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Abstract

Content addition to courses and its subsequent correct sequencing in a study plan or curric-

ula design context determine the success (and, in some cases, the failure) of such study

plan in the acquisition of knowledge by students. In this work, we propose a decision model

to guide curricular design committees in the tasks of course selection and sequencing in

higher education contexts using a novel methodology based on network analysis. In this

work, the local and global properties stemming from complex network analysis tools are

studied in detail to facilitate the design of the study plan and to ensure its coherence by

detecting the communities within a graph, and the local and global centrality of the courses

and their dependencies are analyzed, as well as the overlapping subgroups and the func-

tions and different positions among them. The proposed methodology is applied to the study

of a real case at the Universidad Rey Juan Carlos.

Introduction

Many real world systems are subject to be modeled by the use of networks. In these networks

nodes represent the different elements of the system and edges stand for the interactions or

relationships between them [1]. In network analysis, a key point is to devise measures suitable

for quantifying the strategic importance of a node, an edge, a set of nodes, or a set of edges,

with the goal of identifying the optimal functioning of the system represented by the network

[2–5]. Topological measures, such as different versions of vulnerability, efficiency, centrality,

and clustering, can be used to quantify, compare, and rank different configurations for a spe-

cific system [2, 6–13]. A task specially difficult to solve for the university management authori-

ties is the design of the different curriculum plans. Few general methodologies have been

reported in the literature. Most of them are given in educational laws in general frameworks.
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The TUNING Educational Structures [14] is a European project aimed at implementing

the political objectives of the Bologna Process and the later Lisbon Strategy in the higher edu-

cational sector. This is an approach to redesigning, developing, implementing, evaluating, and

enhancing the quality of undergraduate and graduate degree programs. The tools that can be

found in TUNING Educational Structures are described in a range of publications which insti-

tutions and researchers are invited to test and use in their own settings as points of reference,

convergence, and common understanding. The use of techniques derived from Network Anal-

ysis (NA) have been very useful in similar studies in which it is desired to know the strengths

and weaknesses as well as the inconsistencies of an organization system (see for example some

Management cases in [15–17]).

The majority of the studies that combine the use of networks in the design of curricula have

been carried out through dependency graphs. Dependency graphs have generally been applied

to situations where edges represent a temporary constraint in the planning of a global activity

([18–21]). For example, in a dependency graph, the links (A, B); (B, C) simultaneously implies

that the activity A (course A) must be carried out before B. So, B cannot be carried out before

activity A has been completely finished. In dependency graphs, transitivity is always imposed

in this way, so there is no need to represent the link (A,C) since it is obviously deduced as a

natural consequence of transitivity that any dependency graph must have. So, this dependency

graphs are usually modeled as Directed Acyclic Graphs (i.e. DAG networks).

In this scenario, the main aim is to establish a temporal planning in order to establish the

critical activities (critical activities are considered to be those ones producing a global delay in

the global process). Another class of networking approach to curriculum study that is worth

mentioning is based on how students move from one course to another throughout their

careers [22]. In this way, it is possible to build a network that shows the real temporal relation-

ships between courses. Combining historical data of the students and courses when available

with networking techniques, improves students and university managers capacity to estimate

and predict the courses in which a student will enroll in the future. This allows to have a fore-

cast of the enrollment in the courses for next year. Interesting network analysis or this type of

curricular graphs can be found in which central courses are determined by means of centrality

measures ([22–24]). The main difference with other network modelling is that the relation-

ships between courses are based on temporality and they are not known a priori. In other

words, there is a link (i, j) between the courses i and j if many students have taken the course j

right after having completed course i.

In this paper, we propose an influence network model for the curriculum plan design in

which the links among courses reflect the influence that have some subjects over others due to

temporal sequencing of content acquisition. The curriculum model proposed here responds to

a system of recommendations which is not necessarily restrictive, allowing the student to take

several courses simultaneously ([25–27]). It is easy to see that the influence/recommendation

graph analyzed here shows a more general scenario than a system of prerequisites. So all of the

analysis we have done in this work are subject to be carried out in a dependency graph found

in the literature in which the transitivity is imposed and the arcs are not valued. The network

of this work is built based on the course contents that are “necessary/recommended” for other

courses. The objective of using network analysis for this recommendation/influence structure

is to show (in addition with any classical temporally analysis) the robustness, centralization,

cohesion and in general to understand the whole plan structure to be able to modify it if appro-

priate or necessary. The information obtained after an analysis of the network of influence (as

proposed in this document) enriches the knowledge of the training itinerary.

