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Circulating miR‑3659 may be a potential 
biomarker of dyslipidemia in patients 
with obesity
Liu Miao1, Rui‑Xing Yin1*  , Shang‑Ling Pan2, Shuo Yang1, De‑Zhai Yang3 and Wei‑Xiong Lin3

Abstract 

Background:  The present study attempted to identify potential key genes and miRNAs of dyslipidemia in obese, and 
to investigate the possible mechanisms associated with them.

Methods:  The microarray data of GSE66676 were downloaded, including 67 obese samples from the Gene Expres‑
sion Omnibus (GEO) database. The weighted gene co-expression network (WGCNA) analysis was performed using 
WGCNA package and grey60 module was considered as the highest correlation. Gene Ontology annotation and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for this module were performed 
by clusterProfiler and DOSE package. A protein–protein interaction (PPI) network was established using Cytoscape 
software, and significant modules were analyzed using molecular complex detection.

Results:  Collagen type I alpha 1 chain gene (COL1A1) had the best significant meaning. After bioinformatic analysis, 
we identified four miRNAs (hsa-miR-3659, hsa-miR-4658, hsa-miR151a-5p and hsa-miR-151b) which can bind SNPs in 
3′UTR in COL1A1. After validation with RT-qPCR, only two miRNAs (hsa-miR-3659 and hsa-miR151a-5p) had statistical 
significance.

Conclusions:  The area of 0.806 for miR-3659 and 0.769 for miR-151a-5p under the ROC curve (AUC) may have good 
diagnostic value for dyslipidemia. Circulating miR-3659 may be a potential biomarker of dyslipidemia in patients with 
obesity.
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Background
Obesity, especially abdominal obesity, is the key reason 
to result in metabolic syndrome (MetS), which refers to 
insulin resistance, type 2 diabetes mellitus, hypertension, 
and dyslipidemia, and all above risk factors finally lead to 
cardiovascular disease [1, 2]. A recent study showed that 
about 2.2 billion people were overweight or obese in 2015 
[3]. As a complex and multifactorial disease, lots of envi-
ronmental and genetic factors can result in this disorder 
[4, 5].

MicroRNA (miRNA), a class of non-coding RNA mol-
ecules (~ 22 nucleotides), is short and highly conserved. 
When it dysregulated, lots of human diseases would be 
happened [6]. MiRNAs mediate post-transcriptional 
regulation of protein-coding genes by complementary 
binding to the 3′ untranslated region (3′UTR) and occa-
sionally to the 5′UTR or coding regions of target mRNAs 
[7]. Previous study has shown that single nucleotide poly-
morphisms (SNPs) in the miRNA regulatory networks 
were a novel class of functional variants in the human 
genome. Genetic variants that potentially influence 
miRNA-mediated cellular function may be classified in 
two major categories: SNPs affecting miRNA biogenesis 
and SNPs in the miRNA targetome [8, 9].
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Early detection and treatment contribute to a prom-
ising effect. Since the discovery of circulating miRNAs 
in body fluids, an increasing number of studies have 
focused on their potential and non-invasive biomarkers, 
and therapeutic targets or tools for many diseases [10]. 
Martino et  al. found that both miR-33a and miR-33b 
were early biomarkers for cholesterol levels in childhood 
[11]. Besides, Iacomino et al. had further found about the 
role of miRNAs in obesity and related metabolic abnor-
malities [12]. In this study, we performed the integrated 
bioinformatic methods to construct the co-expression 
network and mark significant miRNA. The outcomes 
may help us for further elucidating the innate character 
of dyslipidemia, and provide new insights to potential 
biomarkers and signaling pathways to treat dyslipidemia 
in obese.

Materials and methods
Microarray data
Microarray data of GSE66676 [13] were downloaded 
from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) database [14]. GSE66676 contains 
67 Liver wedge biopsy samples from obesity patients 
(mean age = 16.88, mean body mass index, BMI = 52.01). 
The CEL files were transformed into the expression value 
matrix using the Affy package in R [15], and the probe 
information was then transformed into the gene name 
using Bioconductor in R [16]. If one gene had more than 
one probe, the mean expression value of this gene was 
selected. The specific workflow is shown in Fig. 1.

