gulated in angiotensin II-induced hypertrophic hearts. Therefore, we investigated a role of

S1PR1 in fibroblasts for cardiac remodeling by employing transgenic mice that overex-

pressed S1PR1 under the control of α-smooth muscle actin promoter. In S1PR1-transgenic

mouse heart, fibroblasts and/or myofibroblasts were hyperplastic, and those cells as well as

vascular smooth muscle cells overexpressed S1PR1. Transgenic mice developed bi-ven-

tricular hypertrophy by 12-week-old and diffuse interstitial fibrosis by 24-week-old without

hemodynamic stress. Cardiac remodeling in transgenic mice was associated with greater

ERK phosphorylation, upregulation of fetal genes, and systolic dysfunction. Transgenic

mouse heart showed increased mRNA expression of angiotensin-converting enzyme and

interleukin-6 (IL-6). Isolated fibroblasts from transgenic mice exhibited enhanced generation

of angiotensin II, which in turn stimulated IL-6 release. Either an AT1 blocker or angiotensin-

converting enzyme inhibitor prevented development of cardiac hypertrophy and fibrosis,

systolic dysfunction and increased IL-6 expression in transgenic mice. Finally, administra-

tion of anti-IL-6 antibody abolished an increase in tyrosine phosphorylation of STAT3, a

major signaling molecule downstream of IL-6, in the transgenic mouse heart and prevented

development of cardiac hypertrophy in transgenic mice. These results demonstrate a pro-

moting role of S1PR1 in cardiac fibroblasts for cardiac remodeling, in which angiotensin II—

AT1 and IL-6 are involved.
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Introduction

Increasing evidence indicates that cardiac hypertrophy is an independent risk factor for the

development of heart failure [1]. Initially, cardiac hypertrophy is a physiological adaptation of

the heart against increased workload to maintain normal heart function. However, sustained

pathological hypertrophic stimuli induce cardiomyocyte apoptosis and interstitial fibrosis,

which result in cardiac dysfunction [2]. Besides mechanical stresses, several neurohumoral fac-

tors acting via G protein-coupled receptors, which include angiotensin II (Ang II), endothelins

and catecholamines, have been identified as potent inducers of cardiac hypertrophy [3].

Sphingosine-1-phosphate (S1P), a lysophospholipid mediator, exerts pleiotropic actions

including cell proliferation, migration, differentiation and cell-cell adhesion [4]. The actions of

S1P are mediated by S1P-specific G protein-coupled receptor family comprising S1PR1 to

S1PR5. Cardiomyocytes express S1PR1, S1PR2, and S1PR3. An early study [5] in neonatal rat

cardiomyocytes demonstrated that S1P did not induce hypertrophy in vitro although structur-

ally related sphingosylphosphorylcoline was able to induce hypertrophy, whereas other studies

[6] showed that S1P induced hypertrophy of rat and mouse cardiomyocytes via S1PR1. How-

ever, there have been only a few in vivo studies that explored roles of S1P receptors in cardiac

remodeling [7]. We recently reported that mice that overexpress the S1P-synthesizing enzyme

sphingosine kinase (SphK)-1 developed progressive myocardial fibrosis without hypertrophy,

suggesting a role of S1P for cardiac remodeling in vivo [8].

Non-myocytes, predominantly fibroblasts, account for 60–70% of the cell number in the

myocardium although cardiomyocytes occupy the bulk of myocardial mass, and are critical to

maintain normal heart function through controlling extracellular matrix turnover and serving

electro-mechanical functions [9]. Cardiac fibroblasts release paracrine and autocrine media-

tors, which include endothelin-1, Ang-II, tumor necrosis factor-α and transforming growth

factor-β (TGF-β), into the microenvironment. These factors act on cardiomyocytes, inflamma-

tory cells and fibroblasts themselves, contributing to cardiac remodeling. The phenotype of

fibroblasts can change from a quiescent one in the normal heart to a proliferative, migratory

and secretory one as observed, for example, after myocardial infarction [10]. Fibroblasts,

which exhibit the latter phenotype and express contractile proteins including α-smooth muscle

actin (αSMA), are termed myofibroblasts and implicated in fibrosis in various organs includ-

ing heart.

Cardiac fibroblasts express S1PR1, S1PR2 and S1PR3 [11]. Among these, S1PR1 is coupled

exclusively to Gi to stimulate Ras/extracellular signal-regulated kinase (ERK), phsphoinositide

3-kinase/Akt and Rac pathways, which promote cell proliferation and migration. We observed

that S1PR1 was expressed in cardiac fibroblasts and upregulated in the hypertrophic heart of

mice receiving Ang II infusion. Previous study shows that Ang II increases the expression of

αSMA in fibroblast [12]. Ang II infusion also increased αSMA expression in hearts. Therefore,

we generated mice that overexpress S1PR1 transgene under the control of αSMA promoter to

study the role of S1PR1 in cardiac fibroblast during cardiac remodeling in vivo. We found in

the transgenic (TG) mice that augmented S1PR1 signaling in myofibroblasts led to the develop-

ment of pathological cardiac hypertrophy with interstitial fibrosis, which was mediated through

the paracrine actions of Ang II and interleukin-6 (IL-6) released by myofibroblasts. The trans-

genic mice provide a new model of Ang II-dependent hypertrophy without pressure overload.