The main aim of the research is to present a tool for a better understanding of the complex

structure of a curriculum plan. It could be useful to construct a degree training itinerary as an
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interactive process that permits (by means of a network visualization, some network measures

and analysis) assign scheduled/allocated courses to semesters, modified courses contents in

case of inconsistencies and to understand in general the whole flow knowledge process. This

article is organized as follows. In Section 2, we describe some preliminary concepts in network

analysis. In Section 3, we describe our methodology for creating a network representing the

relationships between courses in an undergraduate curriculum, as well as the networking mea-

sures considered used here for evaluating and interpreting the network’s properties. In Section

4 we describe the process of developing a degree’s curriculum in Spain. In Section 5, we pres-

ent the results of applying the methodology in the design of the University Rey Juan Carlos

(URJC) mathematics degree curriculum. And finally, in Section 6 the conclusions derived

from this work are shown.

Preliminaries

Network analysis

Centrality measures. One of the most important problems in network analysis is the

identification of key nodes and the relationships between nodes. In order to rank the nodes of

a network, there exist many approaches, depending on the definition of “relevance” or “impor-

tance” as determined by network analysts. A common approach for ranking nodes in a net-

work is to use centrality measures [12]. The considered centrality measure reflects the node’s

(relative) importance inside the network. Although there are many centrality papers in litera-

ture [28, 29], centrality concept or idea is a complex notion that requires a clear definition. As

it is pointed out in [3, 29], the use of a specific centrality measure implies some assumptions

about the network structure and how information flows along the network, so it is very impor-

tant to analyze first the class of network that you are modelling and after that use the adequate

centrality measure. For example, in the shortest path (closeness or betweenness centrality mea-

sures), we only take into account the geodesic paths in the communication between each pair

of nodes. Thus, it is assumed that information flows through the network only along the short-

est feasible paths.

In this sense, it is important to mention that in this paper, we focus on centrality measures

for dominance (or reference) networks where relationships between nodes are weighted and

directed through a relation of precedence. For this type of networks, one of the most popular

and most frequently used centrality measures is based on the degree of the node in the graph:

the more edges incident at a node, the higher the node’s position in the ranking. Generally,

however, nodes more central to the structure, in the sense of having higher degree or more

connections, tend to be favored in the ranking. The degree in case of directed network can be

obtained as the sum of the in-degree and out degree. In Program Evaluation and Review Tech-

niques (PERT) [30] (which can be viewed as a class of dominance networks) the out-degree

measure of the nodes can be used to classify the objects or activities in the project as leading or

intermediate.

In network analysis the term “influence network” frequently appears to refer to directed

networks in which the relations represent some degree of influence between nodes. For exam-

ple, author citation networks or Twitter networks are often considered as influence networks.

In those networks, if author j cites (or retweets) author i many times, we could say that author

i has some influence over author j. In this sense, there is a significant difference with depen-

dency or permission networks since in these situations the direct relation implies a stronger

constraint, as for example, the transitivity between nodes. For example, in a permission net-

work author j needs the approval of author i so this relation is something more than just an

influence, or in a dependency network a node usually represents the instant in which a task is
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finished and the link between two nodes is associated with a task. So as a consequence, the

relations should be transitive. Other term that also appears in many network analyses is the

Recommendation networks. These are clearly closer to the concept of influence than depen-

dency / permission networks. Recommendation networks are used to model friends (or simi-

lar users) recommendations about the order in which tasks have to be performed. For

example, after reading the Book X, the system recommends (since your friends or similar

users have also read this Book X) to read Book Y. These recommendations can be modelled as

a directed or undirect network where the nodes are the books and the links are recommenda-

tions. From a mathematical point of view, dependency networks impose more conditions than

recommendation or influence networks. Dependency networks are usually modelled as DAG.

Other measure that can be used for directed network is PageRank defined by Larry Page

and Sergey Brin in [31], where the rank value indicates the importance of the node in the net.

Finally, other class of measures that deals with weighted and directed networks are the flow

centrality measures [3, 32] that are based on regarding the network as representing a flow. In

the case of the flow betweenness centrality measure, the contribution of a node represents the

amount of flow that necessarily pass through this node in all possible maximum flows [32].

Community detection problems: Clustering nodes in a network. In addition to the cen-

trality or importance of the nodes in a network, another topic that merits attention is the iden-

tification of groups or communities in a network. The identification of groups in a network is

very useful for understanding the structure of the problem that we are analyzing. A network is

called modular (see [33]) when its nodes are joined together in tightly knit groups among

which there are only looser connections (i.e. if the nodes are naturally grouped into dense

communities with few connections between communities). There are many algorithms that

try to find communities in a network (see [34]). Such problems are commonly known as com-

munity detection problems.

