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Abstract 
Single-cell sequencing has revolutionized our ability to dissect the heterogeneity within tumor populations. In this study, we present 
LoRA-TV (Low Rank Approximation with Total Variation), a novel method for clustering tumor cells based on the read depth profiles 
derived from single-cell sequencing data. Traditional analysis pipelines process read depth profiles of each cell individually. By 
aggregating shared genomic signatures distributed among individual cells using low-rank optimization and robust smoothing, the pro-
posed method enhances clustering performance. Results from analyses of both simulated and real data demonstrate its effectiveness 
compared with state-of-the-art alternatives, as supported by improvements in the adjusted Rand index and computational efficiency. 
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Introduction 
It is well known that copy number variation (CNV) is a subtype 
of unbalanced structural variation (SV), and involves gain or loss 
of genetic segments of size more than 1 kbp [1],[2], resulting in 
an abnormal number of copies of specific genes or noncoding 
genomic regions. CNV was reported to be discovered frequently 
in both human and other mammal genomes, and has been asso-
ciated with complex diseases such as cancer [3], schizophrenia 
[4], Alzheimer disease [5], etc. CNVs are frequently observed in 
tumor cells, and play a crucial role in the progression of cancer by 
promoting genomic instability and disrupting key genes involved 
in cell growth regulation [6, 7]. 

Read depth profile is a traditional signature for CNV detection 
[8, 9]. By splitting whole reference genome into fix-sized nonover-
lapping bins [10, 11], variable-sized bins [12] or a sliding window 
[8], and counting the number of whole-genome sequencing reads 
mapped within each bin, the read depth profile can be obtained, 
and consecutive bins with significant high/low read depth are 
identified as CNV gain/loss, respectively. By counting the number 
of whole-exome sequencing reads mapped within each exonic 
bins, CNV can also be inferred. Furthermore, read depth profile, 
with the terminology expression level [13],  was also used in RNA-
seq as a signature to describe gene expression quantitatively. 

Single-cell sequencing (SCS) has emerged as a powerful tech-
nique to study the heterogeneity of cellular populations with 
unprecedented resolution, and hence an important tool for inves-
tigations in cancer, developmental biology [14–16] etc. Compared 
with the previous bulk sequencing, SCS enables the detection 
of CNVs in individual tumor cells, and hence provides valuable 
insights into the underlying molecular mechanisms of cancer. 
Navin et al. [17] explored the use of SCS techniques to study the 
evolution of tumors. The authors highlight the heterogeneity and 
complexity of tumors, and the limitations of bulk sequencing 
methods in capturing the full spectrum of genetic changes. By 
analyzing individual cancer cells, they reveal the clonal dynamics 
and genetic diversity within tumors, providing insights into tumor 
evolution, metastasis and potential therapeutic targets. 

The processing and analysis of SCS data present significant 
challenges due to the complexity of the data. (i) The huge volume 
of data generated from SCS presents a computational burden. The 
high-throughput nature of the SCS technology results in millions 
of reads per cell, leading to massive datasets that require substan-
tial computational resources for data processing; (ii) the presence 
of technical noise, such as amplification bias that related to GC-
content inhomogeneity, demands careful bias correction; (iii) the 
heterogeneity of single cell populations adds another factor of
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complexity to data processing. To tackle these challenges, the field 
of SCS data analysis has witnessed remarkable advancements. 
Novel open-source packages and pipelines have been developed 
to facilitate data preprocessing and downstream analysis. [12] 
presents a protocol for performing genome-wide copy number 
analysis at the single-cell level. The authors proposed a step-by-
step procedure for isolating single cells, amplifying their DNA 
and using next-generation sequencing to assess copy number 
profiles. The protocol offers a comprehensive approach to study 
CNVs in heterogeneous cell populations and has implications 
in understanding genomic instability, tumor heterogeneity and 
genetic diseases at the single-cell resolution. [18] focuses on the 
development of an interactive analysis framework, and proposed 
Ginkgo, a user-friendly, open-source web platform for the analysis 
of single-cell CNVs (http://qb.cshl.edu/ginkgo). Seurat package [19] 
and the Monocle package [20, 21] are two popular bioinformatics 
toolkits for SCS data analysis. Both packages provide a range of 
functions and methods for tasks such as quality control, normal-
ization, dimensionality reduction, clustering, differential expres-
sion analysis and visualization of single-cell data. 