Materials and methods

Generation of transgenic mice overexpressing S1PR1 (S1PR1-TG mice)

The expression plasmid that drives S1PR1 expression under αSMA promoter was constructed

as follows: Approximately 4700-bp EcoRI-BamHI fragment of human αSMA promoter DNA
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from pBS-HSMA-EA4.7 (kindly donated by Dr. T. Miwa in Osaka University) was ligated

onto the mammalian expression vector pCAGGS, in which the unique Hind III site had been

replaced by Not I site, at EcoRI site. The 1500-bp Stu I-Bgl II fragment of rat S1PR1 cDNA

encoding the entire coding sequence, which was blunted and Bst XI adaptor-ligated, was

ligated onto pCAGGS at Bst XI site. The ~8500bp linearized Sal I-Not I fragment of the resul-

tant expression construct was injected into fertilized oocytes from superovulated C57BL6/J

mice according to the standard procedure. The injected oocytes were transferred to the ovi-

ducts of pseudopregnant mice. The F0 generation was screened for the integration of the trans-

gene by polymerase chain reaction (PCR) of tail genomic DNA with the sense primer 5’-AAC
CGG AAG CTG TTG ATA CTG and the antisense primer 5’-CTC AGT GGT ATT TGT GAG
CCA, which amplified 315-bp DNA product. TG mice were mated with C57BL6/J mice and

three lines were established. Mice were housed in a temperature-controlled conventional facil-

ity (24˚C) under a 12:12h light-dark cycle with free access to regular chow and water at Insti-

tute for Experimental Animal, Advanced Science Research Center, Kanazawa University.

Col1α2-EGFP mice were generated as previously described [13]. To obtain S1PR1-overexpres-

sing ColIα2-EGFP transgenic mice, S1PR1-TG mice and ColIα2-EGFP TG mice were crossed.

All procedures were conducted in accordance with Fundamental Guidelines for Proper Con-

duct of Animal Experiment and Related Activities in Academic Research Institutions under

the jurisdiction of the Ministry of Education, Culture, Sports, Science and Technology of

Japan approved by Committee on Animal Experimentation of Kanazawa University (Approval

NO. 44103–1).

Chronic treatment of mice with pharmacological agents

Six week-old TG mice were given candesartan (CDS) (10mg/kg/day in drinking water, a gift

from Takeda Pharmaceutical Company (Osaka, Japan)) or cilazapril (10mg/kg/day in drinking

water, a gift from Eisai. Co. Ltd. (Tokyo, Japan)) for 18 weeks. At the end of the administration

period, mice were subjected to echocardiography and then euthanized by an excess dose of

pentobarbital, followed by morphological analysis of cardiac hypertrophy and fibrosis. In

chronic Ang II infusion experiments, a subpressor dose of Ang II (0.3 mg/kg/day) was admin-

istered into 12-week-old C57BL6/J wild-type mice for 14 days by using osmotic mini-pump

(Alzet, Cupertino, CA). Physiological saline was administered into control mice. For in vivo

IL-6 neutralization, mice received intraperitoneal injections of 100μg rat anti-mouse IL-6 mAb

(clone MP5-20F3) (R&D Systems) in 0.2 ml Dulbecco’s phosphate-buffered saline (PBS). Rat

IgG1 (clone R3-34) (R&D Systems) was administered as isotype-matched control. Administra-

tion of antibodies was started at 8-weeks and conducted every two weeks until 12-weeks.

Blood pressure measurement and echocardiography

Systolic and diastolic blood pressure of conscious mice was non-invasively measured by a tail

cuff method using Softron BP98A (Softron Co. Ltd., Tokyo, Japan) as described previously.

Mice that were anesthetized with pentobarbital (60 mg/kg) underwent echocardiography

using an ultrasonography (Agilent Technology SONOS 5500). A 12-MHz linear ultrasound

transducer (S 12) was applied to depilated left anterior chest wall. M-mode measurements of

the left ventricular (LV) internal diameter, the interventricular septal dimension (IVSd), and

the posterior wall dimension (PWd) were taken from more than five beats and averaged. LV

end-diastolic diameter (EDD) was measured at the time of the apparent maximal LV diastolic

dimension. LV end-systolic diameter (ESD) was measured at the time of the most anterior sys-

tolic excursion of the posterior wall. Percent fractional shortening (%FS) was calculated as

(EDD-ESD)/EDD x 100.

Myofibroblastic S1PR1 and cardiac hypertrophy
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Northern blot analysis and quantitative real-time polymerase chain

reaction (PCR)

Total RNA was isolated from various organs by using RNeasy (Qiagen). The mRNA expres-

sion of S1PR1, S1PR2, S1PR3, atrial natriuretic peptide (ANP), brain natriuretic peptide

(BNP), β-myosin heavy chain (βMHC), collagen I α-1 chain, skeletal muscle α-action

(αSKMA), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an internal control

was analyzed by Northern analysis as described previously. The expression of S1PR1, S1PR2

and S1PR3, was also analyzed by conventional reverse transcription-PCR as described previ-

ously. Real-time Quantitative PCR analysis was performed using the ABI PRISM 7300

sequence detection system (Applied Biosystems, Foster, CA). The following primers and

TaqMan probes (Applied Biosystems) were used: sphingosine kineses (SphK)-1 (Sphk1,

Mm00448841_g1) and -2 (Sphk2, Mm00445021_m1), S1PR1 (S1pr1, Mm02619656_s1),

S1PR2 (Edg5, Mm02620208_s1), S1PR3 (S1pr3, Mm02620181_s1), angiotensinogen

(Agt, Mm00599662_m1), angiotensin converting enzyme (Ace, ID# Mm00802048_m1),

AT1 (Agtr1, ID# Mm00507771_m1), AT2 (Agtr2, ID# Mm01341373_m1), IL-6 (Il6,

Mm99999064_m1), endothelin-1 (Edn1, Mm00438656_m1), insulin-like growth factor-I

(IGF-I) (Igf-1, Mm00439560_m1), cardiotrophin-1 (CT-1, Mm00432772_m1), leukemia

inhibitory factor (LIF) (Lif, Mm00434762_g1), LIF receptor (LIFR) (Lifr, Mm00442942_m1),

GP130 (Lrpprc, Mm00511512_m1), and transforming growth factor-β1 (TGF−β1) (Tgf-β1,

Mm00441726_m1). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Gapdh,

Mm03302249_g1) was used as an endogenous control. The cycling condition was pro-

grammed as follows: activation of AmpErase uracil-N-glycosylase for prevention of carryover

contamination at 50˚C for 2 min, activation of AmpliTaq Gold DNA polymerase at 95˚C for

10 min, 40 cycles of denaturation at 95˚C for 15 s and annealing/extension at 60˚C for 1 min.