Nevertheless, as with the topic of centrality measures, the use of a specific community

detection method is not straightforward and is still an open problem the suitability of the pro-

posed algorithms in the literature depending on the type of network that it is analyzed. The

community detection problems for directed networks have been much less studied than the

general ones, since the concept of group or community for directed networks is not clear as

for non-directed networks [35].

As pointed out in [35], the concept of group/community could be extended in different

ways when changing from undirected networks to directed networks. In undirected networks

the accepted interpretation of community/group is a set of members with many relationships

between them and few relationships of them with other members outside the community. This

community idea is related to the notion of density. Communities are dense subgraphs with

lower relations with outside. In directed networks, this view is not the only way to consider

communities. For example, if we have a directed network (on Twitter it is possible to follow

someone who does not follow you), a group can consist of a set of nodes with similar “parents”

even if they are not connected. For example, if two persons (non connected directly) who fol-

low the same persons (politician, sport teams, university,..) we could say that they share char-

acteristics in common and could be in the same community. This new community concept

can be viewed in Fig 1 as citation-based cluster. Another notion of groups not necessarily simi-

lar to density is the idea of flow-based cluster, in which a group is a set of nodes that can com-

municated between them. Finally the idea of density (in the classical sense) is also adopted for

the directed case. In this work, we have focused in density clusters.

Different algorithms [35] have been proposed for directed graphs depending on the class of

clusters that you are looking for. The most common and simple approach (addressed as clus-
tering based on a naive graph transformation) is to ignore edge directionality and treat graph as
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undirected. This methodology cannot capture citation-based clusters since the clusters could

be very small or even disconnected (Fig 1). In other approaches (see [35]) the directed graph is

converted into an undirected one, where the edge direction is meaningfully maintained in the

produced network. There exist other methodologies based on modularity optimization algo-

rithms that can be used to deal with directed networks in order to capture other class of com-

munity concepts.

Global network measures. Centrality measures are computed for each node of the net-

work capturing the idea of central or importance. In this sense, centrality can be viewed as a

local measure that does not give a general idea of how the network is structured. An aggrega-

tion of the different centrality measures (for example by means of the Gini Index or a variance

of the centrality vector) could give us an idea of how the power in the network is distributed.

This concept can be considered as a global property since makes reference of a quality of the

whole network.

Another global network measure is the optimal modularity of a network (i.e. the best parti-

tion of the network in terms of the modularity measure) which permits us to know if a network

presents groups or communities well-defined. If the modularity of this best partition is high

we usually say that the network is modular.

Another relevant global measure is homophily. Homophily is an important concept aimed

at encapsulating why the nodes in the network are linked. The general hypothesis is that nodes

with similar characteristics are more likely to be connected. When this characteristic is the

importance of the node (measured as the degree of incidence), it must be tested whether nodes

with greater power are more likely to be connected among themselves than they are to be con-

nected with lower power nodes. A coefficient measuring the correlation between the degrees

of linked nodes can be used to capture this tendency.

Fig 1. Citation-based cluster and flow-based cluster.

https://doi.org/10.1371/journal.pone.0248208.g001
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Newman [4] introduces the assortativity measure, which makes it possible to classify net-

works into assortative and disassortive. A network is assortative if the correlation coefficient

between the degree of nodes in the arc set is positive and significant nodes having many rela-

tions are connected amongst themselves with greater probability than they are connected with

low degree nodes. In the opposite case of negative correlation coefficient, nodes with many

connections tend to be connected with nodes with low total degree relations. However, some

issues related to networks with different topologies presenting the same assortativity index or

vice versa have been addressed in [36] who introduce, for undirected and unweighted net-

works, higher order assortativity based on a suitable choice of the matrix driving the connec-

tions. In this work, we have used the assortativity measure proposed by Newman [5] as a

preliminary inspection to discover the network topology.

Taking into account that the network has been identified as assortative, it seems reasonable

to find the existence of a core or a “rich club” in the network. A rich club is a set of very power-

ful nodes densely connected between them. This density reflects the tendency of hubs to be

well connected with other hubs. This phenomenon can be described by the rich-club coeffi-

cient, introduced in [37]. The k-grade rich-club of a G network is defined to be the set of verti-

ces R(k) whose degree is greater than k, and the k-grade rich-club coefficient is defined by

FðkÞ ¼
2

jRðkÞjðjRðkÞj � 1Þ

X

i;j2RðkÞ

aij: ð1Þ

To conclude this section, we will mention the motifs used to evaluate important substruc-

tures in the context of directed graphs. To search for repeated subgraphs having some well-

defined structure, Davis, and Leinhardt [38] define a motif as a small connected subgraph hav-

ing a particular given structure. It is argued that the motif profile (i.e. the number of different

motifs in the graph) is characteristic for different types of networks and that network function

is related to the motifs identified in the graph.

