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ABSTRACT
Background. Antimicrobial and antifungal species are essential members of the healthy
human microbiota. Several different species of lactobacilli that naturally inhabit the
human body have been explored for their probiotic capabilities including strains of
the species Lactobacillus gasseri. However, L. gasseri (identified by 16S rRNA gene
sequencing) has been associated with urogenital symptoms. Recently a new sister taxon
of L. gasseri was described: L. paragasseri. L. paragasseri is also posited to have probiotic
qualities.
Methods. Here, we present a genomic investigation of all (n= 79) publicly available
genome assemblies for both species. These strains include isolates from the vaginal tract,
gastrointestinal tract, urinary tract, oral cavity, wounds, and lungs.
Results. The two species cannot be distinguished from short-read sequencing of the
16S rRNA as the full-length gene sequences differ only by two nucleotides. Based
upon average nucleotide identity (ANI), we identified 20 strains deposited as L. gasseri
that are in fact representatives of L. paragasseri. Investigation of the genic content
of the strains of these two species suggests recent divergence and/or frequent gene
exchange between the two species. The genomes frequently harbored intact prophage
sequences, including prophages identified in strains of both species. To further explore
the antimicrobial potential associated with both species, genome assemblies were
examined for biosynthetic gene clusters. Gassericin T and S were identified in 46 of the
genome assemblies, with all L. paragasseri strains including one or both bacteriocins.
This suggests that the properties once ascribed to L. gasseri may better represent the
L. paragasseri species.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Lactobacillus gasseri, Lactobacillus paragasseri, Gassericin, Comparative genomics,
Urobiome, Human microbiome

INTRODUCTION
Lactobacillus species are a common colonizers of the human microbiome, including the
gastrointestinal (GI) tract, urinary tract, and vaginal microbiota (Ravel et al., 2011;Heeney,
Gareau & Marco, 2018; Fok et al., 2018). One member of this genus, Lactobacillus gasseri,
has been the focus of studies associated with weight loss and its probiotic benefits (Crovesy
et al., 2017; Oh et al., 2020; Sun et al., 2020). Furthermore, L. gasseri has been shown to
mitigateHelicobacter pylori infection and ameliorate diarrhea (Selle & Klaenhammer, 2013).
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L. gasseri is an important constituent of the female urogenital tract (Ravel et al., 2011; Fok
et al., 2018). It is able to prevent other bacteria from growing in the same environment,
protecting the host from pathogens (Selle & Klaenhammer, 2013). L. gasseri is an effective
antimicrobial (Spurbeck & Arvidson, 2010; Scillato et al., 2021) and antifungal (Matsuda et
al., 2018; Parolin et al., 2021) of urogenital pathogens. In the vaginal microbiota, L. gasseri
can be a dominant member in healthy women without bacterial vaginosis (BV), and thus
a marker for vaginal health (Srinivasan et al., 2012). However, in women with human
papillomavirus infections, L. gasseri is frequently isolated. (Gao et al., 2013). Within the
urinary tract, L. gasseri has been associated with urgency urinary incontinence (UUI) in
females (Pearce et al., 2014), although it also is frequently isolated from the bladders of
continent females (Price et al., 2020).

Whole genome sequencing efforts of isolates from the human microbiota led to the
identification of two distinct subgroups of L. gasseri (Tada et al., 2017), which later led
to the classification of L. gasseri’s sister taxon: Lactobacillus paragasseri. First described in
2018 (Tanizawa et al., 2018), little is known about the species. One L. paragasseri strain
from the GI tract has been found to inhibit the Lactobacillus species L. iners (Nilsen et
al., 2020), and L. paragasseri strains have been examined for their potential probiotic use
(Mehra & Viswanathan, 2021; Shiraishi et al., 2021). Recently, L. paragasseri was posited as
a resilient member of the healthy urinary microbiota (Ksiezarek et al., 2021). The species
does, however, have the potential for pathogenicity; L. paragasseri was been found to be
the causative agent of a cavernosal abscess in one individual (Toyoshima et al., 2021).