Construction of weighted gene co‑expression network
The weighted gene co-expression network (WGCNA) 
is a widely used systems biology method, which is used 
to construct a scale-free network from gene expression 
data [17]. An appropriate soft threshold power (soft 
power = 6) was selected in accordance with standard 
scale-free networks, with which adjacencies between all 
differential genes were calculated by a power function 
[18]. The rest of the analysis strategy can refer to our pre-
vious research [19].

Finding module of interest and functional annotation
The correlation between modules and clinical features 
was evaluated by Pearson’s correlation tests to search 
biologically meaningful modules. The module and clini-
cal feature, which exhibited the highest correlation, were 
selected as module of interest and clinical feature to be 
studied. All genes of module of interest were analyzed by 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway by clusterProfiler and 

DOSE package in R [20]. A P value < 0.01 and false dis-
covery rate (FDR) < 0.05 were set as the cutoff criteria.

Hub gene analysis
The module membership (MM) was defined as the corre-
lation of gene expression profile with module eigengenes 
(Mes). And the gene significance (GS) measure was 
defined as (the absolute value of ) the correlation between 
gene and external traits. Genes with highest MM and 
highest GS in modules of interest were natural candi-
dates for further research [21]. Thus, the intramodular 
hub genes were chosen by external traits based GS > 0.2 
and MM > 0.6 with a threshold of P-value < 0.05 [17]. The 
gene–gene interaction network was constructed and 
visualized using Cytoscape software package [22] and 
molecular complex detection (MCODE) [23] was used 
to analyze the most notable clustering module. MCODE 
score > 6 was a threshold for next analysis.

Subjects
All of the two groups of study population were obese, 
including 424 unrelated participants of normals (128 

Fig. 1  A flowchart for analysis. GO Gene Ontology annotation, KEGG 
the Kyoto Encyclopedia of Genes and Genomes pathway enrichment 
analyses, PPI protein–protein interaction, MCODE molecular complex 
detection

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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males, 30.19% and 296 females, 69.81%) and 433 unre-
lated subjects of dyslipidemia (141 males, 32.56% and 
292 females, 67.44%) were recruited from hospitalized 
patients in the First Affiliated Hospital, Guangxi Medi-
cal University [24]. The participants’ age ranged from 
18 to 80 years with a mean age of 55.31 ± 10.52 years in 
normal and 55.87 ± 11.13  years in dyslipidemic groups; 
respectively. The gender ratio and age distribution were 
matched between the two groups. All participants were 
essentially healthy with no history of coronary artery 
disease, stroke, diabetes, hyper- or hypo-thyroids, and 
chronic renal disease. They were free from medications 
known to affect lipid profiles.

Epidemiological survey
The epidemiological survey was carried out using inter-
nationally standardized method, following a common 
protocol [25]. Cigarette smoking status was categorized 
into groups of cigarettes smoker and non-smoker. Alco-
hol consumption was categorized into groups of alcohol 
drinker and non-drinker [26]. Several parameters such as 
blood pressure, height, weight and waist circumference 
(WC) were measured, while BMI (kg/m2) was calculated.

Biochemical measurements
Venous blood samples were obtained from all subjects 
after at least 12 h of fasting. The levels of serum total cho-
lesterol (TC), triglyceride (TG), high-density lipoprotein 
cholesterol (HDL-C), and low-density lipoprotein cho-
lesterol (LDL-C) in samples were determined by enzy-
matic methods with commercially available kits, Tcho-1, 
TG-LH. Cholestest HDL, and Cholestest LDL, respec-
tively. Serum apolipoprotein (Apo) A1 and ApoB levels 
were detected by the immunoturbidimetric immunoas-
say. All determinations were performed with an auto-
analyzer in the Clinical Science Experiment Center of 
the First Affiliated Hospital, Guangxi Medical University 
[27].