ΔCt was calculated as (gene of interest Ct)−(GAPDH Ct) using Sequence detector (Applied

Biosystems). The relative quantity of mRNA of gene of interest was calculated by ΔΔCt calcula-

tion as 2−((ΔCt of treated sample)− (ΔCt of control sample)). The amplification efficiencies of the target

and the endogenous reference were confirmed by observing the equal relationship between

cDNA dilution and ΔCt. All experiments included negative controls consisting of no cDNA

for each primer pair.

Western blot analysis

The homogenates of hearts were prepared in ice cold heart homogenizing buffer containing

150 nmol/L NaCl, 5 mmol/L EDTA, 50mmol/L Tris/HCl (pH 7.5), 1 mmol/L Na3VO4,

10mmol/L NaF, 1% Triton X 100, 10% glycerol, 1mmol/L phenylmethylsulfonylfluoride and

10mg/ml each of leupeptin and aprotinin. After centrifugation at 3000 x g, the supernatant

devoid of nuclei and debris were centrifuged at 10,000 x g for 10 min. The resultant superna-

tant was mixed with 4 x laemmli’s sample buffer at the ratio of 3:1, followed by the separation

on the 10% SDS-polyacrylamide gel electrophoresis. Separated proteins were electro-trans-

ferred onto Immobilon-P (Millipore), and probed by rabbit polyclonal anti-Thr202, Tyr204-

phosphorylated-ERK antibody (1:1000, Cell Signaling), rabbit polyclonal anti-ERK antibody

(1:1000, Cell Signaling), rabbit polyclonal Tyr705-phosphorylated-STAT3 (1:1000 Cell Signal-

ing) and rabbit S1PR1 C-terminus (1:1000, a kind gift from Dr. S. Mandala at Merck). The

band density of ERKs (p42 and p44) was quantified by using Image J software (NIH), corrected

for that of total ERK, and expressed as multiples of the values in control groups, which was

expressed as 1.0.

Myofibroblastic S1PR1 and cardiac hypertrophy
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Isolation of mouse cardiac fibroblasts and myocytes

Mouse cardiac fibroblasts and myocytes were isolated by enzymatic digestion with collagenase

and trypsin. Briefly, 2 hearts were isolated and dissected free of vessels and atria. The cannula

was inserted into ascending aorta, and the hearts were perfused for 4 minutes with the collage-

nase buffer that contained (in wt/vol) 0.3% collagenase type II (Worthington), and 0.05% tryp-

sin (Worthington) in Krebs buffer at 37˚C. The digested heart tissues were finely fragmented

by gentle pipetting and filtered by using a mesh (BD Biosciences). The cell suspensions were

centrifugated at 400 x g and resuspended in Dulbecco’s modified Eagle’s minimal essential

medium (DMEM) containing 10% fetal bovine serum. The suspended cells were plated, and 1

h later non-adherent cells were collected. Adherent cardiac fibroblasts were expanded by dis-

persing with trypsin/EDTA solution on reaching confluence and replating at the split ratio of

1:4. Characteristic fibroblasts morphology was visually confirmed under a light microscope.

Nearly 100% of the cells were positive for anti-vimentin staining. Because the phenotype of

fibroblasts can be influenced by the growth condition including the passage number, fibro-

blasts at the passage 1 to 3 were used for the present experiments.

Histological analysis, immunohistochemistry, and immunofluorescence

Mice were euthanized by intraperitoneally injecting an excess dose of pentobarbital. Serial

horizontal sections of acetone-fixed, fresh-frozen sections of hearts were subjected to immuno-

fluorescence using anti-αSMA (clone 1A4, Sigma), anti-S1PR1, anti-CD31, and anti-GFP anti-

bodies. The samples were examined using an inverted fluorescence microscope (Olympus

IX70) under a PlanApo ×40/NA0.95 objective or a confocal laser-scanning microscope (Zeiss

Axiovert 200M with LSM5 Pascal) equipped with a PlanApo ×63/NA1.4 oil-immersion objec-

tive. The mean cross-sectional cardiomyocyte areas were calculated by measuring 100 cells per

specimen that had been subjected to silver impregnation staining. Fibrotic areas were deter-

mined by calculating Azan staining—positive area over total areas by using Image J software.

Determination of Ang II and IL-6 in the conditioned media of cardiac

fibroblasts

The serum-free culture media (2ml per dish) were collected from dishes with or without treat-

ment of the cells with S1P (100nmol/L) and CDS (1μmol/L) for 24 h. Ang II concentration was

determined by radioimmunoassay using two antibodies specific for Ang II (SRL Co., Hachioji,

Japan). IL-6 concentrations were determined with an ELISA kit (R&D Systems).

Statistics

All data are shown as means +/- SEM. One-way ANOVA was followed by a post hoc Bonfer-

roni-Dunn’s comparison test to determine statistical significance of differences between mean

values. Unpaired t-test was performed for the comparison between two groups in Fig 1B, 1C,

1D and 1E, S1 Table, and S1, S4 and S6B Figs. For all statistical comparisons, p<0.05 was con-

sidered significant.

Results

αSMA promoter-driven S1PR1 overexpression induced cardiac

hypertrophy and fibrosis with impaired cardiac function

Chronic Ang II infusion into wild-type (WT) mice increased the cardiac mRNA expression

of S1PR1, SphK1 and αSMA but not S1PR2, S1PR3 or SphK2 (S1 Fig). The observations

Myofibroblastic S1PR1 and cardiac hypertrophy
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Fig 1. Transgenic overexpression of S1PR1 induces pathological cardiac hypertrophy. (A) Gross views

and HE-stained cross-sections of the hearts from WT and TG mice. (B) The HW/BW ratio in 8- to 32-week-old

WT and TG mice. n = 7 mice per group. *, p<0.05 and **, p<0.01. (C) Silver-staining of myocardial sections of

12-week-old WT and TG mice (right). Quantified data of mean cross sectional area of cardiomyocytes (left). (D)