It is important to note that the aforementioned studies associating L. gasseri in the
urogenital microbiota and symptom status (Srinivasan et al., 2012; Gao et al., 2013; Pearce
et al., 2014; Price et al., 2020) predate the discovery of L. paragasseri. Moreover, as prior
studies note, it is difficult to distinguish L. gasseri from L. paragasseri using commonly
employed techniques for typing species, namely MALDI and 16S rRNA gene sequencing
(Toyoshima et al., 2021; Zhou et al., 2020). Themost reliable way to distinguish the two taxa
is through whole genome sequencing (Tanizawa et al., 2018; Zhou et al., 2020). Recently,
whole genome sequencing of 92 L. gasseri and L. paragasseri strains from fecal samples
identified genomic distinctions between the two species with regards to their CRISPR-Cas
systems, bacteriocin operons, and carbohydrate-active enzymes (Zhou et al., 2020). Here,
we present a genome analysis of all publicly available whole genome sequences of L. gasseri
and L. paragasseri. This includes 79 strains isolated from the vaginal tract, GI tract, urinary
tract, oral cavity, and lungs.

MATERIALS & METHODS
The publicly available sequences of L. gasseri and L. paragasseri totaling 79 genomes were
retrieved fromNCBI as of June 23, 2021. Table S1 lists the sequences included in this study.
First, 16S rRNA gene sequences were extracted from each genome assembly using Python
and Biopython. When multiple 16S rRNA gene sequences were identified, as is the case for
long-read sequencing assemblies and complete genome assemblies, all copies were included
in the set of sequences. The extracted 16S rRNA sequencesweremanually examined through
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Geneious Prime (Biomatters Ltd., Auckland, NZ) and aligned using the MAFFT v7.388
(Katoh & Standley, 2013) plug-in through Geneious Prime. The phylogenetic tree was
derived using the FastTree 2.1.12 (Price, Dehal & Arkin, 2010) plug-in through Geneious
Prime and visualized using iTOL v6 (Letunic & Bork, 2016).

Next, we estimated the average nucleotide identity (ANI) using pyani v0.2 (Pritchard
et al., 2015). From the ANI (ANIm metric) percentage identity values, we classified the
genomes into the two species using the 95% threshold (Jain et al., 2018).

The genomes were then examined using anvi’o v7.2 (Eren et al., 2021). Contigs less than
500 bp were removed from consideration using the command anvi-script-reformat-fasta.
Afterwards, the command anvi-gen-contigs-database was used to perform gene calls for
each contig using Prodigal generating anvi’o databases for each genome. The commands
anvi-run-hmms and anvi-run-ncbi-cogs were also run to annotate the genes in the anvi’o
databases. The anvi-pan-genome command was used to create the pangenome of all 79
genomes with an Markov Chain algorithm (MCL) threshold of 8. The concatenated single
copy core genome was found using the command anvi-get-sequences-for-gene-clusters
with the–min-num-genomes-gene-cluster-occurs 79–max-num-genes-from-each-genome
1–concatenate-gene-clusters. A phylogenetic tree, consisting of the aligned single copy core
genome, was derived, and visualized as described above. Functionality for genes of interest
were confirmed via blastp queries to the NCBI nr database.

Each genome sequence was screened for prophage sequences using PHASTER (Arndt
et al., 2016). While PHASTER predicted intact, questionable, and incomplete prophage
sequences, only intact prophage sequences were examined in depth. Homologous intact
prophages were identified by clustering the nucleotide sequences using a 70% percent
identity threshold. Clustering was performed using USEARCH v.11.0.667 (Edgar, 2010).
Each cluster was manually inspected, and the cluster’s sequences were aligned as described
above.

Lastly, each genome was queried for secondary metabolites via antiSMASH using the all
extra features on and the rest were the default parameters (Blin et al., 2021). The bacteriocin
sequences found by antiSMASH were aligned using MAFFT (v7.388) (Katoh & Standley,
2013). Trees were derived and visualized as described above. Reference sequences were
retrieved from GenBank for the gassericin T (L. gasseri LA327: Accession No. LC389592)
and gassericin S (L. gasseri LA327: Accession No. LC389591) nucleotide sequences.

