
ll
OPEN ACCESS
iScience

Article
Acute kidney injury leading to CKD is associated
with a persistence of metabolic dysfunction and
hypertriglyceridemia
Azadeh Harzandi,

Sunjae Lee,

Gholamreza

Bidkhori, ..., Adil

Mardinoglu,

Saeed Shoaie,

Claire C. Sharpe

adilm@scilifelab.se (A.M.)

saeed.shoaie@kcl.ac.uk (S.S.)

claire.sharpe@kcl.ac.uk

(C.C.S.)

HIGHLIGHTS
Following AKI, markers of

fibrosis and inflammation

go up simultaneously

AKI is associated with

reduced fatty acid

oxidation and oxidative

phosphorylation

Changes in metabolism

persist as chronic kidney

disease develops

Changes in metabolism

are associated with

increased serum levels of

triglycerides

Harzandi et al., iScience 24,
102046
February 19, 2021 ª 2021 The
Authors.

https://doi.org/10.1016/

j.isci.2021.102046

mailto:adilm@scilifelab.se
mailto:saeed.shoaie@kcl.ac.uk
mailto:claire.sharpe@kcl.ac.uk
https://doi.org/10.1016/j.isci.2021.102046
https://doi.org/10.1016/j.isci.2021.102046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102046&domain=pdf


iScience

Article

Acute kidney injury leading to CKD
is associated with a persistence of metabolic
dysfunction and hypertriglyceridemia

Azadeh Harzandi,1 Sunjae Lee,2,3 Gholamreza Bidkhori,3 Sujit Saha,1 Bruce M. Hendry,1 Adil Mardinoglu,3,4,*

Saeed Shoaie,3,4,* and Claire C. Sharpe1,5,*

SUMMARY

Fibrosis is the pathophysiological hallmark of progressive chronic kidney disease
(CKD). The kidney is a highly metabolically active organ, and it has been sug-
gested that disruption in its metabolism leads to renal fibrosis. We developed a
longitudinal mouse model of acute kidney injury leading to CKD and an in vitro
model of epithelial to mesenchymal transition to study changes in metabolism,
inflammation, and fibrosis. Using transcriptomics,metabolicmodeling, and serum
metabolomics, we observed sustained fatty acid metabolic dysfunction in the
mouse model from early to late stages of CKD. Increased fatty acid biosynthesis
and downregulation of catabolic pathways for triglycerides and diacylglycerides
were associatedwith a marked increase in these lipids in the serum.We therefore
suggest that the kidney may be the source of the abnormal lipid profile seen in
patients with CKD, which may provide insights into the association between
CKD and cardiovascular disease.

INTRODUCTION

The Institute for Health Metrics and Evaluation’s Global Burden of Disease Study 2017 highlighted that

chronic kidney disease (CKD) is predicted to rise from the 16th (in 2016) to the 5th most common cause

of death worldwide by 2040, overtaking diabetes (Jadot et al., 2017).

Since the discovery many decades ago that inhibitors of the renin-angiotensin-aldosterone system could

slow the progression of CKD, there has, until recently, been no new disease-modifying drug that preserves

kidney function in patients with CKD. Over the past 3 years, however, two new classes of drugs, sodium-

glucose linked transporter protein 2 (SGLT2) inhibitors and non-steroidal, selective mineralocorticoid re-

ceptor antagonists have been shown in clinical trials to preserve kidney function in patients with progres-

sive CKD with (and in the case of dapagliflozin without) type 2 diabetes (Bakris et al., 2020; Heerspink et al.,

2020; Perkovic et al., 2019). These exciting trials have demonstrated that this hitherto predicted epidemic of

CKD can be averted with new therapeutic interventions. Furthermore, we suggest that a better understand-

ing of the complex mechanisms that drive this disease may lead to the development of many more drugs

for use in preventing or slowing CKD.

CKD is defined as the progressive and irreversible loss of kidney function over time. Many patients remain

asymptomatic until the advanced stages, so diagnosis often comes too late for therapeutic intervention.

Fibrosis is the pathophysiological hallmark of progressive CKD regardless of the initial etiology of injury

and, if unchecked, may eventually overwhelm the functional tissue leading to end-stage kidney disease

(Zeisberg and Neilson, 2010). Morphologically, fibrosis is characterized by increased numbers of activated

fibroblasts, excessive accumulation of extracellular matrix, vascular rarefaction and tubular atrophy as a

result of a shift in these cells from an epithelial to mesenchymal phenotype, and insufficient regeneration.

It often coexists with, or is preceded by, inflammation and is triggered by severe or recurrent acute injury

(Basile et al., 2016). Accumulating evidence suggests that acutely damaged proximal tubular epithelial cells

(PTECs) drive the fibrotic process through the release of pro-inflammatory and pro-fibrotic cytokines. Key

signaling pathways have been identified including many that are important in embryonic development,

cancer progression, and inflammation (Bonventre, 2014; Guzzi et al., 2019).
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More recently, both acute kidney injury (AKI) and CKD have been demonstrated to be associated with sig-

nificant shifts in renal cell metabolism, again most importantly, in the PTECs (Balzer and Susztak, 2020;

Chen et al., 2017; Kang et al., 2015). It has been postulated that this metabolic dysfunction is directly caus-

ative in the pathogenesis of renal fibrosis based on the intracellular deposition of triglycerides and a

decrease in fatty acid oxidation (FAO) in a folic acid-induced mouse model of renal fibrosis. This was asso-

ciated with lower transcriptional levels of peroxisome proliferator-activated receptor alpha (PPAR-alpha)

and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC-1a), enzymes

involved in lipid and energy metabolism (Kang et al., 2015). However, this model was interrogated in a rela-

tively acute phase (7 days post folic acid injection) and was not able to assess changes over time. The same

study also showed that TGF-b1 induction in renal epithelial cells suppresses FAO in a PPARGC-1a-depen-

dent manner.

In addition, Lu et al. have shown that PPAR-g stimulation prevents fibroblast proliferation through the in-

duction of platelet-derived growth factor (PDGF) and phosphorylation of AKT (Lu et al., 2016), whereas

others have shown that abnormal mitochondrial activity and impaired glycolysis and FAO are important

features of polycystic kidney disease (Padovano et al., 2018; Podrini et al., 2018; Rowe et al., 2013). More-

over, mitochondrial transcription factor A (TFAM) plays a key role in the regulation of mitochondrial DNA

transcription and the expression of its gene TFAM is negatively correlated with the degree of renal fibrosis

in the kidneys of patients with CKD (Chung et al., 2019; Scarpulla, 2008). In this study, transgenic mice

missing the TFAM gene in renal tubular cells alone developed metabolic dysfunction, mitochondrial

loss, renal fibrosis, and immune cell infiltration by 6 weeks of age, suggesting a causal relationship between

metabolic dysfunction in tubular cells and inflammation and fibrosis in the kidney.