Methodology: Using network analysis for curriculum design

As we have mentioned in the introduction, networks analysis has been used for the under-

standing of complex structures in order to analyze their strengths as well as their weaknesses.

With the main objective of understanding the complex structure associated with a curriculum

plan, we propose the following steps:

1. First step (Experimental design): build the network of influences between courses.

2. Second step (Network analysis): we propose some classical network analysis procedures to

exploit the advantages of using network analysis tools and different applications that can be

derived from the proposed measures, such as:

a. Inconsistencies identification.

b. Courses scheduling allocation in semesters.

c. Detection of key courses.

d. Detection of central courses.

e. Courses communities.

3. Third step (Results and conclusions): evaluate the network analysis measures in the curricu-

lum plan.

PLOS ONE Network analysis: An indispensable tool for curricula design

PLOS ONE | https://doi.org/10.1371/journal.pone.0248208 March 11, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0248208


4. Fourth step (iterative): present the information and the associated conclusions to the

experts/professors for a better understanding of the complex structure and if it is necessary

(due to some inconsistencies or unfeasibility in the semesters allocations) change the con-

tent of some courses to make reduce these inconsistencies and return to step 1.

Fig 2 represents a decision aid model to construct the curriculum network.

In the first step we build the “Curriculum Network” that represents the relations between

courses (based on the expert knowledge of the professors). For each course “A”, we have inter-

viewed professors with more than 5 years of experience teaching lecture “A”. The professors

establish the percentage of material in course B necessary to understand the contents of course

A appropriately in a selected number of levels.

Once the information is obtained, we aggregate the expert opinion (in our real case applica-

tion this group was composed by 43 professors with more than 5 years of experience) to have

the final matrix relations among the courses in the curriculum plan. The second step it to

apply network analysis tools for a better understanding of the complex structure of the curricu-

lum plan. Fig 3 represents different analysis derived from different measures that can be

applied to the curriculum network.

Finally, the information and the associated conclusions are presented to the experts/profes-

sors for a better understanding of the complex structure and if it is necessary (due to some

inconsistencies or unfeasibility in the semesters allocations) change the content of some

courses reduce these inconsistencies in an iterative way.

In order to represent the courses and the influences between different courses, throughout

this paper we consider a weighted directed network G = (X, E, λ), where X = {1, . . ., n} is the set

Fig 2. Decision aid model for the curriculum plan construction.

https://doi.org/10.1371/journal.pone.0248208.g002
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of vertices or nodes, E� X × X is the set of arcs or edges and λ is a function λ: E! [0, +1)

such that for each arc (i, j) 2 E, the coefficient λ(i, j) is called weight of (i, j). The graph is built

as follows:

• Courses to be considered will be represented as nodes in the network.

• The network must reflect the relationships between courses. Since relationships between

courses are directional, they are represented in the graph by directed arcs. That the contents

of course i should precede the contents of course j is represented in the graph as a directed

arc (i, j) from node i to node j.

• The weight of the arc λ(i, j) reflects the degree of influence/dependency between two

courses.

• The set of arcs is E = {(i, j)|λ(i, j)> 0}.

The network must reflect the flow of knowledge as a sequence of acquisition and improve-

ment of professional skills. Furthermore, isolated nodes in the graph can be allocated in any

desirable semester in curriculum design and nodes with many relations in the structure mod-

eled by the graph should be priorized in the allocation with respect to the rest of the nodes in

the graph, since they will have more restrictions. Inconsistencies can be detected if exist a

directed arc (i, j) with λ(i, j)> 0 and a directed arc (j, i) with λ(j, i)> 0. We consider the length

of the path between courses i and j as the minimum number of semesters necessary to allocate

the courses respecting the dependence between courses when avoiding interdependencies in a

given semester.

In the final phase, we can proceed to the assignment of nodes from the graph to semesters

in the study plan besides other applications derived from Network Analysis. For the semester

Fig 3. NA applications to curriculum design.

https://doi.org/10.1371/journal.pone.0248208.g003
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allocation problem, we impose the following restrictions (based in the Spanish Laws, which

could be modify according to other countries legislation):

• The first four semesters of the degree must contain the transversal (common to all students

of the same University, regardless the Degree they are studying) and basic training courses

(those courses common to most degrees but adapted to the specific content of a given

degree).

• If a course is considered as intermediate (i.e. there is at least one course that requires the

competencies acquired by studying it) then it cannot appear in the second semester of the

fourth year (see Fig 4).