Given that tumor cells from the same subclone share common 
signatures, such as identical CNVs on tumor suppressor genes 
and aneuploidy, it is crucial to consider these shared features 
in the analysis. However, traditional SCS tools typically analyze 
the read depth profiles of each cell individually before cluster-
ing cells into subclones, overlooking these common signatures. 
The work by Navin et al. [17] addressed this issue by detecting 
common breakpoints before clustering, although the approach 
was somewhat empirical. In this paper, we propose LoRA-TV 
(Low Rank Approximation with Total Variation), a model to pro-
cess the read-depth profiles of tumor cells from SCS jointly to 
aggregate common signature dispersed among individual cells. 
In the proposed model, the read-depth profile of a single cell is 
stored in a column vector, and vectors of all cells are cascaded 
horizontally to form a matrix. Since profiles suffer from high 
fluctuation caused by sequencing, in order to smooth profile 
and capture common signature, robust smoothing and low-rank 
approximation are introduced. In our proposed model, robust 
smoothing is established with modern techniques involving total 
variation [22] and L-1 norm optimization [23] to reduce the impact 
of outliers and extreme values. Low-rank approximation [24] is a  
mathematical technique that can capture essential features while 
reducing dimensionality, and is widely used in data compression, 
noise reduction, machine learning, etc. Since optimization involv-
ing matrix rank is combinatorially complicated and intractable 
to solve in general, the rank of a matrix is frequently relaxed to 
its nuclear norm, which is the sum of its singular values [25]. 
As a result, singular value decomposition (SVD) is employed. The 
detailed model is presented in the sequel. 

Methods 
Model 
The LoRA-TV model is as follows: 

f (X) = 
1 
2

‖Y − X‖2 
F + λ‖DX‖1 + μ‖X‖∗, (1)  

where Y ∈ RN×M is a matrix containing the read-depth profiles 
of M cells; each profile is of length N. Detailed descriptions of 
how Y was organized are presented in Section 3.1, while the 
process of extracting Y from real SCS data is outlined in Section 4; 
X ∈ RN×M is the denoised version of Y ; D ∈ R(N−1)×N is the 

first-order difference operator, which has a Toeplitz structure with 
main diagonal elements Di,i = −1 and upper diagonal elements 
Di,i+1 = 1 [26]; ‖‖F, ‖‖1, ‖‖∗, are the Frobenius norm, �1 norm and 
nuclear norm [25], respectively; the first term is the data fitting 
fidelity term, the second term is total variation used to smooth 
the profile  of  each cell while preserve CNVs [22] and  the last  
term is the convex relaxation of matrix rank [27], which is used to 
concentrate cluster of cells; hyperparameters λ and μ are used to 
balance the tradeoff of smoothness and low-rank, respectively. By 
minimizing f (X) for given Y ,D, λ and μ, the minimizer X is the 
refined read-depth profiles of cells that promise better clustering. 

Optimization 
Following the standard alternating direction method of multipli-
ers (ADMM) [28], above optimization problem (1) is decomposed 
into following three iterations over k: 

Xk+1 = arg min 
X 

1 
2

‖Y − X‖2 
F + μ‖X‖∗ + 

β 
2

‖DX − Zk − W k‖2 
F 

(2) 

Zk+1 = arg min 
Z 

β 
2

‖DXk+1 − W k − Z‖2 
F + λ‖Z‖1 (3) 

W k+1 = W k − (DXk+1 − Zk+1 ) (4) 

Variable W is the Lagrange multiplier associated with the 
consensus constraint DX = Z, which is introduced to encourage 
the primal variables X and Z to satisfy the equality. 

β is a positive penalty parameter that controls the trade-off 
between fitting the data and enforcing the equality constraint. 