Images of representative isolated cardiomyocytes from WT and TG mice at 12 weeks (left). Quantification of cell

areas of isolated cardiomyocytes (right). (E) Azan staining of myocardial sections of 24-week-old WT and TG

mice (left). Quantified data of fibrotic areas in Azan stained sections of the hearts (right). (F) Northern blot

analysis of mRNAs of natriuretic peptides ANP and BNP, fetal contractile proteins βMHC and αSKA and type I

collagen α1 chain.

https://doi.org/10.1371/journal.pone.0182329.g001
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prompted us to investigate a role of S1PR1 in cardiac remodeling. We generated TG mice

overexpressing S1PR1 under the control of the αSMA promoter and established three inde-

pendent TG mouse lines (line 4, 5 and 11). Analysis of S1PR1 mRNA expression in various

organs of line 4 TG mice shows that S1PR1 transgene mRNA is expressed in most of organs

including lung, intestine, heart and kidney (Panel A in S2 Fig). The expression levels of S1PR1

transgene in hearts of line 4 and 11 mice were slightly higher compared with endogenous

S1PR1, but that in line 5 mice was much lower ((Panel B in S2 Fig). Accordingly, the protein

level of S1PR1 in heart of line 4 was greater than in WT mice (Panel C in S2 Fig). Anti-S1PR1

immunohistochemical staining showed enhanced S1PR1 expression in the vascular wall of

heart and interstitial cells compared with WT mice (Panels D-G in S2 Fig), S1PR1 expression

was increased in the aortic media, and the smooth muscle layers of bronchi, intestine, urinary

bladder and uterus of TG mice compared with WT mice (Panel H in S2 Fig). Line 4 mice were

employed for most of the analyses in the following study.

All three lines of TG mice developed postnatal bi-ventricular cardiac hypertrophy, which

became maximal by 15-weeks (Fig 1A and 1B), with hypertrophy being more severe in lines 4

and 11 than in line 5 TG mice. Cardiac hypertrophy in TG mice was diffuse with hypertrophy

of the interventricular septum and the free wall of both right and left ventricles. Individual car-

diomyocytes in TG mice were hypertrophic compared with those from WT mice (Fig 1C).

Cardiomyocytes isolated from TG mice displayed greater cell area compared with those from

WT mice (Fig 1D). In TG heart at 24-weeks but not 12 weeks, increased diffuse accumulation

of collagen fibers in both interstitial and perivascular areas was observed compared with WT

mice (Fig 1E). Consistent with these pathological changes in TG heart, the mRNA expression

of collagen I α-1 chain and the embryonic genes, which include atrial natriuretic peptide

(ANP), brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC) and skeletal muscle

α-actin, was elevated markedly in lines 4 and 11 TG mice and modestly in line 5 compared

with WT mice (Fig 1F). Echocardiographic determinations showed a decreased %fractional

shortening (%FS) without ventricular dilatation in line 4 mice at 24-weeks but not 12-weeks

compared with line 4 TG mice (S3 Fig), indicating impaired contractile function in TG mice.

TG mice were normotensive at 12-weeks, suggesting that ventricular hypertrophy was not a

result of pressure overload (S1 Table). The mean life-span of TG mice was not different from

that of WT mice up to 24-weeks.

Cardiac fibroblasts are non-vascular cells that overexpress S1PR1 in

heart of TG mice

We determined S1PR1 expression in the heart in both WT and TG mice at three stages,

namely the pre-hypertrophic stage (8-week-old), the hypertrophic stage (15-week-old), and

the hypertrophic and fibrotic stage (24-week-old), using anti-S1PR1 immunofluorescent stain-

ing. At 8-weeks, we detected many S1PR1-positive cells diffusely in the myocardium of both

WT and TG mice (Fig 2A). Because S1PR1 is known to be expressed in vascular endothelial

cells, we performed anti-S1PR1 and anti-CD31 (endothelial marker) double immunofluores-

cent staining. Virtually all S1PR1-positive cells in WT mouse heart are CD31-positive endothe-

lial cells (Fig 2B). In TG mouse heart, most S1PR1-positive cells are CD31-positive. However,

some S1PR1-positive cells are CD31-negative (arrowheads in Fig 2B) and show different mor-

phology from CD31- and S1PR1-double positive endothelial cells. Anti-S1PR1 and anti-αSMA

double immunostaining showed that S1PR1- and αSMA-double positive cells are observed in

TG heart (arrowheads in Fig 2A). These double positive cells are scattered and solitary, and so

do not look like vascular wall cells. Therefore, these αSMA-positive cells are most likely myofi-

broblasts. Thus, at the earlier prehypertrophic stage, some fibroblasts are already activated as

Myofibroblastic S1PR1 and cardiac hypertrophy
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Fig 2. S1PR1 is expressed in fibroblasts in heart of TG mice. Double immunofluorescence staining of ventricular

sections from 8- (A, B), 15- (C, D), and 24-week-old (E, F) WT and TG mice. (A, C and E) Anti-αSMA and anti-S1PR1

staining. In both WT and TG mice, S1PR1 is diffusely expressed in αSMA-negative cells. However, some scattered and

solitary S1PR1- and αSMA-double positive apparently non-vascular wall cells (arrowheads) are observed in TG mice

but not WT mice, and these double positive non-vascular wall cells increase with aging in TG mice. The arrows in C

denote S1PR1- and αSMA-double positive vascular wall cells in WT and TG mice. (B, D and F) Anti-S1PR1 and anti-

CD31 staining. In both WT and TG mice, S1PR1 is diffusely expressed in CD31-positive vascular endothelial cells.