The interplay between inflammation, fibrosis, and metabolism in the progression of CKD is thus complex

and difficult to tease apart. Unbiased, systems biology-based approaches and multiomics analysis can be

usefully employed to interrogate these interactions, to discover biomarkers and to identify drug targets. To

date, the valuable systems biology tools, genome-scale metabolic models (GEMs), have been generated

for different tissues and used in the integration of multiomics data to gain understanding of metabolism-

related disorders including obesity, fatty liver disease, diabetes, and certain types of cancers (Mardinoglu

et al., 2018; Mardinoglu and Nielsen, 2015; O’Brien et al., 2015). Here, we have used an omics approach and

integrative computational modeling to investigate the relationship between inflammation, fibrosis, and

changes in metabolism over time in a longitudinal mouse model of fibrosis and CKD following aristolochic

acid (AA)-induced AKI.

RESULTS

Intraperitoneal injection of aristolochic acid induces acute kidney injury, which leads to

progressive chronic kidney disease in mice

Aristolochic acid nephropathy (AAN) is an important and probably under-reported global cause of CKD

and has been used to model AKI and CKD in rodents for over 30 years (Jadot et al., 2017; Ortiz et al.,

2015). In this study, we adapted a murine model of aristolochic acid (AA)-induced AKI, which is associated

with low mortality but progresses to fibrotic CKD leading to established renal impairment over 100 days.

We used outbred CD1 mice, which are susceptible to developing renal fibrosis (Walkin et al., 2013), and

injected them with two low doses of AA (3.5 mg/kg) by intraperitoneal injection on day 0 and day 5 (Fig-

ure 1A, see Transparent methods). By measuring the serum blood urea nitrogen and creatinine on day

12, the significant and early rapid rise confirmed the presence of AKI, which recovered (with respect to renal

function) by day 32, although not completely back to baseline (early CKD) (Figures 1B and 1C). This was

followed by a slow second decline in renal function to day 100 (late CKD) confirming the disease progres-

sion without further intervention. Histological analysis using picrosirius red staining and biochemical anal-

ysis of hydroxyproline content of the tissue confirmed the presence of increased collagen deposition in the

tissue over time in keeping with progressive fibrosis (Figure 1D).

Differentially expressed genes are clustered by treatment rather than time point of the

model

Next, to better understand the longitudinal changes andmolecular mechanism underlying the progression

of CKD following AKI, we performed transcriptome analysis by RNA-sequencing, generating an average of

8.8 million reads per sample on mouse kidney tissues during both early (day 32) and late (day 100) stages of

CKD, together with age-matched controls with triplicates for each group.
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By performing principal component analysis (PCA) on transcriptomes of all samples (Figure 2A), we observed

significant clustering by treatment with AA (permutational multivariate analysis of variance (PERMANOVA) p

value < 0.001), rather than time points (PERMANOVA p value = 0.107). To determine the gene expression

changes by the AA treatment, we identified significantly differentially expressed genes (DEGs) at different

time points and conditions using the DESeq package (Anders and Huber, 2010). We found that 2,124 unique

genes were upregulated and 1,403 unique genes were downregulated at day 32, and 399 were upregulated

and437weredownregulated at day 100, comparingAA-treated sampleswith age-matched controls (negative

binomial tests, adjusted p value < 0.05; Table S1). Among these DEGs, 611 were commonly shared at both

days 32 and 100, with 286 upregulated at day 32 and day 100 and 325 downregulated at both time points (Fig-

ure 2B). Of interest, seven DEGs had opposite expression directionality between day 32 and day 100 (Fig-

ure 2C). These included Eng (encoding endoglin) and Plvap, which were upregulated at day 32 but downre-

gulated at day 100. DEGs that were upregulated at day 32 but not differentially expressed at day 100 included

Flt1, Kdr, and Flt4, which encode for fms-like tyrosine kinase1 or vascular endothelial growth factor receptor 1

(VEGFR1), fetal liver kinase-1 or vascular endothelial growth factor receptor 2 (VEGFR2), and fms-like tyrosine

kinase 4 or vascular endothelial growth factor receptor 3 (VEGFR3).

Collagen turnover and inflammation pathways were upregulated in both early and late CKD

Next, we performed gene enrichment analysis using Database for Annotation, Visualization and Integrated

Discovery (DAVID) to identify biological processes significantly enriched with DEGs (Fresno and Fernandez,
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Figure 1. Intraperitoneal injection of aristolochic acid induces acute kidney injury, which leads to progressive chronic kidney disease in mice

(A) Two 3.5-mg/kg aristolochic acid injections (or normal saline vehicle) were given 5 days apart to 8-week-old CD1 mice. After 32 and 100 days, mice were

sacrificed with their saline-injected age-matched controls (N = 3 per group).

(B) Serum blood urea nitrogen (BUN) levels at different time points; p value < 0.0001 at Day 12, p value = 0.0394 at Day 20, p value = 0.0194 at Day 100.

(C) Serum creatinine levels at different time points; p value < 0.0007 at Day 12, p value = 0.0013 at Day 20, p value < 0.0001 at Day 30, p value < 0.0001 at

Day 100.

(D) Picro Sirius red staining of kidney tissue for collagen deposition and area fraction quantification. Scale bars = 100mm
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2013; Huang da et al., 2009). Here, we observed significant overlap of enriched biological process terms

between day 32 and day 100 (false discovery rate [FDR] <0.05; Figure 2D, Table S2). Using the MGI-

MGD database (Smith et al., 2018), we investigated the significant DEGs within the five key pathways

involved in fibrosis and determined the changes in genes involved in collagen expression and degradation

to study collagen turnover during early and late stages of CKD (Figures 2E and 2F). We found that the ma-

jority of genes involved in collagen expression and degradation were significantly upregulated at day 32

and also at day 100, although to a lesser degree, in keeping with a progressively fibrotic model (negative

binomial tests, adjusted p value <0.05). Next, despite almost complete resolution of kidney function by day

32, we observed that inflammation pathways were also highly upregulated in this early CKD stage and re-

mained upregulated, although to a lesser extent at day 100, in a similar pattern to the fibrosis pathways

(Figure 2G).
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Figure 2. Differentially expressed genes are clustered by treatment rather than time point of the model

(A) Principal component analysis of global transcriptomic data derived from kidney tissue of AAN murine model and age-matched controls at different time

points.

(B) Venn diagram showing shared significantly up/downregulated genes at day 32 and day 100 in AAN compared with age-matched controls.

(C) Scatterplot showing fold changes of differentially expressed genes (DEGs) comparing day 32 and day 100. Dots in red are genes that show opposite

direction of expression between the two time points.

(D) Venn diagram shows enriched pathways of up/downregulated DEG (FDR <0.05).

(E) Heatmap showing the six most significantly enriched pathways involved in inflammation and fibrosis and the most highly upregulated genes (top 10) of

each pathway at day 32 and day 100 (log2 fold change).