Sub-optimization problem (3) is trivial, which has closed-form 
solution 

Zk+1 = THsoft 
λ 
β 

(DXk+1 − W k ), (5)  

where THsoft 
λ/β is the soft thresholding function with cutoff value λ/β 

applying on each element of the matrix [29]. 
Sub-optimization problem (2) further reads 

Xk+1 = arg min 
X 

1 
2

∥∥∥∥∥
[

Y 
β(Zk + W k)

]
−

[
I 

βD

]
X

∥∥∥∥∥
2 

F 

+ μ‖X‖∗ (6) 

= arg min 
X 

1 
2

‖Bk − AX‖2 
F + μ‖X‖∗, (7)  

which can be tackled with singular value thresholding [27] and  
iterative thresholding [29] over  l: 

F l = (I − AT A)X l + AT Bk (8) 

V l 1 �l (V l 2 )T = SVD(F l ) (9)

�l+1 = THsoft 
μ (�l ) (10) 

X l+1 = V l 1 �l+1 V l 2 
T 

(11) 

Table 1 shows the pseudo code, and the Matlab implementation 
is available online with URL in the conclusion. 

Simulation study 
Date simulation 
To test the performance of the proposed model, we first generated 
an SCS dataset in silico including the read depth profiles of M = 64 
cells to mimic tumor evolution.
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Table 1. Algorithm pseudo code. 

Input: Data Y and parameters λ, μ, β, s, t1, t2. 

Initialize Z,W as full zero matrices. 
while until meet relative tolerance t1 

B̄ =
[ 1 

s Y 
β 
s (Z + W )

]
, 

Ā =
[

1 
s I 

β 
s D

]
, 

E = I − ĀT Ā, 
C = ĀT B̄, 
X = Ā+ B̄, 
while until meet relative tolerance t2 

F = EX + C, 
V1�V T 

2 = SVD(F ),
� = THsoft 

μ/s2 (�), 
X = V1�V2 

T, 
end while 
Z = THsoft 

λ 
β 

(DX − W ), 

W = W − (DX − Z), 

end while 
Output: X. 

• CNV profiles evolution: Half cells were labeled as normal 
(with label A1 to A32), i.e. the copy number was assigned as 
2 to represent diploid. The left half cells were assigned as 
abnormal (B1 to B16, C1 to C8, D1 to D4 and E1 to E4). Cells in 
cluster B share a CNV with random location, length follow-
ing a uniform distribution with boundary of minimal 3 and 
maximal 10 bins and a random CNV status (0 homozygous 
deletion, 1 heterozygous deletion, 3 heterozygous duplication 
and 4 homozygous duplication). Cells in cluster C share the 
same CNV in cluster B, and one more random CNV. Cells in 
clusters D and E follow the same procedure. 

• Read depth profiles generation: Since SCS read depth profiles 
are commonly modeled as random variables obeying Poisson 
or Negative Binomial distributions [10, 30, 31], in this work 
we sampled N = 300 i.i.d. random numbers following Poisson 
distribution with density parameter (or mean) 10 for each 
normal cell. For abnormal cells incorporating CNVs, read 
depth profiles were simulated according to its CNV profile, 
and Poisson density parameter was set as 1, 5, 15 and 20 for 
CNV status 0, 1, 3 and 4, respectively. 

Figure 1 showcases example read depth profiles for each cell 
cluster. In normal cells A1 and A2, the average read depth is 10. 
Cells B1 and B2 exhibit a CNV deletion of approximately 30 bins 
near coordinate 150. Cells C1 and C2 show a CNV duplication of 
approximately 10 bins near coordinate 50. Cells D1 and D2 display 
a CNV deletion of approximately 30 bins near coordinate 270. Cells 
E1 and E2 present a CNV duplication of approximately 20 bins 
near coordinate 230. 

Numerical optimization 
The simulated dataset is a matrix of N = 300 rows by M = 64 
columns, and each column represents the read depth profile of a 
cell. This matrix was then input as Y in Eq. (1), and optimization 
procedure was executed. 

As the proposed algorithm is an iterative optimization method, 
four issues needs attention: 

• β: Since ADMM was employed for optimization, the penalty 
parameter β plays a crucial role in the algorithm. β not 

only controls the trade-off between data fitting and equality 
constraint enforcing, i.e. a larger β places more emphasis 
on satisfying the constraint, leading to a more accurate ful-
fillment of the equality, but also impacts the convergence 
behavior and stability of the algorithm; an appropriate value 
can improve the numerical properties and convergence speed 
of the algorithm. By performing a grid search over 1e-2 to 1e2, 
Fig. 2 shows that the value 2 works best for the simulated 
dataset. 