• The maximum length of a path that joins a course with any other course in the dependency

graph associated to the training itinerary determines the earliest semester for this course to

be allocated in the degree programme (see Fig 5).

• An arc’s direction reflects the sequential acquisition of competencies so an arc cannot return

to a prior semester (see Fig 6).

Fig 4. Example of assignment of intermediate courses in the study plan.

https://doi.org/10.1371/journal.pone.0248208.g004

Fig 5. Example of allocation of course Calculus in a training itinerary taking into consideration the maximum length of the path that joints the

course with any other course in the associated dependency graph.

https://doi.org/10.1371/journal.pone.0248208.g005
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• It is desirable that the distance between semesters of co-requisite courses be as short as possi-

ble in the study plan (see Fig 7).

Case study: The Mathematics Curriculum Network (MCN) in the

University Rey Juan Carlos

The University Rey Juan Carlos (URJC) offered a mathematics degree for the first time in the

academic year 2015-16. Previously, the URJC had offered a mathematics degree only as a part

of joint degrees with computer science or software engineering. After these joint degree pro-

grams had been initiated, their coordinators carried out a series of meetings to respond to

reports issued by the regional oversight authority Madrid+d (Fundación para el Conocimiento

madri+d, Madrid agency for to contribute to make the quality of higher education, science,

technology and innovation key elements of the competitiveness and well-being of citizens)

requiring the implementation of a single degree in mathematics. To take into account student

demands for modifications to the degree programs and other suggestions for changes to the

existing training itineraries, several teaching coordination and curriculum design committees,

constituted by qualified teachers and student representatives, met to analyze proposals. Any

proposed study plan must meet certain predetermined organizational requirements. Five 6

Fig 6. Example of non-desirable arcs.

https://doi.org/10.1371/journal.pone.0248208.g006

Fig 7. Example of non desirable assignment of courses to minimize the total length of paths joining dependent courses.

https://doi.org/10.1371/journal.pone.0248208.g007
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credit courses must be assigned to each of its first six semesters. While its seventh and eighth

semesters may include as elective courses any admissible course, they must also include profes-

sional internships and the final project. Additionally, the URJC imposes as a graduation

requirement to pass a foreign language course known as modern language. This requirement

must be met by the completion of a year-long 6 ECTS (European Credit Transfer and Accu-

mulation System) courses during the first two years of study. Therefore, a total number of 31

courses have to be allocated in the study plan and the diameter of the final network must be

less than 7 to ensure the legal requirements are satisfied.

These requirements identify 31 nodes in the Mathematical Curriculum Network (MCN)

corresponding to the courses appearing in the mathematics degree. In order to determine the

dependencies between the courses constituting the degree, personal interviews were conducted

with the teachers who lectured in the degree. On the basis of these interviews, the dependency

arcs were constructed and their weights were determined so as to indicate an estimated per-

centage of dependency of the contents of a course on the contents of previously studied

courses. The weights of a given arc (i,j) represents the percentage of contents of a course i

required to be fluent before a student enrols in a course j so as to succeed in course j. For an

arc (i, j), for which course imust precede course j in the itinerary, three levels of dependency

were established:

• Level 1: The content of course j requires less than 30% of the content taught in course i.

• Level 2: The content of course j requires between 30% and 75% of the content taught in

course i.

• Level 3: The content of course j requires more than 75% of the content taught in course i.

In Table 1 we show the dependencies between the different courses in the mathematics

degree in the URJC and the subscript indicates the level of percentage of matters of precedence

courses necessary to understand the contents of given course.

The transversal and basic training courses are LA, IP, C, PF, E, BF, MH, AVI, CF and ML.

Once this information was obtained, the curriculum network was built (see Fig 8). Each

semester is plotted in a different color for clearness. Table 2 presents the color description for

each semester.

The network evaluation allows visualization of the entire network and also its subnetworks

in which there are considered only dependencies between courses of level 1 or several levels

(see Figs 9 and 10).

Results

Once the dependency structure of the URJC mathematics degree has been modeled by means

of a network (that we have called MCN), in this section we present a network analysis to deal

with the objectives pointed out in the introduction. We are going to divide this section into 4

differentiated subsections according to the different analyzes presented that are: centrality

measures analysis of the MCN, community detection analysis of the MCN, mofits indentifica-

tion and global network analysis.