RESULTS
While the 16S rRNA gene sequences of L. gasseri and L. paragasseri strains are 99.9%
identical, the few SNPs present result in the two species clading separately (Fig. 1). The
similarity in the 16S rRNA gene sequences observed here concurs with prior studies
remarking on the inability to distinguish between the two species via the 16S sequence
(Toyoshima et al., 2021; Zhou et al., 2020). However, the two species can be distinguished
by just two nucleotide differences: position 95 (C/T) in the V1 region and 1046 (A/T) in
the V6 region. Some strains include additional polymorphisms.

Next, whole genome sequences were examined. The 95% threshold for pairwise ANI
values was used as the species boundary between the two sister taxa. Based upon our ANI
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Tree scale: 0.001

Figure 1 16S rRNA gene tree of L. gasseri (black) and L. paragasseri (blue) isolates. Species designation
is based upon ANI analysis (Fig. 2).

Full-size DOI: 10.7717/peerj.13479/fig-1

calculations, 20 of the genomes classified in GenBank as L. gasseri were determined to be
L. paragasseri strains. This misclassification is primarily because these genome assemblies
were deposited prior to the discovery of L. paragasseri in 2018. In contrast, all strains
that were identified as L. paragasseri in GenBank were confirmed to be L. paragasseri.
Based upon the ANI analysis, our data set includes 40 representatives of L. gasseri and 39
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Figure 2 ANI analysis of L. gasseri and L. paragasseri strains. The grey rectangle on the upper left side
shows the L. gasseri strains while the blue rectangle below it shows the L. paragasseri strains.

Full-size DOI: 10.7717/peerj.13479/fig-2

representatives of L. paragasseri (Fig. 2). This strain assignment concurs with the branching
of strains based upon 16S rRNA gene sequences (Fig. 1).

Next, the pangenome and set of single copy genes in the core genome of the 79 L. gasseri
and L. paragasseri genomes was identified. The pangenome consists of 4,069 groups of
orthologous genes. Two of these genes are conserved among all strains of L. paragasseri and
are not present in any of the L. gasseri strains. These genes encode for a phosphatidylserine
decarboxylase, also found in other lactobacilli, including L. taiwanensis and L. johnsonii,
and beta-galactosidase, also found in L. johnsonii. Thus, these genes cannot serve as a
L. paragasseri-specific gene marker as their use would not be able to distinguish between
L. paragasseri and other lactobacilli. There are no genes that are both conserved among all
strains of L. paragasseri and absent from the L. gasseri strains. The single copy core genome
of all 79 L. gasseri and L. paragasseri assemblies contains 242 single copy orthologous genes.
Using this core genome, the phylogenomic tree was derived (Fig. 3). Like that observed for
the 16S rRNA and ANI analyses, the tree shows a clear distinction between the two species.

The source for each strain was identified from the genome metadata and associate
literature (Table S1; Fig. 3). Strains of both L. gasseri and L. paragasseri have been isolated
from stool/GI, vaginal, urine, lung/aspirate, and breast milk samples. Additionally,
L. paragasseri has been isolated from a wound (n= 1) and the oral cavity (n= 1). The
isolation source of several of the strains could not be determined (Fig. 3, dark gray
‘‘Source’’ boxes).

The genomes were next screened for secondarymetabolites. Of the 79 genome assemblies
examined, secondary metabolites were identified in 46 assemblies, including 7 L. gasseri
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Figure 3 L. gasseri and L. paragasseri core genome phylogenetic tree. Strains deposited in the database
as L. gasseri are labeled as ‘‘Lg’’ while those deposited in the database as L. paragasseri are labeled as ‘‘Lp’’.
Strains in blue font are L. paragasseri and black font are L. gasseri, according to our ANI analysis (Fig. 2).
The isolation source of the genomes is indicated according to the legend. Gassericin T and S presence is
indicated by the purple or red boxes, respectively.