• Initialization: For the ADMM iterates, Z and W were ini-
tialized as zero matrices; for the singular value thresholding 
iterates, X was initialized with A+Bk, where  + is the Moore– 
Penrose inverse. 

• Stopping criterion: Relative tolerance was employed in the 
experiments. Iteration terminates if the relative change in the 
objective function f k−f k+1 

f k < 1e − 3. Figure 3 shows a typical 
plot of objective versus iterations, indicating that 20 iterations 
are sufficient for convergence, taking approximately 8 s on a 
Windows desktop. 

• Scale of A: It is known that for iterative thresholding meth-
ods, convergence to a local minimum is guaranteed if the 
operator norm (or �2 norm ‖A‖2 [25]) of the matrix A in Eq. 
(7) is less than one [25]. For our optimization problem, the 
operator norm is larger than one, therefore we have to scale 
the objective to meet this requirement. To be more specific, 
suppose s > ‖A‖2 is a scale factor opted by user, then the 
optimization problem (7) is equivalent to its modification by 
replacing Bk,A and μ with B̄k = Bk/s, Ā = A/s and μ̄ = μ/s2, 
respectively. For the simulated dataset, ‖A‖2 = 4.1, so  we  
chose s = 10. 

Phylogenetic tree 
After the above optimization procedure, optimizer matrix X was 
output, which is a denoised and low-rank approximated version 
of original data Y . Then we calculated the pairwise Euclidean 
distances between the columns of X, and performed hierarchical 
clustering (neighbor-joining algorithm) [32] based on the distance 
matrix. The result was visualized as a phylogenetic tree. An 
example phylogenetic tree is shown in Fig. 4(A), showing that cell 
lines A to E are clustered successfully. As a comparison, panel (B) 
also shows the phylogenetic tree of matrix Y . The phylogenetic 
structure remains unclear without the application of LoRA-TV 
processing. 

Since the simulated dataset has a ground true label, we can 
evaluate the clustering result quantitatively. The Rand index is a 
measure used to assess the similarity between two data clusters 
[33]. It is often employed when evaluating the performance of a 
clustering algorithm. For two clusters of a set of elements, the 
Rand index measures the percentage of pairs of elements that 
are either in the same cluster or in different clusters. The Rand 
index is expressed as a value between 0 and 1, where 0 indicates 
no similarity, and 1 indicates identical clusterings. We employed 
the adjusted Rand index (ARI) [34], which is a variation of the 
original one that corrects for the expected value of the index 
under random clustering. 

The parameters λ and μ significantly impact clustering perfor-
mance, so we fine-tuned these two parameters using ARI as the 
criterion. A two-dimensional grid search on a logarithm scale was 
employed, with 1000 Monte-Carlo replications for each grid point. 
The mean ARI results are demonstrated in Fig. 5. It  is  shown  that  
grid with λ = 3.2 and μ = 32 achieves the highest ARI for the 
simulated dataset. The red curves in Fig. 1 are the denoised read 
depth signals with this parameter configuration.
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Figure 1. Read depth of five (A to E) simulated cell lines. Each row displays one cell and each column display one cell lines. 

Comparisons 
The proposed LoRA-TV method was compared with both existing 
bioinformatics and optimization toolkits. 

Bioinformatics toolkits 
There are several methods/toolkits/packages that are developed 
for CNV detection and cell clustering based on read depth profile
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Figure 2. The minimal objective value with respect to ADMM parameter 
β. The red dot represents the lowest value, which is used in the sequel. 

Figure 3. An example objective value versus iteration curve. 

from SCS, and we list representative ones in Table 2. We also 
compared LoRA-TV with state-of-the-art alternatives, namely, 
the Seurat package [19] and  the  Monocle package [20, 21], which 
are popular bioinformatics toolkits for SCS data analysis. These 
packages provide a range of functions and methods for tasks 
such as quality control, normalization, dimensionality reduction, 
clustering, differential expression analysis and visualization of 
single-cell data. 