(F) Heatmap showing the differential expression of genes involved in collagen production at day 32 and day 100 (log2 fold change).

(G) Sankey diagram of enriched pathways of up/downregulated genes. Here we present detailed classes of enriched pathways in the left-hand nodes and

broad definitions in the right-hand nodes. The thickness of the gray connectors coming from the left side depicts the significance of the given class of

enriched pathway at each time point. The thickness of the gray connectors coming from the right side depicts the number of enriched terms belonging to the

given pathway at each time point.
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In contrast to the upregulation of inflammation and collagen turnover pathways, gene ontology pathway

analysis of metabolism-associated genes showed downregulation of energy metabolism, fatty acid oxida-

tion, and oxoacid metabolic processes, which consist of aerobic respiration, ATP synthesis-coupled elec-

tron transport, glutathione metabolism, cell redox homeostasis, and glycolytic processes (Figure 2G). Simi-

larly to inflammation and fibrosis, these changes were greatest at day 32, although they did persist at day

100 resulting in a negative correlation of gene expression related to inflammation and fatty acid meta-

bolism (Figure S1).

Peroxisomal and mitochondrial fatty acid oxidation are dysregulated in both early and late

CKD

Based on the biological process and DEGs from previous sections, we observed dysregulation in the

glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) and oxidative stress

pathways (Figure 3A). Most of the genes involved in glycolysis and the TCA cycle and several genes

involved in the regulation of reactive oxygen species were noticeably downregulated (negative binomial

tests adjusted p values < 0.05; Table S3). Of interest, the observed pattern of DEGs suggested that there

was a significant decrease in the activity of proliferator-activated receptors (PPARs), which control the

expression of genes involved in fatty acid b-oxidation via the peroxisome pathway and mitochondria of

the AAN mice. In the early-stage CKD model, Cpt1a and Cpt2 (carnitine palmitoyl transferase I and II),

which facilitate the transportation of fatty acid into mitochondria for energy production, were downregu-

lated. In both early- and late-stage CKDmodels, we observed a downregulation of genes involved in mito-

chondrial b-oxidation of fatty acids, such as Acads (encoding acyl-CoA dehydrogenase short chain),

Acad11 (encoding acyl-coenzyme A dehydrogenase family enzyme 11), Hadh (encoding hydroxyacyl-

CoA dehydrogenase), and Mlycd (encoding malonyl-CoA decarboxylase), which converts malonyl-CoA

to acetyl-CoA in both the mitochondria and the peroxisome.

In the peroxisome, Tysnd1 (encoding peroxisomal leader peptide-processing protease) was also downre-

gulated in both early and late stages and encodes crucial enzymes for fatty acid shortening and fatty acid

A B

Figure 3. Peroxisomal and mitochondrial fatty acid oxidation are dysregulated in both early and late CKD

(A) Diagram depicting dysregulation of fatty acid oxidation in both peroxisomes and mitochondria. Genes in purple are those downregulated in early CKD

(day 32) in the b-oxidation pathway in both peroxisome and mitochondria. Genes in blue are those downregulated at both stages of CKD in the TCA cycle

and b-oxidation pathways in mitochondria.

(B) Diagram showing the average predicted flux ratio for the metabolic pathways on days 32 and 100 compared with control (baseline); positive and negative

flux ratios indicate increased and decreased flux at both stages of CKD, respectively.
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oxidation (Chegary et al., 2009; Mizuno et al., 2013). Acox1 and Acox3, which encode the proteins perox-

isomal acyl-coenzyme A oxidase 1 and 3, respectively, were downregulated only in early CKD and catalyze

the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs in peroxisomal fatty acid b-oxidation, a reaction that

donates electrons directly to oxygen molecule thereby producing hydrogen peroxide (Varanasi et al.,

1994). Defects in these genes lead to accumulation of very-long-chain fatty acids. Acaa1 was also downre-

gulated in early CKD and encodes the enzyme acetyl-CoA C-acyltransferase involved in fatty acid b-oxida-

tion and degradation. The Phyh gene was highly downregulated in both early and late stages of our CKD

model and encodes for phytanoyl-CoA hydroxylase. This enzyme breaks down the plant-derived fatty acid

phytanic acid in the peroxisome via an a-oxidation process, the products of which are then further broken

down via b-oxidation (Jansen et al., 2000).

Transcriptome data from both stages of CKD showed significant reduction in the mitochondrial estrogen-

related receptor alpha (Esrra) gene. This transcription factor is involved in mitochondrial biogenesis and is

downregulated in both early and late CKD, but more significantly so in late CKD (Bookout et al., 2006). We

also observed a decrease in the expression of other important mitochondrial genes that encode subunit

enzymes that participate in mitochondrial oxidative phosphorylation, such as cytochrome c oxidase 5a/b

and 6 (Cox 5a/b and Cox 6) (Reinecke et al., 2009). Conversely, there were no downregulated genes at

day 100 involved in peroxisome fatty acid b-oxidation. Crot (encoding peroxisomal carnitine O-octanoyl-

transferase), which catalyzes the reversible transfer of fatty acyl groups between CoA and carnitine, facili-

tating the transport of medium-length acyl chains out of the mammalian peroxisome to the cytosol and

mitochondria for degradation, was upregulated.

Of interest, in early CKD in our model, many genes that are involved in inositol phosphate metabolism and pro-

duction of myo-inositol (MI) were highly upregulated, such as Inpp5d (encoding inositol polyphosphate-5-phos-

phatase D), Pip4k2a/b (encoding phosphatidylinositol-5-phosphate 4-kinase type II alpha and beta), and PTEN

genes, whereas the gene for myo-inositol oxygenase (MIOX), an enzyme responsible for catalyzing the degra-

dation of MI into D-glucuronic acid, was significantly downregulated. Moreover, despite downregulation of the

glycolysis pathway, the gene for hexokinase 3 (HK3), a key enzyme in the first step of glucose metabolism, which

produces glucose-6-phosphate (G6P), was significantly upregulated. Therefore, it would seem likely that this

G6P further increases the biosynthesis of MI as it is a substrate for inositol-3-phosphate synthase, the gene

for which (ISYNA1) was also significantly upregulated in our model.