Diagnostic criteria
The normal values of serum TC, TG, HDL-C, LDL-C, 
ApoA1, ApoB levels and the ApoA1/ApoB ratio in our 
Clinical Science Experiment Center were 3.10–5.17, 
0.56–1.70, 0.91–1.81, 2.70–3.20  mmol/L, 1.00–1.78, 
0.63–1.14  g/L, and 1.00–2.50; respectively. Hyperten-
sion was diagnosed according to the criteria from the 
1999 World Health Organization-International Society of 
Hypertension Guidelines for the management of hyper-
tension [28]. The diagnostic criteria of overweight and 
obesity were according to the Cooperative Meta-analy-
sis Group of China Obesity Task Force. Normal weight, 
overweight and obesity were defined as a BMI < 24, 
24–28 and > 28  kg/m2, respectively [29]. Dyslipidemia 

was defined according to World Health Organization cri-
teria: TG ≥ 1.7 mmol/L and HDL-C < 0.9 mmol/L for men 
or < 1.0  mmol/L for women. Diabetes was defined as a 
fasting plasma glucose ≥ 7.0 mmol/L or 2 h postprandial 
plasma glucose ≥ 11.1  mmol/L or as having been previ-
ously diagnosed with diabetes and receiving therapy [30].

Bioinformatic analysis of miRNAs binding to SNP 
and linkage disequilibrium analysis
Bioinformatic software (http://bioin​fo.life.hust.edu.cn/
miRNA​SNP2/) was used to detect the candidate SNPs 
which could affect COL1A1 regulation via miRNAs [31].

RNA isolation
Fasting blood samples (5  mL) were collected in EDTA 
and separated by centrifugation at 3000g for 15 min. Total 
RNA containing miRNAs was isolated from plasma using 
the miRNeasy serum/plasma kit (TIANGEN: catalog 
number DP503, China). The homogenate was incubated 
for 5 min at room temperature, 25 fmol of synthetic cel-
miR-39 (TIANGEN; catalog number: CD200-01, China) 
was spiked in. Subsequently, the RNA was extracted 
according to the manufacturer’s protocols. Total RNA 
was eluted in 30 µL of RNase-free water. RNA was 
reverse transcribed to cDNA with reverse transcriptase 
kit (TIANGEN; catalog number: KR211, China). The 
reaction system contained total RNA 2  µg, miRNA RT 
reaction buffer 10 µL, Enzyme Mix 2 µL, RNase-free 
water up to 20 µL. The mixture was incubated at 42 °C for 
60 min, 95 °C for 3 min, and then held at 4 °C. A no-RT 
negative control was included in each experiment to 
ensure that PCR products were not due to contamination 
by genomic DNA.

Reverse transcription (RT) and quantitative PCR (qPCR)
The quantification of 4 plasma miRNAs was measured 
by SYBR Green-based real-time PCR using a miScript 
SYBR Green PCR kit (TIANGEN; catalog number FP411, 
China). The reaction contained 2 × miRcute Plus miRNA 
Premix 10 µL, 0.2 μL PCR Forward Primer, 0.4 μL PCR 
Reverse Primer, 3.0 μL cDNA, RNase-free water up to 
20 µL. The reactions were incubated at 95 °C for 15 min, 
94 °C for 20 s, 60 °C for 30 s, 72 °C for 34 s. All reactions 
were run in duplicate. The average of the Ct value was 
calculated after the PCRs were run in duplicate for each 
sample. The cel-miR-39 value from the duplicate was 
used as the internal control [32]. The relative expression 
of each miRNA after normalization to cel-miR-39 is dis-
played as 2− [Ct (miRNA) − Ct (cel-miR-39)].

Statistical analysis
All statistical analyses were performed using the statis-
tical software package SPSS 21.0 (SPSS Inc. Chicago, 

http://bioinfo.life.hust.edu.cn/miRNASNP2/
http://bioinfo.life.hust.edu.cn/miRNASNP2/
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IL, USA) and R software (version 3.3.3). A Chi square 
analysis was used to evaluate the difference of the rate 
between the groups. Continuous data were presented 
as mean ± SD. For those, that are normally distributed, 
whereas the medians and interquartile ranges for TG, 
which is not normally distributed. Comparisons between 
groups for continuous data were made using Mann–
Whitney nonparametric tests. The heart-map of correla-
tion models and Bioinformatic analysis was measured by 
R software (version 3.3.3). The receiver operating charac-
teristic (ROC) curve analysis was performed with plasma 
miR-3659 and miR-151a-5p to distinguish between dys-
lipidemia and control groups. The AUC was estimated to 
assess the diagnostic performance of miR-3659 and miR-
151a-5p. All tests were two-sided, and P < 0.05 was con-
sidered statistically significant.