Full-size DOI: 10.7717/peerj.13479/fig-3
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assemblies and 39 L. paragasseri assemblies. The most frequent biosynthetic cluster
identified were the two ribosomally synthesized and post-translationally modified peptide
product (RiPP) clusters gassericin T and gassericin S. Gassericin T was identified in all
L. paragasseri assemblies (n= 39) but only 7 L. gasseri assemblies (Fig. 3, purple boxes);
L. paragasseri UMB1065 was predicted to contain two gassericin T clusters. The gassericin
T cluster includes nine genes (MiBIG database records: BGC0000619 and BGC0001601).
While the gassericin T cluster in L. paragasseri 497_LGAS encoded for all nine of these
genes, the remaining identified gassericin T clusters lacked one or more genes. At one
extreme, L. paragasseriUMB1065 and L. paragasseriUMB0596 only encode for three of the
genes. On average, the gassericin T clusters identified here include seven of the nine genes
(Table S2). In contrast, the gassericin S clusters, which were only identified in L. paragasseri
assemblies (n= 26; Fig. 3, red boxes), were well conserved in relation to the reference
sequence (MiBIG database record: BGC0001601). Twenty-five of the strains encoded for
all three of the gassericin S genes in the cluster; L. paragasseri Indica only encoded for two
of the genes (Table S2).

Next, a phylogenetic tree was derived for the nucleotide sequences of the two biosynthetic
clusters. For gassericin T, full length sequences were found in all strains except for
L. paragasseri UMB6985 (omitted from tree), which had a truncated coding sequence. The
phylogenetic tree (Fig. 4A) shows two clades: one for L. gasseri and one for L. paragasseri
strains. On average, the sequence similarity between these gassericin T nucleotide sequences
was 84.6%. In contrast, the nucleotide sequences for the gassericin S clusters were nearly
identical (average pairwise nucleotide identity = 99.7%) (Fig. 4B). In addition to the two
gassericin clusters, acidocin B, furan and lactocillin were identified in 3, 7, and 3 strains,
respectively (Table S2).

The L. gasseri and L. paragasseri genomes were screened for prophage sequences. In
total 82 intact prophage sequences were identified. These sequences represent 38 different
prophages. Sequence homology between the prophages identified and characterized strains
include metagenome assembled phages as well as Lactobacillus-infecting characterized
phages (Table S3). Twenty-four of these prophages were identified only in a single genome
sequence. Of the 38 different prophages identified, 10 were only found only in a L. gasseri
strain(s), and 19 were found only in a L. paragasseri stain(s). It is important to note that
none of these prophages were present in all L. gasseri or all L. paragasseri strains indicative
of acquisition events post-speciation. The remaining nine prophages are present in both
L. gasseri and L. paragasseri strains.

We investigated further the prophages infectious of both species. Phylogenetic analysis
found instances in which prophage sequences did (prophage ‘‘both_3’’; Fig. 5A) and did
not (prophage ‘‘both_1’’; Fig. 5B) clade by the Lactobacillus species harboring it. The two
examples shown in Fig. 5 both show greatest sequence similarity to Lactobacillus phage
jlb1 (both_3 greatest pairwise sequence similarity: 81% query coverage; both_1 greatest
pairwise sequence similarity: 93% query coverage). Pairwise sequence identity values can
be found in Table S3. A temperate phage, Lactobacillus phage jlb1 has previously been
shown to contribute to horizontal gene transfer (Baugher, Durmaz & Klaenhammer, 2014).
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Figure 4 Phylogenetic trees of (A) gassericin T and gassericin S (B). L. paragasseri strains are in blue
font and L. gasseri strains are in black font using the species designation determined by the ANI analysis
(Fig. 2). Reference sequences for the gassericin sequences are shown in bold, gray font.

Full-size DOI: 10.7717/peerj.13479/fig-4
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Figure 5 Phylogenetic tree for two prophages—(A) group ‘‘both_3’’ and (B) group ‘‘both_1’’. L. para-
gasseri strains are indicated in blue font while L. gasseri strains are in black font.

Full-size DOI: 10.7717/peerj.13479/fig-5

Further analysis is required to ascertain if the identified prophages also are temperate
phages and if they are capable of infecting both species.