Myofibroblastic S1PR1 and cardiac hypertrophy
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suggested by their αSMA expression and exhibit the αSMA promoter-driven overexpression

of S1PR1. At 15-weeks, the S1PR1-positive but CD31-negative cells are more frequently

observed in TG heart compared with 8-week-old TG heart, but hardly seen in WT heart (Fig

2D). The scattered and solitary S1PR1- and αSMA-double positive cells are observed in

15-week-old TG heart (Fig 2C). Less frequently, S1PR1- and αSMA-double positive cells were

observed in the vascular wall of arterioles in both WT and TG hearts (Fig 2C). These double

positive cells in the vascular wall are likely smooth muscle or pericytes. At 24-weeks, the

S1PR1-positive but CD31-negative cells, and the scattered type of S1PR1- and αSMA -double

positive cells in TG heart are more abundant compared with 8- and 15-weeks (Fig 2E, 2F and

2G), and they are often clustered (Fig 2E, arrowheads). In 24-week-old S1PR1-TG mice with

the ColI α2-EGFP background, EGFP-positive fibroblasts were intensely S1PR1-positive (Fig

2H), providing further evidence that cardiac fibroblasts overexpress S1PR1 in TG mice.

Cardiac hypertrophy in TG mice is dependent on Ang II-AT1

In TG mice hearts, the mRNA expression of angiotensin converting enzyme-1 (ACE) but not

angiotensinogen, AT1 or AT2 was elevated compared with WT mice hearts (S4 Fig). There-

fore, we determined the effect of pharmacological AT1 blockade on cardiac remodeling in TG

mice. Administration of the AT1-selective antagonist candesartan (CDS), which started at

6-weeks, nearly abolished both cardiac hypertrophy and fibrosis with improvement of %FS at

24-weeks (Fig 3A–3D). The ACE inhibitor cilazapril also prevented cardiac hypertrophy in TG

mice (S5 Fig). Consistent with the resolution of cardiac hypertrophy and fibrosis by blockade

of the Ang II-AT1 pathway, the upregulation of mRNA expression of ANP, BNP, and β-MHC

was all reversed by CDS (Fig 3E). Compared with WT mice hearts, TG mice hearts showed

increased ERK phosphorylation, which was abolished by administration of CDS (Fig 3F).

Cardiac hypertrophy induced by S1PR1 overexpression in fibroblasts is

mediated through Ang II-dependent production of IL-6

The mRNA expression of IL-6, a hypertrophic mediator, in TG mice hearts was 5-fold

increased with WT mice hearts (Fig 3G). In addition, the mRNA expression of leukemia inhib-

itory factor (LIF), another IL-6 family of cytokine, was slightly increased in TG mice hearts

compared with WT mice hearts (Panel A in S6 Fig). In contract, cardiac mRNAs of cardiotro-

phin-1, the central signal-transducing receptor GP130 for IL-6 family cytokines, LIF receptor,

insulin-like growth factor-I or TGF-β1 were not different between TG and WT mice (Panels A

and B in S6 Fig). Notably, administration of CDS abolished upregulation of IL-6 mRNA in TG

mice hearts (Fig 3G).

We isolated fibroblasts from WT and TG mouse hearts. Nearly all cells from both WT and

TG mice were positive for S1PR1 as well as αSMA (Fig 4A) with higher expression of S1PR1 in

fibroblasts from TG mice. In contrast, the mRNA of S1PR1 transgene was hardly detectable in

cardiomyocytes from TG mice (Panel B in S7 Fig). The mRNA expression of S1PR2 and

S1PR3 was similar in fibroblasts from WT and TG mice hearts (Panel A in S7 Fig).

The level of Ang II peptide in the conditioned media of cardiac fibroblasts from TG mice

was 2.5-fold greater compared with that in fibroblasts from WT mice (Fig 4B). S1P treatment

However, some S1PR1-positive cells are CD31-negative (arrowheads) and these S1PR1-positive and CD31-negative

cells increase with aging in TG mice. (G) Quantified data of scattered and solitary αSMA- and S1PR1-positive cells. HF,

high power field. **, p<0.01. (H) Anti-EGFP and anti-S1PR1 double immunofluorescence staining of ventricular

sections from 24-week-old WT and S1PR1-TG mice with the ColI α2-EGFP background. S1PR1 is overexpressed in

EGFP-positive cells (arrowheads) in TG mice but not WT mice.

https://doi.org/10.1371/journal.pone.0182329.g002
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Fig 3. An AT1 blocker inhibits ventricular hypertrophy and fibrosis in TG mice. Administration of the

AT1 blocker candesartan (CDS) was started at 6-weeks and continued for 18 weeks. (A) Gross views and

HE-stained sections of the hearts from WT, non-treated TG, and CDS-treated TG mice at 24-week-old (left

panel), and the HW/BW ratio in each mouse group (right panel). n = 6 mice per group. (B) Azan staining of

myocardial sections of WT, non-treated TG, and CDS-treated TG mice at 24-weeks (upper panel) and

quantified data (lower panel). n = 6 per group. (C) Silver-staining of myocardial sections of WT, non-treated

TG, and CDS-treated TG mice at 24-weeks (upper panel) and quantified data (lower panel). n = 6 per group.

(D) %FS in WT, non-treated TG, and CDS-treated TG mice at 24-weeks as evaluated with echocardiography.

N = 6 per group. (E) Effects of CDS on increased mRNA expression of ANP, BNP and βMHC in the heart of

TG mice at 24-weeks. N = 5 mice per group. (F) Phosphorylation of ERK in heart. The extracts of the hearts
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from WT, non-treated TG, and CDS-treated TG mice at 24-weeks was analyzed by Western blotting using

anti-phospho ERK (p-ERK) antibody. n = 5 mice per group. (G) Effects of CDS on mRNA expression of IL-6 in

the heart of TG mice at 24-weeks. n = 5 mice per group. In A-G, *, p<0.05, and **, p<0.01.

https://doi.org/10.1371/journal.pone.0182329.g003

Fig 4. Cardiac fibroblasts overexpressing S1PR1 release a greater amount of Ang II. (A) Double

immunofluorescence staining of fibroblasts isolated from 24-week-old WT and TG mice, using anti-αSMA and

anti-S1PR1 antibodies. S1PR1 is more abundantly expressed in fibroblasts from TG mice compared with WT

mice. (B) Ang II peptide levels in the conditioned media of WT and TG fibroblasts cultured in the presence and

absence of S1P (100 nmol/L) without serum for 24 h. n = 6 per group. (C) Real-time PCR analysis of mRNAs

of ACE, angiotensinogen, AT1 and AT2 in WT and TG fibroblasts. In B and C, *, p<0.05 and **, p<0.01.