Flux balance analysis suggests a drop in overall flux in both mitochondria and peroxisome

To better understand the impact of early and late CKD gene expression changes on renal cell metabolism,

we used GEM of the kidney tissue based on the transcriptomic data. The applied GEM consisted of 3,579

genes, 8,140 reactions, and 5,516 unique metabolites at 8 different cellular compartments (Mardinoglu

et al., 2015). Initially, we integrated the transcriptional data of the three time points (baseline, day 32,

and day 100) on the kidney GEM. To further elucidate the metabolic flux within the cell, we performed

constraint-based modeling using the transcriptional data as the main constraint (see Transparent

methods). Three specific constrainedmodels were generated based on the transcriptional data from base-

line, early CKD (day 32), and late CKD (day 100). To perform flux balance analysis (FBA) and predict the flux

distribution in each time point, the maximization of ATP demand reaction was considered as the desired

cellular objective (Orth et al., 2010). The outputs of the simulations confirmed that the metabolic flux

through the aforementioned pathways was reduced in early CKD versus control (baseline); however, there

was a slight increase in the overall flux for late versus early CKD (Figure 3B, Table S4). The simulations also

predicted a major increase through the pentose phosphate pathway, NADPH production, and fatty acid

biosynthesis supporting the observation that there is reprogramming of the metabolic flux from glycolysis

to the pentose phosphate pathway through glucose-6-phosphate. This is likely to lead to an increase in the

production of NADPH, fatty acid biosynthesis, and an increase of inositol phosphate metabolism, as we

observed from our gene expression data. GEM simulations also showed that the overall flux in both mito-

chondrial and peroxisomal b-oxidation is decreased, as is the flux through oxidative phosphorylation, con-

firming the reduction of mitochondrial activity. In healthy renal tissue (baseline) the acetyl-CoA turnover

rate is high, being predominantly produced by fatty acid b-oxidation and glycolysis and consumed by

the TCA pathway. Conversely, in CKD, especially at the early stage, acetyl-CoA is converted to malonyl-

CoA for fatty acid biosynthesis. Of interest, the acetyl-CoA is mainly provided by the catabolism of

branched-chain amino acids, especially isoleucine (Table S4).
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Consistent with FBA, the reporter metabolite analysis showed that NAD+, NADH, ubiquinol, ubiquinone,

CoA, FAD H2 (reduced flavin adenine dinucleotide), acetyl-CoA, glycerate, glutamine-alpha-ketoglutarate

(AKG), and pyruvate are the main significantly decreased reporter metabolites (whereby the expression of

the genes in relation to the metabolites is decreased) from baseline to day 32 (Figure S2, Table S5), in keep-

ing with our data suggesting mitochondrial dysfunction in early CKD. Of interest, the reporter metabolites

ubiquinone, ubiquinol, NADH, NAD+, ferricytochrome C, and ferrocytochrome C were significantly upre-

gulated in late CKD (day 100) in comparison with early CKD (day 32), which might suggest some improve-

ment of mitochondrial function over time. Our previous pathway and DEGs analysis, together with

modeling, demonstrates the decrease of fatty acid oxidation in both early and late stages of CKD, whereas

the modeling shows an increase of fatty acids biosynthesis in early CKD. In addition, we observed the up-

regulation of genes responsible for choline and lysosomal proteolysis, which would include degradation of

albumin and extracellular matrix proteins in early CKD compared with healthy tissue.

Serummetabolic profile in mice with AA nephropathy demonstrates an increase in circulating

LCFA

To test our prediction that CKD induced by AAN leads to increased long chain fatty acid (LCFA) metabo-

lites, we performed targeted metabolomics on the sera from the same mice we used for the transcriptomic

analysis. Initially, we compared all diseased (both early and late CKD combined) with age-matched controls

by performing the Wilcoxon signed-rank test (p value < 0.05; Figure 4A, Table S6). The majority of metab-

olites that were found to be increased in the serum were triglycerides (an ester derived from glycerol and

three long-chain fatty acid molecules). Also, among the top significantly changed metabolites were diac-

ylglyceride (DAG), another high-density lipid, and cholesteryl ester demonstrating raised lipoproteins in

the serum. Kynurenine and indoxyl sulfate, so-called uremic toxins, were also increased in AAN. These

two metabolites are the product of tryptophan degradation and are known to be elevated in patients

with CKD (Tan et al., 2017). Of interest, the serum level of carnitine and two other carnitine-related

A

B C D

Figure 4. Serum metabolic profiles in mice with AA nephropathy demonstrate an increase in circulating LCFA

(A) Scatterplot showing how the concentrations of different metabolites vary according to disease versus age-matched

controls (day 32 and day 100 data combined). Blue dots represent metabolites with significantly changed concentrations

(p value < 0.05) and red dots show those without significant changes (Wilcoxon test, p value<0.05, log2 fold change).

(B) Partial least squares-discriminant analysis (PLS-DA) comparison of metabolite concentration levels in different serum

samples (disease versus no disease).

(C) Changes in metabolites that are common for both early and late CKD compared with age-matched controls.

(D) Changes in metabolites that are specific for early CKD compared with age-matched controls.
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metabolites, acetyl carnitine and propionyl carnitine, were decreased in the serum of AA nephropathymice

compared with controls, in keeping with previous reports of reduced circulating levels of carnitine in pa-

tients with CKD (Calvani et al., 2004; Charnas et al., 1991). Similarly, reduced ceramide has previously

been associated with advanced CKD (Reis et al., 2015). In addition, another two metabolites, Kynurenine

and Citrulline, were increased in our serum samples. These two metabolites previously were indicated

as a CKD development marker in patients’ plasma (Rhee et al., 2013).

In order to further distinguish between the metabolites in the serum of AAN mice and their age-matched

controls, partial least squares discriminant analysis (PLS-DA) was applied (Figure 4B). The output of this

analysis was highly consistent with the results from the Wilcoxon signed-rank test, showing significant

changes in the same metabolites, comparing AAN and controls. As seen in Figure 4C, an elevation in ky-

nurenine and reduction in circulating acetylcarnitine and propionyl carnitine were among the indicators of

early and late stages of CKD in AAN compared with controls, whereas a rise in tri(di)acylglyceride and phos-

phatidylcholine metabolites was the signature of early CKD in AAN (Figure 4D).

Global transcriptomics in proximal tubular cells undergoing transition from epithelial to

mesenchymal phenotype in vitro shows similar FAO dysregulation

To further investigate the relative impact of AAN on different cell types within the kidney, we checked dif-

ferential gene expressions by the cell type maker genes of kidney tissues (i.e., log2 fold changes, Figure S3),

which were previously identified from single cell transcriptomics data (Park et al., 2018). Of interest, we

found considerable downregulation of expression of proximal tubule cell markers at day 32 and substantial

upregulation of expression of cell markers of macrophages, T lymphocytes, neutrophils, and fibroblasts, in

keeping with a state of ongoing inflammation and fibrosis. At day 100, we observed again a significant

downregulation of proximal tubule cell markers and an upregulation of expression of cell markers of inflam-

mation and fibrosis. Of interest, endothelial cell markers were significantly upregulated on day 32 but

downregulated by day 100. We also interrogated enriched biological process terms of cell markers of

each cell type confirming that the proximal tubule cell is responsible for fatty acid oxidation within the kid-

ney, in keeping with our metabolomic data (Table S7).