Results
Data preprocessing
When the GSE66676 was analyzed, we can get 54560 
expression probes separately from each gene expression 
profile. After data preprocessing, the expression matrices 
of 19938 genes were obtained from the 67 samples. All 
of the genes and the samples’ phenotype were shown in 
Additional file 1: Tables S1 and S2.

Weighted gene co‑expression networks
We selected soft-threshold β = 6 to construct gene mod-
ules using the WGCNA package (Additional file  2: Fig-
ure S1). After determining the soft threshold, all of genes 
were used to construct weighted gene co-expression net-
works. Then, we calculated the correlation matrix and 
adjacency matrix of the gene expression profile of the 
four lipid-profile groups, and then transformed them 
into a topological overlap matrix (TOM), and obtained a 
system clustering tree of genes on the basis of gene–gene 
non-ω similarity. Together with the TOM, we performed 
the hierarchical average linkage clustering method to 
identify the gene modules of each gene network (deep-
split = 2, cut height = 0.25). Six gene modules were rec-
ognized by the dynamic tree cut (Fig. 2).

Finding module of interest and functional annotation
It is a hugely valued biological significance to find out 
modules most significantly associated with clinical fea-
tures. The highest association in the Module-feature rela-
tionship was found in grey60 module and TG (r2 = 0.98, 
P = 7E-04), which was selected as module of interest 
and clinical feature to be studied in subsequent analyses 
(Fig. 3). The other modules without enough relationship 
or statistical significance for further consideration. In 
order to explore biological relevance of grey60 module, 
139 genes which can be found in this module (Additional 

file 1: Table S3) were respective subjected to Gene Ontol-
ogy (GO) functional and KEGG pathway enrichment 
analyses by R clusterProfiler package [20]. Biological pro-
cesses, cell component, molecular function and KEGG 
pathway analysis of grey60 module were shown in Fig. 4. 
All of the databases were shown in Additional file  1: 
Tables S4 and S5.

Protein–protein interaction (PPI) network construction 
and identify hub genes
When the STRING database [33] was analyzed, a total 
of 64 nodes and 179 protein pairs were got with a com-
bined weight score > 0.25 in grey60 module (Fig.  5). 
After analysis in sub-module, only two modules with 
score > 6 were detected by MCODE. As shown in trian-
gle cluster, COL1A1 had the highest score (Degree = 34, 
MCODE = 10.25). We hypothesized that COL1A1 as the 
hub gene was closely relevant to dyslipidemia occurs.

Demographic and biochemical characteristics
Demographic, epidemiological and clinical characteris-
tics of the 857 analyzed study subjects are summarized 
in Table  1. All of the subjects were obese. The levels of 
weight, WC, BMI, systolic blood pressure (SBP), dias-
tolic blood pressure (DBP), pulse pressure (PP), serum 
glucose, TC, TG, LDL-C and the percentages of diabetes 
and hypertension were higher, whereas the HDL-C lev-
els were lower in dyslipidemia group as compared with 
normals.

Identification of COL1A1 polymorphisms in 3′‑UTR SNPs
In this study, we mainly focused on the relationship of 
the SNPs in the COL1A1 3′-UTR to dyslipidemia risk and 
outcome. We first searched the GenBank of Single Nucle-
otide Polymorphism database (https​://www.ncbi.nlm.nih.
gov/snp) to identify potential COL1A1 genetic variants 
in the 3′-UTR using the following parameters: Organism 
(Homo sapiens); Function Class (3′-UTR); Global MAF 
(0.01–0.1); Validation Status (by-1000 Genomes). We 
identified four COL1A1 polymorphisms (Fig. 6).

Expression level of four miRNAs between the two groups
As compared with those of healthy controls, the rela-
tive expression levels of circulating miR-3659 and miR-
151a-5p in dyslipidemic patients were significantly 
increased (P < 0.05; Fig. 6).