https://doi.org/10.1371/journal.pone.0182329.g004

Myofibroblastic S1PR1 and cardiac hypertrophy

PLOS ONE | https://doi.org/10.1371/journal.pone.0182329 August 3, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0182329.g003
https://doi.org/10.1371/journal.pone.0182329.g004
https://doi.org/10.1371/journal.pone.0182329


of fibroblasts did not affect Ang II release. ACE mRNA levels were increased in S1P-treated,

TG mouse-derived fibroblasts compared with WT fibroblasts whereas those of angiotensino-

gen, AT1 and AT2 were rather decreased in TG fibroblasts than in WT fibroblasts (Fig 4C).

We next studied the effects of S1P and AT1 on IL-6 release from isolated cardiac fibroblasts.

S1P treatment stimulated IL-6 release in TG fibroblasts but not WT fibroblasts (Fig 5A). The

addition of CDS abolished S1P-induced stimulation of IL-6 release. S1P also increased IL-6

mRNA in TG fibroblasts but not WT fibroblasts, which was inhibited by the addition of CDS

(Fig 5B). Finally, we tested the effects of administration of a specific IL-6 neutralizing antibody

on cardiac hypertrophy and STAT3 phosphorylation in TG mice. The control TG mouse

group received injections of isotype-matched control IgG. The tyrosine phosphorylation level

of STAT3, a key signaling molecule downstream of IL6, in the heart was elevated in control

IgG-given TG mice at 12-weeks compared with WT mice (Fig 5C). Administration of anti-IL-

6 antibody abolished an increase in STAT3 phosphorylation in TG mouse heart. Anti-IL-6

antibody also abolished an increase in the heart weight (HW) / body weight (BW) ratio and

the interventricular septum dimension (IVSd) and left ventricular posterior wall dimension

(PWd) in TG mice at 12-weeks (Fig 5D and 5E).

Discussion

This study demonstrates a novel fibroblast-mediated effect of S1PR1 on cardiac remodeling.

Augmented S1PR1 action due to αSMA promoter-driven S1PR1 overexpression in mice leads

to cardiac hypertrophy and fibrosis with reduced contractility in the absence of hemodynamic

stress. In TG mouse heart, S1PR1 is overexpressed in hyperplastic fibroblasts/myofibrablasts

but not cardiomyocytes. Mechanistically, S1PR1-mediated cardiac hypertrophy is character-

ized by total dependence on Ang II-AT1 axis and IL-6. Ang II-AT1 is involved in production

of IL-6 in fibroblasts in a paracrine/autocrine manner.

During cardiac remodeling, fibroblasts in heart undergo the characteristic phenotypic

changes to differentiate into myofibroblasts, which express smooth muscle-specific contractile

protein αSMA [14]. We employed the αSMA promoter to overexpress S1PR1, a receptor

which stimulates cell proliferation and migration in fibroblasts [4, 11]. As expected, the major-

ity of CD31-negative and S1PR1-positive cells in TG mice hearts were also positive for the

fibroblast/myofibroblast markers, αSMA and collagen I α-2 [9, 15]. The expression at a single

cell level of S1PR1 as well as αSMA was more intense in fibroblasts from TG mice compared

with WT mice, indicating that the αSMA promoter was active in fibroblasts from TG mice.

Cardiac fibroblasts express a much higher level of sphingosine kinase-1 compared with cardio-

myocytes [16], suggesting that S1PR1 in cardiac fibroblasts may be effectively activated by

autocrine/paracrine S1P in TG mice. Consistent with these, fibroblast/myofibroblasts were

hyperplastic in TG heart as indicated by the greater anti-αSMA positive cells. Thus, αSMA

promoter-driven S1PR1 overexpression facilitated proliferation of cardiac fibroblasts with the

myofibroblastic phenotype in TG mice.

Cardiac fibroblasts regulate phenotypes of cardiomyocytes and fibroblasts themselves

through releasing a variety of paracrine humoral factors including Ang II, TGF-β, IGF-I and

IL-6 [17]. A recent study [18] revealed that fibroblasts play an essential role in hypertrophic

response to pressure overload by releasing IGF-I. Cardiac fibroblasts have all the components

of the renin-angiotensin system (RAS) [19]. In the present study, fibroblasts from TG mouse

heart expressed a higher mRNA level of ACE and produced a larger amount of Ang II, which

was crucially involved in cardiac remodeling in TG mice via AT1. Because Ang II induces

upregulation of S1PR1 (S1 Fig), there may be an autocrine/paracrine positive feedback loop

comprising S1PR1-Ang II-AT1. Besides Ang II, we observed 3 to 5 fold increase in IL-6

Myofibroblastic S1PR1 and cardiac hypertrophy
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Fig 5. IL-6 is involved in cardiac hypertrophy in TG mice. (A) IL-6 peptide levels in the conditioned media of fibroblasts, which were

isolated from 24-week-old WT and TG mice and cultured in the presence and absence of S1P (100 nmol/L) and CDS (1 μmol/L) without

serum for 24 h. n = 8. (B) Expression of IL-6 mRNA in cardiac fibroblasts isolated from 24-week-old WT and TG mice. Fibroblasts were

cultured in the presence and absence of S1P (100 nmol/L) and CDS (1 μmol/L) without serum for 24 h. n = 8. (C-E) Effects of administration

(every two weeks) of neutralizing anti-IL-6 antibody or control isotype-matched IgG, which was started at 8-weeks, and mice were sacrificed

at 12-weeks. (C) The effects of anti-IL-6 antibody administration on the phosphorylation of STAT3 were determined at 12-weeks. Mice

received i.p. injections of anti-IL6 antibody or isotype—matched control IgG as described in Materials and methods. (D) Effects of anti-IL-6

antibody administration on the HW/BW ratio was determined at 12-weeks. n = 5 mice per group. (E) Effects of anti-IL-6 antibody

administration on IVSd and PWd. Mice received anti-IL-6 antibody or control IgG as described in C, and underwent echocardiographic

analysis at 12-week-old. n = 5 mice per group.