To call the Seurat package, firstly a seurat object was created 
with Y as the count matrix; then functions NormalizeData, Find-
VariableFeatures, ScaleData, RunPCA, FindNeighbors and FindClusters 
were called consecutively to cluster cells; finally the ARI was 
calculated. Default parameters were used, except resolution in 
FindClusters, which is crucial for the number of clusters, and 
was set as 1.1 empirically; otherwise, the clustering performance 
of Seurat is notably poor. For the Monocle package, firstly, a 
CellDataSet object was created (using new_cell_data_set function) 
with Y as the expression matrix; then functions preprocess_cds, 
reduce:dimension and cluster_cells were called to cluster cells and 
the ARI was calculated finally. Principle component analysis and 
uniform manifold approximation and projection were used in 
preprocessing and dimension reduction processes, respectively. 
Both Louvain and Leiden algorithms were tested [37]. 

Table 2. Representative methods for CNV detection and cell 
clustering based on read depth profile from SCS 

Tools Reference Feature & website 

Seurat [19] A R toolkit for single cell genomics. (https:// 
satijalab.org/seurat/) 

Monocle3 [20, 21] An analysis toolkit for SCS. (https://cole-
trapnell-lab.github.io/monocle3/) 

Ginkgo [12, 18] A cloud-based single-cell CNV analysis tool. 
(http://qb.cshl.edu/ginkgo/) 

SCONCE [35] A package for profiling CNV in cancer 
evolution using SCS. (https://github.com/ 
NielsenBerkeleyLab/sconce) 

CaSpER [36] A toolkit for identifying CNV events by 
integrative analysis of SCS. (https://github. 
com/akdess/CaSpER) 

A total of 1000 Monte-Carlo replicates were conducted, result-
ing in the proposed method achieving a mean score of 0.77 with 
a standard deviation of 0.24 (0.77 ±0.24) on the aforementioned 
five-subclone dataset. As a comparison, Seurat default (Seurat– 
Louvain) got an average ARI 0.63, with standard deviation 0.21. 
By switching Louvain to Leiden algorithm, Seurat (Seurat–Leiden) 
got an average ARI 0.61, with standard deviation 0.22. The results 
of Monocle3 with Louvain and Leiden algorithms (Monocle3-
Louvain and Monocle3-Leiden) are also shown in Table 3. To  have  
a detailed distribution of ARI, Fig. 6 further shows the histograms 
of ARIs of methods. It shows in panel (a) that most ARIs of 
the proposed methods locate near to 1, while in (b) the ARIs of 
Seurat–Louvian concentrate between 0.6 and 0.7, which is the 
case subclones D and E are mixed; in (c) the ARIs of Monocle3-
Leiden locates almost uniformly. 

Above performance evaluation was based on five-subclone 
dataset, and in order to have a more comprehensive evaluation, 
one- to four-subclone dataset were analyzed. For example, four-
subclone dataset was generated by eliminating subclone E in the 
subsection 3.1, etc. ARIs are listed in Table 3. It is shown that the 
proposed method outperformed Seurat and Monocle3 packages 
for all numbers of subclones, indicating the superior performance 
for a broad spectrum. Note that for one subclone clustering task, 
both Seurat and Monocle3 packages failed, which is aligned with 
the conclusion of previous publication [38]. 

Optimization toolkit 
LoRA-TV was also compared with existing optimization toolkit 
CVX [39], which is a versatile toolkit for disciplined convex pro-
grams, offering solutions for linear/quadratic programs, second-
order cone programs and semidefinite programs. Implemented 
in Matlab, CVX simplifies optimization problem formulation and 
solution, and hence a popular toolkit for numerical optimization. 

We compared the proposed ADMM algorithm in Table 1 with 
CVX in solving the objective in Eq. (1). Both codes were run on 
a Windows desktop with an Intel i7-3770 CPU and 32 gigabytes 
of memory. Figure 3 shows a typical objective versus iterate plot. 
It shows that LoRA-TV iterated 14 loops and met stopping crite-
rion. The CVX toolkit was also called to solve the same problem 
(same data and hyperparameters) on the same computer, and the 
objective iterate is displayed as the red curve, which converged 
to an approximate objective value as LoRA-TV, and exited with 
20 iterates. In comparison for the runtime computation resources 
consumption, LoRA-TV took 8 s and used a megabyte memory, 
while the CVX package processed 124 031 variables and 38 400
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Figure 4. Typical phylogenetic trees of simulated dataset. The upper and lower trees are the results with and without LoRA-TV processing. It is shown 
in the upper panel that with LoRA-TV five cell lines (A to E) are well clustered. 