ROC curve for dyslipidemia
We performed a ROC analysis to determine the predic-
tive values of miR-3659 and miR-151a-5p for dyslipi-
demia. The AUCs of miR-3659 and miR-151a-5p were 
0.806 (95% CI 0.769–0.844; P < 0.001) and 0.769 (95% CI 
0.729-0.808; P < 0.001), respectively. This indicated that 

https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/snp
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Fig. 2  Clustering dendrogram of genes. Gene clustering tree (dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity. 
The colored row below the dendrogram indicates module membership identified by the dynamic tree cut method, together with assigned 
merged module colors and the original module colors. And, below is the phenotype. HDL-C high-density lipoprotein cholesterol, LDL-C low-density 
lipoprotein cholesterol

Fig. 3  Module-feature associations. Each row corresponds to a module Eigengene and each column to a clinical feature. Each cell contains the 
corresponding correlation in the first line and the P-value in the second line. The table is color-coded by correlation according to the color legend
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Fig. 4  GO functional and KEGG pathway enrichment analyses for genes in the object module. The x-axis shows the ratio number of genes and 
the y-axis shows the GO and KEGG pathway terms. The − log10 (P-value) of each term is colored according to the legend. GO Gene Ontology 
annotation, KEGG the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses

Fig. 5  The protein–protein interaction analysis of the differentially expressed genes. Protein–protein interaction network of the module genes. 
Edge stands for the interaction between two genes. A degree was used for describing the importance of protein nodes in the network, red shows 
a high degree and blue presents a low degree. The significant two modules identified from the protein–protein interaction network shown with 
triangle (cluster 1) and diamond (cluster 2) using the molecular complex detection method with a score of > 6.0
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the diagnostic performance of the miR-3659 was superior 
to miR-151a-5p (P = 0.02026; Fig. 7).

Discussion
Several recent reports showed that age, gender, smoking, 
obesity, dyslipidemia, lack of exercise, hypertension and 
diabetes mellitus are established risk factors for cardio-
vascular disease [34, 35]. With the remarkable improve-
ment of social living standard, obesity has turned into a 
worldwide epidemic [36]. As a complex and multifacto-
rial disease, lots of environmental and genetic factors can 
result in obesity and dyslipidemia [37, 38]. In the cur-
rent study via WGCNA analysis, we have identified that 
COL1A1 may modify serum lipid levels in obese patients.

Type 1 collagen is the main structural protein of bone 
and is encoded by two genes: COL1A1 and COL1A2. The 
COL1A1 is located in chromosome 17, region 17q21–
22, and presents 51 exons. One of the most extensively 

studied polymorphisms is the so-called Sp1, which con-
sists of the substitution of a guanine (G) by a thymine 
(T) in the first base of the first intron of the gene, which 
affects the binding site of the transcription factor Sp1 
and thereby, the regulation of the gene transcription [39]. 
Besides this, a recent research found that COL1A1 poly-
morphisms could modify blood lipid levels, especially 
TG [40]. Previous studies also showed that the typical 
dyslipidemia of obesity consists of increased TG and free 
fatty acid, decreased HDL-C with HDL dysfunction and 
normal or slightly increased LDL-C with increased small 
dense LDL [41]. Therefore, in obese, when the COL1A1 
expression changed, it may lead to serum TG increased 
and cause dyslipidemia.

MiRNAs, the endogenous and small noncoding RNAs, 
were found in lots of cell types and tissues especially the 
adipose tissue [42]. Besides, miRNAs may play an impor-
tant role in the regulation of physiological and metabolic 

Table 1  Comparison of  demographic, lifestyle characteristics and  serum lipid levels between  the  normal 
and dyslipidemia groups in obese

HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, Apo apolipoprotein
a  Continuous data were presented as mean ± SD and determined by two side t-test
b  A Chi square analysis was used to evaluate the difference of the rate between the groups
c  For those, that are normally distributed, whereas the medians and interquartile ranges for TG, was determined by the Wilcoxon–Mann–Whitney test