PTECs are the most metabolically active cells in the kidney, so we hypothesized that changes in the meta-

bolism within these cells are the main drivers for the results described above. To test this, we developed an

in vitro CD1 mouse proximal tubular epithelial cell (MPTEC) model, which could mimic changes associated

with epithelial-mesenchymal transition (EMT). PTECs are thought to partially undergo this process during

fibrogenesis, and this model is a well-established in vitro model of fibrosis (Lovisa et al., 2016). We quan-

tified cell line transcriptomes with average 8.4 million mapped reads from MPTEC cell lines, which were

treated with two cytokines, TGF-b and EGF (10 ng/mL each) versus untreated cells. Cell analysis was under-

taken at three time points, along with matched controls, following 1, 3, and 5 days of treatment (Figures 5A

and 5B, see Transparent methods). Morphological transformation from epithelial to mesenchymal pheno-

type triggered by these cytokines was noted at day 3 and day 5 with reduced expression of the epithelial

cell marker E-cadherin, an increase in a-smooth muscle actin (a-SMA) expression, and formation of mesen-

chymal-like F-actin stress fibers seen by phalloidin staining (Figure 5C).

By performing PCA on the in vitro model transcriptomes, we found that samples were significantly clus-

tered by both treatment conditions (PERMANOVA p value < 0.001) and time points (PERMANOVA p

value < 0.002), particularly in those cells treated for 5 days (Figure 6A). Based on negative binomial tests

of the DESeq package (Anders and Huber, 2010), we identified an average of 1,539 DEGs per each time

point including a subset of genes, which were significantly differentially expressed at all time points (Fig-

ure S4A, adjusted p value < 1 3 10�5); 150 upregulated genes and 127 genes downregulated (Figure S4B,

Table S8). Among the DEGs observed at all three time points, we found that fold changes were similar at all

time points.

When we compared enriched biological process terms using DAVID (FDR <0.05) (Fresno and Fernandez,

2013; Huang da et al., 2009), we found overlap of several upregulated pathways at different time points

but less overlap for downregulated pathways (Figure S4C, Table S9). Fifty-two biological process terms

were enriched among upregulated genes at all time points, but none of them were commonly enriched

among downregulated genes, implying time-specific repressions. Cell migration (contained within the

larger term of development) and apoptosis were common at all three time points in upregulated enriched
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pathways, and mitochondrial metabolic pathways were among the downregulated enriched pathways

following 5 days of treatment (Figure 6B). Of interest, pathways known to be downstream of TGF-b were

enriched at day 1 and day 3 (but not at day 5) as were mesenchymal pathways, in keeping with a process

of EMT.

As hypothesized, tubularmetabolic pathway responses to treatment with the two cytokines at day 5 were consis-

tent with our in vivomodel of CKD. We saw significant downregulation of genes involved in glycolysis, and the

TCA cycle showed major disruption in central carbon metabolism pathways. To further examine alterations in

FAO pathways in mitochondria and peroxisomes in our in vitro model, we looked at changes in the genes

involved in fatty acid degradation, fatty acid b-oxidation, and peroxisome proliferator-activated receptors

(PPARs)-induced pathways. Transcriptional change in downstream genes of the PPAR transcription factor,

A B

C

Figure 5. Proximal tubular cells undergo epithelial to mesenchymal transition in vitro when treated with TGF-b1

and EGF

MPTECs were treated with 10 ng/mL each of TGF-b1 and EGF to induce epithelial to mesenchymal transition.

(A) Quantitative determination of a-SMAmRNA expression at different time points of treatment compared with untreated

controls. a-SMA expression was measured using q-PCR (number of replications = 3, house-keeping gene: GAPDH). Two-

way ANOVA test, p value = 0.02. Data are represented as mean G SD.

(B) E-cadherin expression determined by densitometry of western blot at different time points compared with untreated

controls.

(C) Immunofluorescence staining for E-cadherin with anti-E-cadherin and Alexa Flour 488 (green), and F-actin localization

using Rhodamine phalloidin (red) after 3 and 5 days of treatment. Nuclei are stained using with Hoechst (blue) (403

magnification and scale bar, 50mm).
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such asCpt1a andCpt2,Acads,Hadh, and Etfa, suggested that themost downregulated genes were those that

encode vital enzymes in fatty acid shortening and fatty acid oxidation (Figure 6C). In addition, genes encoding

enzymes involved in peroxisome b-oxidation/degradation, such as Acox1 and Acaa1, were downregulated at

day 5, in a similar way to the AAN tissue, and Por (Cytochrome P450 oxidoreductase), which plays a role in fatty

acid and steroid metabolism, was among the genes that were downregulated at all three time points in our

in vitro model and both early and late CKD in the AAN model.

DISCUSSION

In this study we aimed to define changes in molecular mechanisms and metabolic pathways at different

stages of CKD following AKI using genome-wide transcriptomics, metabolomics, and computational

modeling in a mouse model of aristolochic acid-induced nephropathy. In addition, we further investigated

the impact of fibrotic stimuli on an in vitro model of epithelial to mesenchymal transition of MPTECs to

more specifically interrogate the changes occurring in this key cell type.

In the early stages of CKD, immediately following recovery fromAKI, our transcriptomic data demonstrated

a marked upregulation of the inflammatory response mirrored by similar changes in pro-fibrotic pathways
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Figure 6. Global transcriptomics in proximal tubular cells undergoing transition from epithelial to mesenchymal phenotype in vitro shows similar

FAO dysregulation

(A) Principal component analysis of global transcriptomic data derived from the in vitro model of EMT at different time points demonstrating clustering by

treatment rather than time point.

(B) Sankey diagram of enriched pathway of up/downregulated genes in mouse proximal epithelial cells at days 1, 3, and 5. The graph illustrates the enriched

biological processes (left nodes) among upregulated or downregulated DEGs at different time points in the middle (24 h, day 3, and day 5). The general

terms for significantly changed pathways are shown in the nodes on the right side.

(C) Heatmap showing upregulated (red)/downregulated (blue) genes in peroxisome and mitochondrial FAO pathways during EMT (see also Figure S4).
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and matrix assembly and disassembly. In conjunction with this, there were marked reductions in the genes

responsible for fatty acid oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Of interest,

these derangements in metabolic genes persisted for the full length of the model, through to the late

stages of CKD, whereas the upregulation of genes involved in the inflammatory component subsided

with time, as did the upregulation of genes involved inmatrix turnover. Endothelial cell markers were signif-

icantly upregulated in early CKD but downregulated by day 100. Endothelial cell proliferation is known to

occur in the immediate post-AKI period in response to an increase in the release of angiogenic factors,

particularly from PTECs (Ohashi et al., 2002). However, as CKD develops, release of these factors declines

and epithelial cells undergo apoptosis. Alongside this, the pericytes that normally maintain vascular integ-

rity migrate into the renal interstitium and become myofibroblasts, contributing to the progression of the

fibrotic process. Migration of pericytes away from the vasculature results in vascular rarefaction, which is a

hallmark of progressive CKD (Kida, 2020).