https://doi.org/10.1371/journal.pone.0182329.g005
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mRNA in TG mouse heart and S1P-induced IL-6 peptide release from TG fibroblasts com-

pared with WT mice. None of the other hypertrophic mediators and their receptors examined

was not elevated, except LIF which showed a slight increase in TG heart. Notably, the increase

in IL-6 mRNA expression in TG mouse heart was dependent on AT1. IL-6 has a hypertrophic

activity for cardiomyocytes both in vitro and in vivo [20, 21], and is involved in exogenous

Ang II-induced cardiac hypertrophy [22]. These previous observations suggest that IL-6 is a

downstream effector of Ang II signaling to mediate cardiac hypertrophy. In the present study,

blockade of IL-6 action by the neutralizing antibody abolished hypertrophy in TG mice.

Therefore, it is likely that augmented S1PR1 action in fibroblasts stimulated release of Ang II

and thereby IL-6, culminating in hypertrophy. Alternatively, it might also be possible that

S1PR1 and AT1 could form the positive feedback loop to stimulate each other or that S1PR1

and AT1 could operate in parallel pathways, which are both necessary for the development of

the hypertrophic phenotype in TG mice, with the interaction of stimulating each pathway.

Further study is required for fully understanding the interplays of S1PR1 and AT1.

We observed that TG mouse-derived fibroblasts showed enhanced Ang II production

under the serum-free culture condition, compared with wild-type fibroblasts (Fig 4B). Differ-

ently from the case of IL-6 production, which will be discussed below, in vitro treatment of the

cells with exogenous S1P did not increase Ang II production in TG fibroblasts. Fibroblasts

from TG mice hearts exhibited enhanced differentiation toward myofibroblasts as demon-

strated by increased αSMA expression (Fig 2). The upregulated αSMA expression in fibro-

blasts was maintained at least for the three passages of culture in fibroblasts isolated from TG

mouse heart. Cultured fibroblasts from TG mouse heart also showed upregulation of ACE

gene expression (Fig 4C). Thus, cardiac fibroblasts isolated from TG mice maintains the phe-

notypic changes including altered gene expression of αSMA and ACE in vitro after isolation,

suggesting that cardiac fibroblasts have undergone the S1PR1-mediated phenotypic changes in

vivo. The in vivo phenotypic changes of cardiac fibroblasts may involve the actions of para-

crine and autocrine humoral factors including angiotensin II, IL-6 cytokine family members,

TGFβ and IGF-I (Figs 3–5, S5 and S7 Figs). Alternatively, it is possible that even a low concen-

tration of S1P, which was released into the media from fibroblasts, could be enough to main-

tain the phenotype of increased angiotensin II production.

IL-6 production is driven mainly by two intracellular signaling pathways, STAT3 and NF-

κB pathways. S1PR1 in tumor cells was previously shown to be linked to STAT3 activation,

which contributed to stimulated IL-6 production [23] [24]. Therefore, it is an interesting possi-

bility that S1P stimulation of IL-6 production in TG fibroblasts but not WT fibroblasts (Fig

5A) could be mediated through S1PR1-STAT3 pathway. Importantly, stimulation of IL-6

release by S1P is dependent on AT1. AT1 was previously shown to couple to phosphorylation

of STAT1 and STAT2 via tyrosine kinase JAK2 [25]. Phosphorylated STATs homo-dimerize

or hetero-dimerize and exhibit isoform-specific activities. It may be possible that differential

activation of STAT family members by S1PR1 and AT1 could underlie the cooperative actions

of S1PR1 and AT1 in stimulating IL-6 production. The precise molecular mechanisms of

S1PR1- and AT1-dependent IL-6 release, and possible functional cross talk between S1PR1

and AT1R remain to be clarified.

These are several genetically modified animal models for cardiac hypertrophy, in which the

cardiac RAS is targeted [26]. They are largely the mouse models that aimed at overproducing

Ang II or overexpressing AT1 in cardiomyocytes. The αMHC promoter-driven overexpres-

sion of angiotensinogen, which resulted in a 2-fold increase in cardiac Ang II level, was accom-

panied by bi-ventricular hypertrophy and age-dependent cardiac dysfunction but not fibrosis

[27]. In contrast, αMHC promoter-driven overexpression of ACE [28] or an engineered fusion

protein designed to directly release Ang II [29] in cardiomyocytes did not result in ventricular
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hypertrophy despite of greater increases in cardiac Ang II level compared with the above men-

tioned study [27]. The effects of αMHC promoter-driven overexpression of AT1 are also com-

plicated; transgenic overexpression of AT1 in cardiomyocytes, only when overexpressed at

very high levels, e.g. 200-fold compared with WT mice, resulted in ventricular hypertrophy

[30]. The observations may suggest that increased Ang II generation and AT1 expression in

cardiomyocytes could be rather the limiting factor than the primary determinant in RAS-

mediated hypertrophic effects. Our model is distinct from these genetically modified animal

models in that augmented activation of S1PR1 in fibroblasts results in stimulation of Ang II

generation in fibroblasts. Our model is the first transgenic mouse model in which stimulation

of local RAS in fibroblasts results in ventricular hypertrophy and fibrosis through S1PR1- and

AT1-dependent IL-6 release from fibroblasts. This Ang II-dependent remodeling model spares

other organs and tissues including lung, liver and arteries although the mechanism for this

sparing is unknown presently.