Table 3. ARI performance comparison on simulated data 

Method\subclone 1 2 3 4 5 

Proposed 1.00±0.00 0.76±0.42 0.78±0.27 0.79±0.22 0.77±0.24 
Seurat-Louvain 0.31±0.46 0.77±0.40 0.74±0.21 0.61±0.21 0.63±0.21 
Seurat-Leiden 0.19±0.39 0.80±0.36 0.72±0.22 0.64±0.18 0.61±0.22 
Monocle3-Louvain 0.00±0.00 0.14±0.05 0.24±0.07 0.21±0.06 0.23±0.08 
Monocle3-Leiden 0.00±0.03 0.30±0.15 0.50±0.28 0.34±0.16 0.49±0.27 
None 1.00±0.00 0.32±0.47 0.38±0.46 0.43±0.31 0.46±0.30 

equality constraints, and hence took an hour and used 29 giga-
bytes memory at peak. 

To further demonstrate the computational performance of 
LoRA-TV, Fig. 7 shows the resources consumption with respect to 
varying scales of read depth length N and cell number M; each 
point is the average of 10 Monte-Carlo experiments. It is shown 
that with the increase of N, memory usage increases steadily, 
and CPU time increases significantly, while with the increase of 
M, memory usage increases significantly, and CPU time increases 
slowly. For large-scale problem (10 000 of cells and read depths), 
LoRA-TV cost approximately an hour and a gigabytes, demon-
strating its effectiveness and generalization ability. 

Real data study 
Two real SCS dataset were processed to test the performance 
of the proposed method. The datasets were sampled from 

Figure 5. Tuning of parameters λ and μ. 1000 Monte-Carlo replications 
were tested, and the best configuration is shown. 
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Table 4. Cell labels and SRR ID in T10, T16P and T16M dataset 

T10 T16P T16M 

label SRR label SRR label SRR label SRR 

D1 052047 H9 054566 P1 089523 D2 089706 
D2 052148 H10 054567 P2 089526 D5 089709 
D4 053437 H11 054568 P3 089529 D6 089710 
D5 053600 H12 054569 P4 089533 D7 089711 
D6 053602 H13 054570 P5 089542 D8 089712 
D3 053604 H14 054571 P6 089550 D9 089713 
D7 053605 H15 054572 P7 089561 D10 089714 
D8 053606 H16 054573 P8 089564 D11 089715 
D9 053607 H17 054574 P9 089568 D12 089716 
D10 053608 H18 054575 P10 089573 D13 089717 
D11 053609 H19 054576 P11 089577 D14 089719 
D12 053610 H20 054577 P12 089578 D15 089722 
D13 053611 H21 054578 D1 089580 D16 089730 
D14 053615 AA1 054592 D2 089583 D17 089731 
D15 053616 AA2 054594 D3 089586 D3 089733 
D16 053617 AA3 054596 D4 089589 D21 089750 
D17 053618 AA4 054597 D5 089591 D22 089751 
D18 053619 AA5 054598 D6 089592 D23 089752 
D19 053620 AA6 054599 D7 089593 D24 089753 
D20 053623 AA7 054600 D8 089594 D25 089754 
D21 053624 AA8 054601 D9 089595 D26 089755 
D22 053629 AA9 054602 D10 089596 A1 089756 
D23 053630 AA10 054603 D11 089597 A2 089757 
D24 053631 AA11 054604 D12 089598 A3 089817 
D25 053632 AA12 054605 D13 089599 A4 090126 
D26 053633 AA13 054606 D14 089600 A5 090129 
D27 053634 AA14 054608 D15 089601 A6 090130 
D28 053635 AA15 054609 D16 089602 A7 090131 
D29 053636 AA16 054610 D17 089603 A8 090133 
D30 053637 AA17 054611 D18 089604 A10 090142 
D31 053638 AA18 054612 D19 089605 A11 090144 
D32 053639 AA19 054613 D20 089606 A12 090155 
D33 053666 AA20 054614 D21 089607 A13 090156 
D34 053667 AA21 054615 D22 089608 A14 090158 
P1 053668 AA22 054616 D23 089609 A15 090159 
P2 053669 AA23 054618 D24 089610 A16 090198 
P3 053670 AA24 054620 A1 089646 A17 090206 
P4 053671 AA25 054622 A2 089659 A18 090209 
P5 053672 AB1 054626 A3 089662 A19 090210 
P6 053673 AB2 054632 A4 089663 A20 090211 
P7 053674 AB3 054633 A5 089664 A21 090212 
P8 053675 AB4 054634 A6 089665 A22 090213 
H1 053676 D37 089377 A7 089666 
H2 053677 D38 089378 A8 089694 
H3 053678 D39 089379 A9 089695 
H4 053679 D36 089397 A10 089696 
H5 053680 H22 089401 A11 089697 
H6 053681 H23 089402 A12 089698 
H7 054213 H24 089403 A13 089699 
H8 054565 A14 089700 