Centrality measures analysis of the MCN

First at all, let us note the Mathematical Curriculum Network (MCN) is a directed and

weighted network. Also let us note that the direction of the link represent some dominance sta-

tus, since the link between courses i and j exist if and only if there it is necessary to pass the

knowledge of course i first to be able to understand or to pass the course j. As a consequence of
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this fact, some classical centrality measures based on minimal paths as: closenesss or betwee-

ness are not appropriate for this particular case. Taking all this in consideration, we are going

to measure the importance of the courses in this network based on two classical centrality mea-

sures that deals with directed and weighted networks: the degree and PageRank centrality mea-

sure. In directed networks, in-degree and out-degree are extremely local measures, although

quite informative. In this sense, intermediate measures as flow betweenness can be understood

as a more general and robust measure than in degree.

Table 1. Influences between the different courses in the mathematics degree in the URJC and level of dependency.

Lecture Relies on Material

From

Supports Material In

Advance Algebra Structures (AAS) AS3, LA2, DM2

Algorithm Design and Analysis (ADA) IP1, SMMOR1, PM2,

DM1

Affine Geometry (AG) LA3 CG2, ODE1, SS1

Algebra Structures (AS) DM2, L2 AAS3, ODE2

Biological fundamentals (BF)

Calculus (C) L1, LA1 P2, T2, VAI3, CF2, PF2, ODE2, VAII3, CVFA3,

MS2, SS3, PDE2, NM2

Chemical Fundamentals (CF) C2

Complex Variables and Functional

Analysis (CVFA)

C3, VAI2, VAII2, SS1,

LA2, ODE1, T2

PDE2, CG1

Computational Geometry (CG) T2, LA2, CVFA1, AG2

Discrete Mathematics (DM) AS2, P1, AAS2, T1, FL1, PF2, IDM1, ADA1,

SMMOR1

Ethics (E)

Formal Languages (FL) DM1, L3, LA2

Information and Data Modelling (IDM) L1, DM1, IP2 SM1

Introduction to Programming (IP) L1 PM2, ADA1, IDM2, SM1

Linear Algebra (LA) VAI2, CVFA2, VAII2, SS1, C1, P1, AG3,

SMMOR1, T1, ODE2,MS1, PDE2, CG2, AAS2,

FL1, NM1

Logic (L) C2, AS2, IP1, FL1, IDM1

Mathematical history (MH)

Mathematical Statistics (MS) C2, VAI2, LA1, P3

Modern languages (ML)

Numerical Methods (NM) PDE2, ODE2, VAI2, C2,

LA1

Ordinary Differential Equations (ODE) C2, LA1, VAI2, VAII3,

AS1, AG1, SS2

PDE3, NM2, CVFA1

Partial Differential Equations (PDE) ODE3, VAI2, C2, VAII2,

LA1, SS2, CVFA2

NM2

Physics Fundamentals (PF) C2, DM2

Probability (P) C2, DM1, LA1 MS3

Programming Methodology (PM) IP2 ADA1, SM2

Software Modelling (SM) IP1, PM2, IDM1

Statistical Methods for Management and

Operations Research (SMMOR)

DM1, LA1 ADA1

Surfaces and Shapes (SS) C3, VAI3, AG1, T3, LA1 ODE2, CVFA1, PDE2

Topology (T) C2, LA1, DM1 VAI1, CVFA2, CG2, VAII2, SS2

Vector Analysis I (VAI) C3, T1, LA2 VAII3, ODE3, PDE2, CVFA2, SS3,MS2, NM2

Vector Analysis II (VAII) VAI3, C3, LA2, T1 ODE3, CVFA2, PDE2

https://doi.org/10.1371/journal.pone.0248208.t001
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In Table 3, we can see the importance/relevance of each course in the Mathematical Curric-

ulum Network in terms of degree and PageRank value.

The results highlight the importance of the classes Linear Algebra, Calculus, Vector Analy-

sis I, Ordinary Differential Equations and Complex Variable, and Vector Analysis. Student

Fig 8. Level 1, 2 and 3 math curriculum network.

https://doi.org/10.1371/journal.pone.0248208.g008

Table 2. Color description for each course in the math curriculum network.

Color Semester

Yellow First semester

Green Second semester

Red Third semester

Blue Fourth semester

Pink Fifth semester

White Sixth semester

Orange Seventh semester

https://doi.org/10.1371/journal.pone.0248208.t002

Fig 9. Curriculum network level 2 and 3 influence relation.

https://doi.org/10.1371/journal.pone.0248208.g009
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Fig 10. Curriculum network level 3 influence relation.

https://doi.org/10.1371/journal.pone.0248208.g010

Table 3. Main centrality measures for the study plan of the URJC mathematics degree.