PTECs are highly enriched withmitochondria and depend largely on FAO and oxidative phosphorylation to

fulfill their high-energy requirements, and we are not alone in demonstrating that renal cell metabolism

(predominantly PTECs) is dysregulated in both AKI and CKD, with downregulation of FAO (Li et al.,

2017; Marx et al., 2018) (Kang et al., 2015). Until recently, it has been thought that injury leads to inflamma-

tion, which in turn leads to metabolic dysfunction, progressive fibrosis, and CKD (Anders and Schaefer,

2014; Basile et al., 2016). However, Chung et al. have clearly demonstrated that compromised mitochon-

drial integrity (as a result of acute injury) leads to leakage of mitochondrial DNA from cells, which in turn

triggers an inflammatory response via activation of STING (Chung et al., 2019). This paradigm shift there-

fore suggests that persistent inflammation may come secondary to the acute changes in metabolism that

we and others have observed. One important difference between our study and the preceding ones is the

longitudinal nature of our model. The persistence of the metabolic derangement at 100 days, despite a fall

in inflammation, may suggest that the reduction in normal mitochondrial activity does not fully recover,

even when the acute injury has resolved. This would be in keeping with a greater burden of fibrosis and

the tubular atrophy that we know is the hallmark of CKD, which may be driven by a continuing increase

in oxidative stress. Alongside this, we have shown that metabolism is shifted from FAO and glycolysis to

the pentose phosphate pathway, which occurs exclusively in the cytosol.

We have also undertaken the computational flux balancemodeling, together with analyzing transcriptomic data

and targeted metabolomics of the mouse sera. This has revealed that, over time, serum levels of triglycerides

and diacylglyceride accumulate in the serum of mice with CKD. Dyslipidemia has been known to be associated

with CKD for many years. The pattern is similar to that described in themetabolic syndrome and is characterized

by high triglycerides and low LDL levels and gets worse with worsening renal function (Saland et al., 2019; Vis-

conti et al., 2016). The etiology of this abnormality is often attributed to co-morbidities, such as diabetes or

obesity, and it has been suggested that there is a causal relationship between dyslipidemia and progression

of CKD. However, genetic mutations that lead to similar lipid profiles are not associated with the development

of CKD (Lanktree et al., 2018). Patients with CKD and dyslipidemia are at high risk of cardiovascular complica-

tions, and a recent post hoc analysis of the Study of Heart and Renal Protection (SHARP) trial data has shown

that high triglycerides are independently associated with worse cardiovascular outcomes (Lamprea-Monteale-

gre et al., 2020). Our data suggest that the presence of CKD alone may generate this abnormal lipid profile,

which, along with the accumulation of uremic endothelial toxins such as indoxyl sulfate, may provide insights

into the close association between CKD and cardiovascular disease (Lano et al., 2020; Provenzano et al.,

2019). Although we have not identified the source of the long-chain fatty acids in the sera of these mice with

CKD, we have demonstrated downregulation of the catabolic pathways for the TG and DAG in the renal tissue,

suggesting the kidney, rather than the liver, may be responsible for this rise in their concentration in the circu-

lation that we found in our metabolomic studies. The kidney is one of the most important organs for the biosyn-

thesis of myo-inositol (Croze and Soulage, 2013). Myo-inositol plays an important role in various cellular pro-

cesses including as the structural basis for phosphatidylinositol formation in the plasma membrane and

subsequent secondarymessengers important in downstream signaling pathways, including soluble cytoplasmic

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). These secondary messengers activate protein kinase

C,which is known todrive oxidative stress, furthermitochondrial injury and upregulation of pro-fibrotic pathways

(Li et al., 2019)

In addition, we have highlighted some interesting differences in pro-fibrotic cytokines between the early

and late stages of CKD. These included Eng (encoding endoglin) and Plvap, which were upregulated at
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day 32 but downregulated at day 100. Endoglin is part of the TGF-b co-receptor complex and as such plays

an important role in TGF-b signaling through SMADs, a key transduction pathway in fibrogenesis (Munoz-

Felix et al., 2016; Scharpfenecker et al., 2009). Plvap encodes plasmalemmal vesicle-associated protein (PV-

1), which is solely expressed in endothelial cells of fenestrated capillaries, such as those in the kidney. It is

required for the development of fenestral diaphragms and is upregulated in vascular remodeling in the kid-

ney, and knockout of this gene leads to hyperlipidemia and liver fibrosis (Nishi et al., 2010; Yamamoto et al.,

2007).

In conclusion, we have confirmed the findings of others that AKI leads to metabolic dysfunction, inflamma-

tion, and fibrogenesis, which remain active despite maximal renal functional recovery following AKI. In

addition, we have shown that, although the inflammation and fibrotic drive subside over time, the meta-

bolic dysfunction persists and the total burden of extracellular matrix continues to increase as renal func-

tion declines as a result of progressive CKD. Alongside this is the development of dyslipidemia with raised

triglycerides, which is similar to that found in the metabolic syndrome and is now recognized to be asso-

ciated with the development of cardiovascular disease.

Limitations of the study

Our study does have some limitations. As an observational study, we are unable to establish cause and ef-

fect, and so, we cannot be sure that the metabolic dysfunction observed contributes to the progression of

fibrosis. Although we generated transcriptomic and metabolomic data, to study global changes in gene

expression and metabolism in a mouse model of nephropathy, we have not correlated these findings at

the protein level in renal tissue. We used serum blood metabolomics to study the impact of observed

gene expression alterations on changes in the endogenous metabolome, which we speculate are a direct

effect of the induced renal disease. It is possible, however, that the renal disease has impacted the function

of other tissues such as the liver and these metabolic changes are secondary to this. We hypothesize that

the metabolic changes observed may lead to cardiovascular disease, but we have not investigated this in

our model.
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Figure S1, related to Figure 2G. Correlation between inflammation and fatty acid metabolism. 

The blue lines demonstrate negative correlation between downregulated fatty acid metabolism genes 

(blue) and upregulated inflammation genes (yellow) (Spearman’s rank-order correlation analysis). 

  



 

 

 

 

 

Figure S2, related to Figure 3. The reporter metabolite analysis outcome is summarized in the 

volcano plots from baseline to Day 100. The data from the reporter metabolite analysis suggesting 

mitochondrial dysfunction in early CKD (Day 32) with some improvement by Day 100. 

  



 

 

Figure S3, related to Figure 6 and Table S 7. Cell-specific expression changes at days 32 and 

100 based on cell type markers derived from published mouse kidney single cell 

transcriptomics. At day 32 downregulation of proximal tubule cell marker gene expression is 

considerable, whilst cell marker expression of macrophages, T lymphocytes, neutrophils, and 

fibroblasts is extensively upregulated. These changes are still apparent at day 100. 

  



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4, related to Figure 6. A) Scatter plots showing the variation comparison of genes which are 

similarly differentially significantly expressed at all time points in two different groups. axis=y is an 

indicator of one group and axis=x is indicator of different group with value of log fold change 2 for each 

gene. B) Venn diagram showing the numbers of shared significantly up/down-regulated genes at each 

time point. C) Venn diagram showing the numbers of shared enriched pathways of up/down-regulated 

genes at each time point (FDR < 0.05). 