A15 089701 
A16 089702 

polygenomic breast tumors, particularly two high-grade, triple-
negative ductal carcinomas (T10 and T16P) and a paired 
metastatic liver carcinoma (T16M) [ 17]. 

The T10 dataset contains 63 normal and 37 tumor cells, 
with infiltrating leukocytes. Five major ploidy distributions are 
obtained by fluorescence-activated cell sorting, and these cells 
are labeled with Diploid (D), Pseudodiploid (P), Hypodiploid (H), 
Aneuploid A (AA) and Aneuploid B (AB). The T16P and T16M 

dataset contains 52 and 48 cells, respectively, and we combined 
them into T16PM dataset. 

The SCS data for each cell were downloaded from National 
Center for Biotechnology Information Sequence Read Archive 
server (https://www.ncbi.nlm.nih.gov/sra). The SRR IDs and labels 
are listed in Table 4. Note that one cell in T10 and six cells in T16M 
have no labels, so the data of those cells were not included in our 
analysis.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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Figure 6. Distributions of ARIs of 1000 Monte-Carlo experiments. (A) proposed method, (B) Seurat-Louvain, (C) Monocle3-Leiden. 

Figure 7. Computation consumptions of CPU time and memory (A) with respect to read depth length N while M is fixed to 64; (B) with respect to cell 
number M while N is fixed to 300. 

The processing pipeline is as follows, and preprocessing 
described in [ 12] is referred: 

1. Map each fastq file to human reference genome hg19 with 
Bowtie2 [40], yielding an SAM file; 

2. Convert and sort each SAM file to a BAM file with samtools 
[41]; 

3. Calculate a read depth profile of each cell from BAM file 
with bedtools [42]; chromosomal bin regions are defined in 
hg19.varbins.bed [12]; 

4. Normalize each read depth profile by dividing the median 
value, yielding the median of normalized profile to 1; 

5. Smooth read depth versus GC content in logarithm scale 
curve with Lowess [43]; 

6. Correct GC content bias in logarithm scale; 
7. Process the corrected read depth profiles in logarithm scale 

with LoRA-TV; 
8. Calculate pairwise Euclidean distances of profiles; 
9. Draw phylogenetic tree using neighbor-joining method [32]; 

10. Evaluate ARI [34]. 

Figure 8 shows the phylogenetic tree of T10 dataset. It is 
demonstrated that four subpopulations have been identified 
and clustered as follows: D and P, H, AA and AB. Within the 
first cluster, pseudodiploid cells gradually diverge from diploid 
cells but remain within the same cluster. As evolution progresses, 
hypodiploid cells form the second cluster. Ultimately, aneuploid A 
and B cells constitute the last two clusters. The clustering results 

are nearly flawless, with the exception of SRR054604 labeled as 
AA11, which was clustered into AB, resulting in an ARI of 0.987. 
Further investigation reveals that this outcome aligns with the 
findings on the Ginkgo website [18](http://qb.cshl.edu/ginkgo/). 
Bootstrap was employed to estimate the statistical significance of 
the clustering result, 1000 sampling with replacement was carried 
out. The reported P-value of 0.013 indicates that the clustering 
result is statistically significant, and is unlikely to have occurred 
by random chance alone, and suggests that there is a meaningful 
structure in the data that leads to the observed clustering 
pattern. 