In our recent study [8], we demonstrated that transgenic overexpression of SphK1 in mice

resulted in interstitial cardiac fibrosis but not hypertrophy, which was mediated via S1PR3 but

independent of AT1. S1PR3 signaling in cardiac fibrosis involved reactive oxygen species gen-

eration and TGF-β-Smad2/3 pathway. Cardiac fibroblasts endogenously express S1PR3 and

S1PR2, besides S1PR1 [8, 11]. Therefore, it is possible that in vivo stimulation of fibroblast S1P

receptors in SphK1-transgenic mouse heart might result in relatively dominant activation of

S1PR3, which is different from the present case of transgenic S1PR1-overexpression. Activa-

tion of S1PR3, which couples to Gq and G12/13 unlike S1PR1, might lead to cardiac fibrosis

without hypertrophy. Alternatively, increased cardiac S1P level in SphK1-transgenic mice acti-

vates multiple S1P receptors in both fibroblasts and myocytes, which might bring about the

different outcome from the case of augmented S1PR1 activation in fibroblasts in S1PR1-trans-

genic mice. Besides causing cardiac fibrosis, SphK1 overexpression also exerted a protective

effect from ischemia/reperfusion injury, which was shown to be mediated by S1PR2 and

S1PR3 [8, 11, 31]. The effect of S1PR1 overexpression in fibroblasts against cardiac injury

deserves further investigation.

This study may have the following limitations; 1) the αSMA promoter drives gene expres-

sion in smooth muscle of various organs in adult mice, besides myofibroblasts. Therefore,

the possibility that other αSMA-positive cells to express S1PR1 transgene than myofibro-

blasts could be involved in the development of the phenotype in S1PR1-TG mice cannot be

completely excluded. 2) this study is based on the analyses in S1PR1-transgenic mouse

model. Another loss of function mutation approach using fibroblast-specific S1PR1 gene

deletion would be informative in understanding a role of S1PR1 in cardiac hypertrophy and

may provide a new insight into therapeutic clues for preventing cardiac fibrosis.

Our data show the crucial role of S1PR1-mediated lysophospholipid signaling in cardiac

fibroblasts for cardiac hypertrophy and fibrosis. This S1PR1 action involves stimulation of

local RAS activity and thereby IL-6 generation on fibroblasts. These findings reveal the novel

molecular link for engagement of fibroblasts in cardiac remodeling, pointing to a new thera-

peutic approach for cardiac remodeling. Our TG mice also provide a useful animal model for

studying pathological cardiac hypertrophy, particularly the role of local RAS in cardiac

remodeling.

Supporting information

S1 Fig. Ang II infusion induces hypertrophy and an increase in mRNAs of S1PR1 and

sphingosine kinase-1 in the heart of mice infused with Ang II. Ang II was infused with

osmotic mini-pump for 14 days. (A) The heart weight / body weight (HW / BW) ratio in mice
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receiving vehicle (saline) and Ang II. n = 5 mice per group. (B) Real-time PCR analysis of

mRNAs of S1P receptors, SphKs and aSMA in the hearts of mice. n = 5 mice per group. In A

and B, � p<0.05, �� p<0.01.

(TIF)

S2 Fig. Expression of S1PR1 transgene and endogenous S1P receptors in WT and TG

mice. (A) Northern blot analysis of S1P receptors in various organs. S1PR1 transgene is read-

ily detected in lung, intestine, heart, kidney and brain. There is no difference in the endo-

genou gene expression of S1PR1, S1PR2 and S1PR3 between WT and TG mice. (B)

Expression of S1PR1 transgene and endogenous gene in hearts of three TG mouse lines.

Lines 4 and 11 abundantly express S1PR1 transgene whereas line 5 modestly expressed

S1PR1 transgene. (C) Protein expression of S1PR1 and GAPDH (glyceraldehyde 3-phos-

phate dehydrogenase) in heart was determined by western blotting using anti-S1PR1 and

anti-GAPDH antibodies. (D-G) S1PR1 was overexpressed in vascular smooth muscle cells

(arrows) and interstitial cells (arrowhead) in the heart of TG mice. (H) Aortic media, bron-

chus, intestine, urinary bladder and uterus. S1PR1 was overexpressed in the smooth muscle

layers of these organs in TG mice.

(TIF)

S3 Fig. Echocardiographic analysis of hypertrophic hearts from WT and TG mice. (A) end-

diastolic interventricular septal dimension (IVsd). (B) end-diastolic posterior wall dimension

(PWd). (C) end-diastolic left ventricular diameter (EDD). (D) %fractional shortening (% FS).

n = 7~8 mice per group. � P<0.01.

(TIF)

S4 Fig. Cardiac mRNA expression of angiotensin signaling system in WT and TG mice.

Real-time PCR analysis of mRNAs of angiotensinogen, ACE, AT1 and AT2 in WT and TG

hearts. n = 5 mice per group. � p<0.05.

(TIF)

S5 Fig. Blockade of angiotensin system prevents cardiac hypertrophy and fetal gene

expression in TG mice. The ACE inhibitor cilazapril were administered into mice as

described in Methods, and mice were analyzed at 24 weeks. Effect of cilazapril on the HW /

BW ratio in TG mice. n = 5 mice per group. � p<0.05.

(TIF)

S6 Fig. Expression of hypertrophic mediators and receptors in the heart of WT and TG

mice and effects of an AT1 antagonist on their expression. Expression of mRNAs were ana-

lyzed by real-time PCR. (A) Expression of mRNAs of cardiotrophin1, LIF, GP130 and LIFR in

the hearts of WT and TG mice. (B) Effects of CDS on mRNA expression of endothelin1, IGF-I

and TGFβ in the heart of TG mice. n = 5 mice per group. n = 5 mice per group. In (A) and (B),
� p<0.05.

(TIF)

S7 Fig. Expression of S1PR1 in cardiac fibroblasts and cardiomyocytes. (A) Expression of

S1PR1, S1PR2 and S1PR3 in cardiac fibroblasts isolated from WT and TG mice. The expres-

sion of S1P receptor mRNAs Total RNA was determined by reverse transcription-PCR. (B)

The expression of endogenous S1PR1, S1PR1 transgene and internal control GAPDH was

determined by Northern blotting. Total RNA was isolated from cardiomyocytes and heart tis-

sues.

(TIF)
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S1 Table. Characteristics of WT and TG mice.

(TIF)
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