DISCUSSION
Through our analysis of publicly available genomes of L. gasseri and L. paragasseri isolates,
we found that targeting variable regions within the 16S rRNA gene is insufficient to
distinguish between the two species. While 16S metagenome surveys that target the V1 or
V6 regions may be able to capture the mutations, it is unlikely that bioinformatic tools
would call the two species as two different operational taxonomic units (OTUs) or amplicon
sequence variants (ASVs). Furthermore, urobiome studies to date have primarily relied on
the V4 region as it is able to distinguish between other common community taxa (Hoffman
et al., 2021). Targeting the V1-V3 and V3-V4 regions of the 16S rRNA gene sequence have
been found to perform best for vaginal microbiome studies (Hugerth et al., 2020). It is
worth noting that the aforementioned studies associating L. gasseri with vaginal or urinary
and vaginal symptoms cannot resolve it from. L. paragasseri as they target regions of the
16S rRNA gene sequence that are identical for L. gasseri and L. paragasseri (Srinivasan et
al., 2012; Gao et al., 2013; Pearce et al., 2014; Price et al., 2020).

The distinction between L. gasseri and L. paragasseri, however, can be made when
examining whole genome sequences. The gene content of these two species differs, notably
in the bacteriocins encoded.We hypothesize that the gassericin T gene was lost in the deeper
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clade of the L. gasseri strains, based upon the core phylogenomic tree (Fig. 3). Gassericin
T and S, which were only recently isolated from L. gasseri LA327 and described (Kasuga et
al., 2019), are likely contributors to the antimicrobial activity associated with L. paragasseri
rather than L. gasseri. The genome sequence for L. gasseri LA327 is not publicly available,
but based upon our study, we hypothesize that this strain is likely a L. paragasseri strain.

L. gasseri bacteriocins, including gassericin T, have been explored for their use as food
preservatives (Arakawa et al., 2009). Gassericins also have been shown to inhibit the growth
of pathogenic bacteria (Itoh et al., 1995), capable of inhibiting the invasion of competing
strains or pathogens, as was shown in the case of the L. paragasseri K7 (Nilsen et al., 2020;
Shiraishi et al., 2021). Our analysis finds that L. paragasseri encodes for more bacteriocins
than L. gasseri. This concurs with a previous examination of L. gasseri and L. paragasseri
genomes from the gut (Zhou et al., 2020). These findings suggest that the antimicrobial
and antifungal properties associated with L. gasserimay better describe L. paragasseri, with
prior strains misclassified as L. gasseri.

We did not find a candidate gene marker to distinguish between the two species. While
a 2017 study of gene content in these two species did find ‘‘group’’ specific genes (Tada et
al., 2017), our analysis, which included all publicly available genomes to date, did not find
any genes that are both conserved among all strains of L. paragasseri and absent from the
L. gasseri strains. Furthermore, the two genes conserved among all strains of L. gasseri and
absent from L. paragasseri are also found in the genomes of other lactobacilli. The gene
content similarity between strains of the two species suggests that either these species have
very recently diverged and/or gene exchange is frequent between the two species. Phages
may have contributed and continue to contribute to the divergence of these two species
through horizontal gene transfer (Table S3; Fig. 5). Furthermore, niche-specialization may
be driving the differences in gene content between strains of the same species. Both L. gasseri
and L. paragasseri have been isolated from very different environments (Table S1; Fig. 3).
Niche-specific adaptations have previously been observed between one L. paragasseri strain
from the GI tract and one L. paragasseri strain from the vagina (Pan et al., 2020). To
associate L. gasseri and L. paragasseri with urogenital health, future studies need to include
shotgun metagenomic sequencing and/or isolate whole genome sequencing.

CONCLUSIONS
Our comparative genomic study of all 79 publicly available L. gasseri and L. paragasseri
strains finds that the two species only can be reliable distinguished by whole genome
sequence analysis. The gene content of strains from these two species is quite similar
suggesting recent divergence and/or frequent gene exchange. The presence of prophage
sequences may be contributing to the divergence as well as the observed similarity in gene
content. Furthermore, bacteriocins previously ascribed to L. gasseri strains are actually
encoded by L. paragasseri strains. As a result of our study, we recommend that future
studies must utilize shotgun metagenomic sequencing or whole genome sequencing
of isolates to definitively determine if one or both of these species are associated with
urogenital symptoms.
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