A 

B C 



 
 
Table S10. Related to Figure 5. List of TaqMan probes for primers using in RT-qPCR for in-vitro model 

 
  

Gene Cat nr Target species Taq-Man search

Acta2, alpha-SMA 4331182 Mouse Mm01546133_m1

Gapdh 4331182 Mouse Mm99999915_g1



Transparent Methods 

 

Aristolochic Acid Nephropathy (AAN) Murine model establishment and sample collection 

All the experimental procedures were approved under provisions of the animals (Scientific Procedures) 

Act 1986 and were performed under license number PPL 70/8665. We used male CD1 mice (8 weeks 

old) for this study. Aristolochic acid (AA) isoform I (Sigma, A9451, Solvent: Normal Saline) with a dose 

of 3.5mg/kg was administered through an intra-peritoneal injection on day 1 and on day 5. Normal saline 

was administrated on day 1 and day 5 to control mice. We sacrificed mice at three time points (days 0, 

32 and 100) after the first AA injection.  

 

Mouse Proximal Tubular Epithelial cell-line (MPTEC) 

Mouse proximal tubule epithelial cells were obtained from Dr Mark Dockrell South West Thames 

Institute for Renal Research. This cell line was isolated from the S3 segment of the proximal tubule, a 

Brinster transgenic mouse carries the T antigen of SV40 virus that makes the cells immortalized.  

 

Mouse proximal tubular epithelial (MPTE) cell line model of epithelial to mesenchymal transition 

6 x 106 MPTE cells were seeded in 6-well plates.  After 24 hours they were treated with 10 ng/l TGF-

 and Epidermal Growth Factor (EGF) as previously described (Hutchison et al., 2009). RNA was 

extracted from cells after 24 hours, 3 days and 5 days. 

For MPTE cell line medium we used DMEM/F12 (1:1) medium (Life Technologies) supplemented with 

Hydrocortisone (50nM), Penicillin-Streptomycin, 1% Insulin Transferrin Selinate (ITS) (Gibco, Life 

Technologies) and 1%Fetal Calf Serum (FCS). 

 

Renal Functional assays for serum Creatinine and Blood Urea Nitrogen (BUN) 

0.2ml/40g mouse blood was collected from live mice or via cardiac puncture at the point of sacrifice. 

Clotted blood samples were centrifuged at 4000 rpm for 10min to obtain the serum. Serum creatinine 

measurement was performed using an enzymatic assay, from Crystal Chem using a mouse creatinine 

assay kit (#80350). Each sample was analyzed in triplicate and a technical mean calculated. The Max 

Discovery Blood Urea Nitrogen Enzymatic Kit (Bio scientific #5602-01) provided all the reagents and 

standards required for the assay. Each sample was analysed in triplicate and a technical mean 

calculated.  

 

Histology and Picro Sirius Red staining 

Half of each kidney was formalin-fixed, and paraffin embedded. 4 µm sections were cut and stained 

with Picro Sirius red (PSR) for 2 hours. A Nikon Eclipse TE2000-S light microscope was used for 

imaging and quantification of the Picro Sirius Red staining (collagen) was performed using NIS 

Elements Basic Research Software. 

 

 

 



Hydroxyproline Assay 

The QuickZyme Total Collagen assay from QuickZyme Biosciences (QZBtiscol1) was used to measure 

the concentration of Hydroxyproline in the murine samples. Tissue samples (300g) were mixed with 6M 

hydrochloride acid (100mg/ml). Mixed samples were heated at 95°C for 20 hours followed by cooling 

at room temperature and centrifuging for 10 minutes at 13,000 g. The supernatant of the hydrolysed 

samples and standards were removed and diluted in distilled water. Hydrolysed sample/standard was 

added into pre-determined wells in duplicates followed by adding assay buffer for 20 minutes at room 

temperature and second buffer addition for 60 minutes incubation at 60°C. The hydroxyproline 

concentration (µg/ml) was read in a spectrophotometer at 570nm. 

 

Mouse serum blood sampling and storage for metabolomics 

Cardiac puncture was performed when mice were being sacrificed for collecting the kidney. 1ml insulin 

syringe with 23G needle were used to aspirate of all available blood. Obtained blood was centrifuged 

for 10 min at 4000 rpm (4C) and supernatant were collected and stored at -80C for future use. 

 

Western blot and quantification  

Cells were lysed with RIPA buffer from Sigma with added protease inhibitor cocktail (Roche). Protein 

samples underwent electrophoretic separation on an 8% SDS–PAGE gel and were transferred onto 

nitrocellulose membranes for 2 hours at 60 voltage. Membranes were blocked for one hour in 5% 

skimmed milk in TBST (Tris-buffered saline, 0.1% Tween 20) then incubated in primary antibodies (E-

cadherin antibody 1:1000 dilution from BD (610181)) over night at 4C followed by TBST washing and 

exposure to secondary Rabbit anti-mouse HRP 1:15000 (from DAKO catalogue number: P0260) for 1h 

in room temperature dark box. GAPDH antibody from Cell Signalling was used (2118L) to quantify this 

housekeeping protein, secondary antibody LI-COR. Visualization of protein in the membrane was 

achieved using a LI-COR machine. The density of protein expression was measured by Image Studio 

Lite, a densitometry software from LI-COR to compare the density of expressed protein in each 

condition ratioed to GAPDH. 

 

Immunocytochemistry 

MPTE cells were grown on coverslips to 80% confluency, washed with PBS, fixed for 10 minutes with 

4% paraformaldehyde then permeabilized with PBS containing 0.25% Triton X-100. Cells were then 

blocked for 1h in 1% BSA (bovine serum albumin) in PBST (Phosphate Buffered Saline + Tween 20). 

Fixed cells were incubated in primary antibody (E-cadherin dilution of 1:500) overnight at 4°C humidity 

chamber. Alexa flour 488 (Thermofisher, A-11001) were used for E-cad as a secondary antibody at 

room temperature and cell nuclei were stained with Hoechst for 2min. All slides were mounted with 

mounting medium (VECTOR Cat. No H-1000) and images were produced with Confocal microscope 

(Leica SP5, Germany) at ×40 magnification. 

 

 

 



Immunofluorescence for staining Filamentous actin (F-actin) 

After fixation for 10 minutes in fixation buffer from Biolegend (Cat No. 42080) and permeabilization with 

0.1% Triton X-100, cells were blocked with 1% BSA. Rhodamine phalloidin (Thermofisher, R415) was 

used for 30 minutes at room temperature for F-actin staining. The wavelength range for excitation and 

emission was 540/565 nm. 