Parameter Normal Dyslipidemia Test-statistic P

Number 424 433

Male/female 128/296 141/292 0.561 0.454

Age (years)a 55.31 ± 10.52 55.87 ± 11.13 0.987 0.378

Height (cm) 156.13 ± 6.94 155.63 ± 7.02 1.496 0.192

Weight (kg) 52.83 ± 7.94 61.74 ± 10.64 25.439 1.73E–06

Body mass index (kg/m2) 29.49 ± 3.13 31.31 ± 4.54 31.224 2.56E–08

Waist circumference (cm) 74.23 ± 6.91 86.55 ± 9.47 22.321 3.11E–05

Smoking status [n (%)]b

 Non-smoker 306 (72.2) 325 (75.1)

 Smoker 118 (27.8) 108 (24.9) 0.920 0.337

Alcohol consumption [n (%)]

 Non-drinker 339 (80.1) 330 (76.2)

 Drinker 85 (19.9) 103 (23.8) 1.750 0.186

Systolic blood pressure (mmHg) 128.24 ± 18.18 136.47 ± 22.16 43.136 6.13E−012

Diastolic blood pressure (mmHg) 81.54 ± 10.16 86.49 ± 13.15 18.250 7.39E–05

Pulse pressure (mmHg) 49.64 ± 14.28 52.42 ± 17.59 28.317 3.63E−07

Glucose (mmol/L) 5.94 ± 1.83 7.15 ± 2.45 19.817 5.91E–05

Total cholesterol (mmol/L) 4.94 ± 1.13 5.14 ± 1.07 7.121 0.029

Triglyceride (mmol/L)c 1.49 (0.51) 1.78 (1.22) 8.441 0.021

HDL-C (mmol/L) 1.54 ± 0.49 1.06 ± 0.27 8.668 0.013

LDL-C (mmol/L) 2.84 ± 0.84 2.88 ± 0.79 9.497 0.007

ApoA1 (g/L) 1.33 ± 0.25 1.29 ± 0.27 0.364 0.558

ApoB (g/L) 0.82 ± 0.19 0.86 ± 0.20 1.492 0.233

ApoA1/ApoB 1.67 ± 0.50 1.66 ± 0.57 0.095 0.758

Diabetes [n (%)] 47 (11.0) 64 (14.9) 9.444 0.010

Hypertension [n (%)] 197 (46.4) 213 (49.3) 8.457 0.019
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processes just as obesity, dyslipidemia, diabetes, aging, 
and others [43, 44]. Given their role in regulating tran-
scriptional networks, miRNAs in adipose tissue might 
offer attractive biomarkers of adiposity as well as poten-
tial therapeutic targets for treating metabolic disorders 
[45].

Lots of evidences demonstrated that SNPs localized at 
miRNA binding sites (miRSNPs) could affect the bind-
ing of miRNAs to the target genes and in turn result in 
reduction or increase in translation of the target mRNA 
and altered susceptibility to disease [46]. In the current 
study, we used bioinformatic software to identified four 

miRNAs which can bind SNPs in 3′UTR in COL1A1, but 
only two miRNAs had statistical significance. After ROC 
curve analysis, we showed that miR-3659 in obese might 
be a potential biomarker for dyslipidemia diagnosis.

This study had several limitations. First, it did not 
report serum hormone levels which had potential impact 
on obesity and dyslipidemia. Second, it is a cross-sec-
tional study that suggested hypotheses but failed to 
describe the relationship between the putative cause 
and effect. Third, it is a single-center study involving a 
small number of patients, and large-scale multicenter 
studies are necessary to verify our findings. Finally, the 

Fig. 6  Binding of miRNA to COL1A1 SNPs minor alleles and the relative expression level. On top of the figure shown bioinformatic analysis of 
potential miRNAs binding to COL1A1 SNPs polymorphisms and below was the relative expression level of the four miRNAs between two groups
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mechanisms of miR-3659 that regulated dyslipidemia 
in obese were not fully elucidated. The biological effects 
of microRNA in dyslipidemia need to be further deter-
mined via animal and cytology experiments in vitro.

Conclusions
After comprehensive WGCNA bioinformatics analysis 
and verification, we found that miR-3659 was signifi-
cantly elevated in dyslipidemia patients with obesity and 
exhibited a good predictive effect on the incidence of 
dyslipidemia in obesity.

Additional files

Additional file 1. Additional tables.

Additional file 2. Additional figures.
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