Course Total degree Out-degree PageRank Flow betwenness

Linear Algebra 16 16 0.124 0

Calculus 14 12 0.104 2.5

Vector Analysis I 10 7 0.042 1

Ordinary differential equations 10 2 0.021 0

Discrete Mathematics 9 9 0.068 1

Complex Variables and Functional Analysis 9 3 0.021 0

Topology 8 5 0.035 1

Surfaces and Shapes 8 3 0.021 0.5

Partial differential equations 8 1 0.018 0

Vector Analysis II 7 3 0.024 0

Logic 5 5 0.137 0

Introduction to Programming 5 4 0.052 0

Numerical Methods 5 0 0.015 0

Affine Geometry 4 3 0.022 0

Algebra Structures 4 2 0.023 1.5

Probability 4 1 0.021 0

Information and Data Modelling 4 1 0.019 1

Mathematical Statistics 4 0 0.015 0

Computational Geometry 4 0 0.015 0

Algorithm Design and Analysis 4 0 0.015 0

Programming Methodology 3 2 0.025 0

Statistical Methods 3 1 0.018 1

Advance Algebra Structures 3 0 0.015 0

Formal Language 3 0 0.015 0

Software Modelling 3 0 0.015 0

Physics Fundamentals 2 0 0.015 0

Chemical Fundamentals 1 0 0.015 0

Biological Fundamentals 0 0 0.015 0

Ethics 0 0 0.015 0

Mathematical History 0 0 0.015 0

Modern Languages 0 0 0.015 0

https://doi.org/10.1371/journal.pone.0248208.t003
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performance in these courses must be monitored closely since a large number of future courses

depend on them. To detect the core courses of the curriculum, the flow betweenness measure

on the original network was calculated for minimum paths. This emphasizes the importance

of the courses Calculus, Algebraic Structures, Vector Analysis I, Discrete Mathematics, Topol-

ogy, Data and Information Modelling, Statistical Methods, and Curves and Surfaces as these

courses appear in the minimum dependency path between any pair of courses in the degree.

To detect the instrumental and terminal courses of the curriculum, the degree-out measure on

the original graph was calculated. This highlights the importance of the courses Linear Alge-

bra, Calculus, and Discrete Mathematics as “key” courses in the degree, which should be posi-

tioned at the beginning of the curriculum, preferably in the first semester of study. Those

courses that achieve a score of zero can be considered terminal courses in the curriculum and

can be placed in the final semesters of the curriculum.

Community detection analysis of the MCN

Community detection in NA are beneficial for numerous applications such as finding com-

mon characteristics between nodes or finding sets of nodes with similar interactions.

In order to determine the course groups according to the dependencies between the sylla-

bus of the courses in the curriculum, a community analysis using the Louvain algorithm [39]

was made. The community detection problem in direct network has been studied in less depth

than in the non-directed case. For this reason we have performed a naive transformation

(removing the direction) to be able to apply the classic Louvain algorithm defined for non-

directed networks. Removing the directionality of the edges to identify communities in a

directed network is one of the most common ways to identify communities that empower

those groups with many relationships between their members and few with members from

abroad. We have simulated 10000 random graphs generated with the same number of vertices

and links to determine the degree of modularity of our network using the Erdös-Rènyi model

[40]. Other algorithms to generate random graphs such as configurational [41] or Chung-Lu

[42] can be used, were the connectivity is specify by the degree sequence~k and many patterns

vary with the mean (k) and variance k2) of this sequence. In this work, we have adopted the

model proposed by Erdös-Rènyi for simplicity. Table 4 presents the main descriptive statistics

of 3 different community detection algorithms modularity in the random networks, where

Betweenness refers to the algorithm propose in [43], external optimization ([44–46]) and

Lovain ([39]) community detection algorithms.

The degree of modularity is moderate (0.32), which reflects the fact that we have a modular

network with clearly identifiable communities, even though there are relations between the

communities, which means that there are also dependencies between the communities.

In Fig 11, we present a visualization of the optimal solution presented by the Louvain

algorithm.

It is worth noting the presence of four groups of courses (see Fig 11), which could be

named as follows:

Table 4. Descriptive statistics of Community detection algorithms modularity applied to 10000 random graphs with the same vertices and links as the curriculum

network (null model).

Community detection Algorithm Average Standard Deviation Average Confidence interval (IC95%(μ))

Betweenness 0.261 0.039 [0.2601019; 0.2616425]

External optimization 0.124 0.052 [0.1237327; 0.1258032]

Louvain 0.243 0.105 [0.2410161; 0.2451377]

https://doi.org/10.1371/journal.pone.0248208.t004
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• Group 1: Basic Algebra

• Group 2: Probability and mathematical statistics

• Group 3: Advanced computing and algebra

• Group 4: Vector calculus and numerical methods

The courses Biological Foundations, Ethics, Modern Language, and History of Mathematics

are separated from the other courses in the degree.