 

Cell line RNA isolation 

An RNaesy mini kit (Cat No./ID: 74104, Qiagen) was used for total RNA extraction from cells. After cell 

disruption with the lysis buffer plus beta-mercaptoethanol (β-ME) to prevent RNA degradation, 

homogenization with QIAshredder spin column was followed by washing and DNase Max kit from 

Qiagen to remove contaminating genomic DNA according to the manufacture’s protocol. 

 

Mouse tissue RNA isolation 

A TissueLyser ll machine (Qiagen #85300) was used to disrupt and homogenise the small piece of 

kidney tissue using 1 ml TRIZOL (Ambion, #15596-018) in 2 ml rounded bottom tube and 1 stainless 

steel bead (5 mm, Qiagen, # 69989). Homogenised samples were centrifuged for 5min at 1000g and 

supernatants were transferred into new tubes. 200l chloroform was added into each sample tube and 

vortexed vigorously for 10 minutes and again incubated for 2 min at room temperature. Samples were 

then centrifuged for 15 min at 12,000g (at 4C) and the upper phase were transferred into new 1.5ml 

tubes with 500l of isopropanol and incubated at room temperature for 10min. After which, all samples 

were centrifuged again at 12,000g (at 4C) and supernatants were discarded. Samples were washed 

with 900µl of 70% Ethanol and centrifuged at 7,400g (at 4ºC) and air-dried for 10 minutes. pellets were 

resuspended in 20µl of DEPC treated water and stored at -80 oC. 

 

Quality measurement of RNA  

After extracting RNA from samples (tissue and cell line), for quality control the RNA integrity number 

(RIN) was measured using the Agilent Biolanalyzer RNA 6000 Nano assay. This number can be 

between 1 to 10, the higher number the better quality of RNA. The sequencing platform we used 

required the RIN number to be not less than 8. 

 

Quantitative Real Time PCR (qRT-PCR) 

Complementary DNA (cDNA) was synthesized from 1µg RNA using High-capacity RNA-to-cDNA Kit 

(ThermoFisher,4387406). Quantitative RT-PCR was performed with 1:1 template cDNA with 1:5 

dilution, followed by TaqMan universal PCR Master Mix (Life technology) and 1µl of TaqMan probe 

primer in 20µl final volume for each reaction. Real-time PCR was performed in triplicate using a 

QuanStudio 7 Flex Real time PCR system, ThermoFisher. GAPDH was used as an internal control 

gene for the relative expression levels performed by 2−ΔΔCt method. The TaqMan probe Catalog 

numbers are in Table S10. 

 

 



Transcript profiling of mouse tissues and cell lines 

Total RNA was extracted from mouse tissues and cell lines and their library were prepared using 

Illumina TruSeq with poly-A selection and sequenced by Illumina NovaSeq 6000 sequencing system (2 

x 50bp). Quality of raw data was checked with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and processed with Kallisto (Bray et al., 

2016) with mouse reference genome (GENCODE database ver. M17)(Frankish et al., 2019), 

quantifying Transcript per million (TPM) and raw read counts. Processed RNA-seq was benchmarked 

with STAR aligner (Dobin et al., 2013) and HT-seq (Anders et al., 2015) quantification program. Raw 

read counts were analyzed for differential expression analysis, performed by negative binomial tests of 

R DESeq package (Anders and Huber, 2010). Enriched gene ontology/pathways of DEGs were 

analyzed with R RDAVID Web Service package. 

 

Genome-scale metabolic modelling of mouse model 

The maximum TPM of the expression data were used to make a generic kidney expression profile and 

integrated into MMR model to construct generic kidney genome scale metabolic model (GEM) using 

tINIT (Agren et al., 2012). Gene levels in tINIT were considered based on the TPM value; no expression 

(TPM<1), low (1≤TPM<10), and medium-high (TPM≥10). We considered maximization ATP 

consumption and biomass production as objective functions for the generic model. We used MADE to 

generate specific GEMs using fold changes and adjusted p-value obtained through DESeq, generic 

kidney GEM and TIGER (Bidkhori et al., 2018; Jensen et al., 2011) and Gurobi solver was used for the 

flux balance approach. Reporter metabolite analysis (Patil and Nielsen, 2005) was performed through 

PIANO (Varemo et al., 2013) using fold changes and adjusted p-value obtained through DESeq, with 

geneSetStat = reporter and number of Permutation = 1000 by function runGSA. For the interpretation, 

the metabolites significantly changed with clear direction were considered (FDR<0.01). 

  

Metabolomics 

Biocrates’ info: All samples were stored immediately upon receipt at -80 °C for measuring metabolite 

concentrations in mouse serum samples. A mass spectrometry-based metabolomics approach was 

performed to determine the concentration of endogenous metabolites of various biochemical classes in 

these samples. Biocrates’ commercially available MxP® Quant 500 kit was used for the quantification 

of several endogenous metabolites of various biochemical classes. Lipids and hexoses were measured 

by flow injection analysis-tandem mass spectrometry (FIA-MS/MS) using a 5500 QTRAP® instrument 

(AB Sciex, Darmstadt, Germany) with an electrospray ionization (ESI) source, and small molecules 

were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using the same 

5500 QTRAP® instrument. Validated analytical methods were used for sample analysis. Absolute 

concentrations in mouse serum samples were obtained for metabolites from various biochemical 

classes. Wilcoxon signed rank test was used to compare the concentration of serum metabolites 

between the conditions. Sparse Partial Least Square-Discriminant Analysis (sPLS-DA) as a supervised 

classification method was used for serum metabolites using “mixOmics” R package (Rohart et al., 2017) 

and the first two components was considered for extracting the features. 



 

 

Statistics 

To calculate the adjusted p-value and control the false discovery rate (FDR) in our data we used the 

Benjamini-Hochberg method based on the FDR. We used an adjusted p-value less than 0.05 for 

comparing each group treatment to its age-matched controls (differentially expressed genes) in tissue 

samples, and for cell-line models we used an adjusted p-value less than 1e-5. For comparing two data 

sets to infer statistically significant differences, we used the Student T-test method (p-value < 0.05). We 

used the ANOVA test for multiple experimental groups and controls (more than two variables). 

Permutational multivariate analysis of variance (PERMANOVA) was used to check and partition 

dissimilarities between two or more groups using multivariate factors. For principal component analysis 

(PCA) plots, we used PC1 and PC2 as features of PERMANOVA to distinguish time-wise differences 

and treatment-wise differences. We used the Wilcoxon test as non-parametric statistical test for our 

metabolomics data to compare metabolites from disease AAN serum with age-matched control serum 

mice with a p-value less than 0.05. Partial least squares discriminant analysis (PLS-DA) was used for 

further investigation and feature selection to see how metabolites from mice at different treatment times 

were distinct from their age-matched controls and what features or metabolites were the cause of this 

separation or discrimination between clusters. 

 

Data and Code Availability 

The accession number for the RNA-seq raw data reported in this paper is Sequence Read Archive 
:PRJNA646347.  
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