Figure 9 shows the phylogenetic tree of T16PM dataset. It is 
evident that three subpopulations have been clustered: A-P, A-M 
and D and P. The first cluster comprises aneuploid cells from the 
T16P dataset, the second cluster consists of aneuploid cells from 
the T16M dataset and the third cluster comprises other normal 
cells. The statistical significance of the clustering result is 1e-3. 

Conclusion and discussion 
The processing of SCS data is a complex task that requires spe-
cialized computational methods and careful consideration of var-
ious sources of variability. In this paper, we proposed LoRA-TV, a 
model that can cluster tumor cells based on read depth profiles. 
Demonstrations on both simulated and real data show that LoRA-
TV achieved better ARI over its alternatives, and support that the 
proposed method can illustrate the evolutionary branches and 
relationships between subpopulations.

http://qb.cshl.edu/ginkgo/
http://qb.cshl.edu/ginkgo/
http://qb.cshl.edu/ginkgo/
http://qb.cshl.edu/ginkgo/
http://qb.cshl.edu/ginkgo/


LoRA-TV | 9

Figure 8. The clustering result of T10 dataset. Prefix: Diploid (D), Pseudodiploid (P), Hypodiploid (H), Aneuploid A (AA), Aneuploid B (AB). 

The highlights of LoRA-TV are as follows: (i) traditional meth-
ods smooth and -reduce dimension of read depth profile from 
SCS data individually, while the proposed model processes the 
read depth profiles jointly before tumor cell clustering, and hence 
can aggregate common feature that disperses within cells in a 

subclone. Therefore, improved clustering results were expected. 
(ii) Since the proposed model consists of three terms, namely, the 
data fitting term (the Frobenius norm), the total variation smooth-
ing term (the L-1 norm) and the low-rank approximation term (the 
nuclear norm), and there is no specific solver for this model, we 
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Figure 9. The clustering result of T16PM dataset. Prefix: Diploid (D), Pseudodiploid (P), Aneuploid (A); suffix: -P (T16P), -M (T16M). 

employed ADMM to design a numerical optimization algorithm. 
Compared with the general convex optimization toolbox CVX, 
in the simulation data analysis section, the proposed algorithm 
showed its computational efficiency in terms of CPU and memory 

usage. (iii) Current popular learning-based methods have the gen-
eralization issue: these models tend to perform well only on data 
they have seen before, but their predictive capabilities are limited 
when it comes to new data. The proposed model is based on 
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traditional method, and does not suffer from the generalization 
issue, and hence have practical applications. 

Note that there are two identified issues resulting in imperfect 
clustering (ARI 0.83): (i) SRR089717 labeled as D13 from the T16M 
dataset is clustered as a singleton, and (ii) SRR089589 labeled 
as D4 and SRR089542 labeled as P5 from the T16P dataset are 
clustered into A. Notably, these two issues are also observed in 
the Ginkgo website. 

Last, there is still room for improvement of LoRA-TV. Since 
SVD is called densely in ADMM iteration (Eq. (9)), computation 
is slow for long read depth profile. In our real data analysis 
section, read depth profiles are of length 50 000 for a whole-
genome sequencing, and were processed chromosome by chro-
mosome. This took about tens of minutes. If we can tailor the 
incremental SVD [44] into ADMM, computation efficiency maybe 
increased. 

Code of LoRA-TV is available at Matlab file exchange https:// 
www.mathworks.com/matlabcentral/fileexchange/158481-lora-
tv-low-rank-approximation-with-total-variation. 

Key Points 
• LoRA-TV clusters tumor cells based on the read depth 

profile from single-cell sequencing; 
• The proposed method aggregates common genomic 

signatures through low-rank optimization and robust 
smoothing; 

• ADMM was employed to solve the introduced optimiza-
tion problem; 

• Both clustering effectiveness and computational effi-
ciency were supported by simulated and real data. 

Funding 
This work was supported by the National Natural Science Foun-
dation of China (61771381). 

Data availability 
The data are available upon request. 
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