Global network analysis

The rich club in the network, represented by the principal courses in the study plan, refers to

the tendency of the dominant elements of the system to form tightly interconnected groups.

The maximum value for F(k) with minimum k value is attained for k = 10 where R(10) is the

set of courses Linear Algebra, Calculus, Vector Analysis I, Ordinary Differential Equations

(see Fig 12).

The assortativity measure of the net is 0.12 (p-value 0.228, associated to the null hypothesis:

assortativity = 0 vs the alternative assortativity 6¼0). Assortative measure is defined here as the

correlation coefficient between the degree of adjacent nodes. As the assortative measure is low,

we can conclude there is a disassortative relationship between the nodes of the net, since nodes

with high degree tend to connect with low degree nodes.

Cross-dependencies analysis

Some networks require a predefined model to determine the influence of one region on

another due to temporal dependencies. Cross-dependencies helps to identify the network’s

hierarchy of influence.

To detect cross-dependencies between classes, motifs of size three were considered. We

compared the number of expected number of motifs of type 3 in a random graph with the

observed number of motifs of size 3 in the study plan graph (see Figs 13 and 14). The random

model used has been generated using the same number of nodes and arcs found in the original

network using Pajek 5.1 software. Triad census are labelled according to [38].

Significant differences are apparent for patterns D, E, F and I (p-value < 2E − 16) (see Fig

15). Patterns E and F were significantly smaller respect to a random graph in the study plan. It

Fig 11. Community network describing the curriculum of the URJC mathematics degree.

https://doi.org/10.1371/journal.pone.0248208.g011
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is desirable to avoid patterns C, G, H, K, L, M, N, O and P in the study plan as these patterns

exhibit significant course interdependency, obliging considerable coordination between pro-

fessors, something which is not always easy to achieve. Similarly, pattern type J should be

avoided because of its cyclic structure, which would obligate use of knowledge taught in

courses to be situated in semesters posterior to that in which it would be needed. Significant

differences in patterns D and I were found to be higher in the study plan graph than in random

graphs. This is a desirable property, as it reflects that knowledge will flow correctly provided

that the corresponding courses are assigned to different semesters.

Fig 12. Value chart of F(k) according to k.

https://doi.org/10.1371/journal.pone.0248208.g012

Fig 13. Types of motifs of size three in a random graph.

https://doi.org/10.1371/journal.pone.0248208.g013
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Conclusion

In this paper we have proposed a new tool to visualize a curricula design from a network analy-

sis point of view, by using the natural tools and concepts from Graph Theory. Even if just

some studies can be found that combine network analysis with tools for curricula design, the

methodology proposed here provides a new vision of the structure and functionality of differ-

ent curriculum designs. In particular, we propose to construct the graph in a first step follow-

ing the recommendations given in section 3, check for inconsistencies helped by the graph

visualization, and if the study plan satisfies all the requirements proceed with network analysis

Fig 14. Number of average motifs and expected with three vertices in a random graph compared to the study plan graph.

https://doi.org/10.1371/journal.pone.0248208.g014

Fig 15. Motifs differing significantly between a random graph and the study plan graph.

https://doi.org/10.1371/journal.pone.0248208.g015
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to enrich the information of performance, otherwise return to the previous stage to reallocate

courses in the semesters until all the requirements are satisfied.

From this network analysis, it is possible to detect incongruences or mistakes in the study

plan in an automatic way. From a node network analysis point of view we can identify or

detect the main courses in the study plan or the courses that required a detailed performance

monitoring since the influence in other courses is high. Also it is important to mention that

the relation between nodes in this network is based on the necessities of one course t respect

the others. This community detection algorithm allows professors to coordinate in the case

they are involved teaching the same subjects. In this sense the natural groups of courses could

be identified in a natural way after a community detection procedure in the courses network

of a study plan.

Finally it also relevant to mention that the general or topological properties of the whole

network provide an interesting information of the whole study plan. Topological network

measures as the density of the network, assortativity degree among others permits to know for

example if the relations between courses in the study plan are more probable among similar

courses or the opposite.

One limitation of the present study is the consideration in the model mandatory courses

antecedence requisites. We find this issue as a very interesting task in a future research line.

This article has provided a step-by-step procedure for analyze the key courses in a study

plan (deciding if it is recommendable small modifications or not), identify the natural groups

of courses that should be coordinate, detects incongruences in the plan, robustness of the plan

study or the level of connections of the plan allowing the comparison from an structure orga-

nization point of view different plans to decide what we want to design. Still, the problem of

meeting all the requirements could be non-trivial and a future research item is to extend this

work with a detailed algorithm to assign the courses to semesters efficiently.
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