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Abstract: Clostridioides difficile infection (CDI) is a large intestine disease caused by toxins produced
by the spore-forming bacterium C. difficile, which belongs to Gram-positive bacillus. Using antibiotics
treatment disturbances in the gut microbiota and toxins produced by C. difficile disrupt the intestinal
barrier. Some evidence indicates fecal microbiota transplantation and probiotics may decrease the
risk of CDI recurrence. This study aimed to evaluate the efficacy of fermented mango by using the
lactic acid bacteria Lactobacillus acidophilus and develop innovative products in the form of fermented
mango jam. L. acidophilus-fermented mango products inhibited the growth of C. difficile while
promoting the growth of next-generation probiotic Faecalibacterium prausnitzii. Both supernatant
and precipitate of mango-fermented products prevented cell death in gut enterocyte-like Caco-2
cells against C. difficile infection. Mango-fermented products also protected gut barrier function by
elevating the expression of tight junction proteins. Moreover, L. acidophilus-fermented mango jam
with high hydrostatic pressure treatment had favorable textural characteristics and sensory quality.

Keywords: jam; Lactobacillus acidophilus; Clostridioides difficile; mango; Faecalibacterium prausnitzii

1. Introduction

The incidence of Clostridioides difficile (formerly Clostridium difficile) infection (CDI) is
10-fold higher in older adults than in young adults [1]. A clinical study found that the abun-
dance of several next-generation probiotics, including Akkermansia muciniphila, Escherichia
coli, and Klebsiella spp., was higher in patients with CDI than in controls, suggesting these
bacterial populations may be involved in CDI development [2]. However, a reduction in the
number of butyrate-producing bacteria, such as Lachnospira spp., Butyricimonas spp., and
Faecalibacterium prausnitzii, was found in patients with CDI [3,4]. Bacterium F. prausnitzii is
Gram-positive, nonspore-forming, and nonmotile [5]. F. prausnitzii represents about 5% of
the total population of intestinal bacteria, which is one of the most abundant species in the
gut microbiota of healthy adults and is the predominant butyrate-producing bacterium in
the gastrointestinal tract. The D-lactate and butyrate (>10 mM butyrate) were major end
products of F. prausnitzii during glucose fermentation [6,7]. F. prausnitzii contributes to
the establishment of epithelial homeostasis, which modulates colonic goblet cells and gut
barrier function [8]. Moreover, F. prausnitzii and its cultural supernatant alleviate intestinal
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inflammation in the colitis mice model by reducing intestinal permeability [9]. The mecha-
nism underlying the protective effects of F. prausnitzii mediated by elevating tight junction
proteins [10]. A monolayer of epithelial cells forms an interface between the host and the
microbiota that colonizes the gastrointestinal tract. Commensal gut microbiota and their
metabolites interact with epithelial cells in the intestine of humans. A study reported that
F. prausnitzii-derived extracellular vesicles have the potential for promoting activation of
Toll-like receptors and intestinal immunity [11], these indicate that F. prausnitzii is essential
to health of hosts. There is increasing evidence that metabolites from F. prausnitzii regulate
the intestinal epithelium. Medium supplemented with flavin and cysteine or glutathione
has been shown to support the growth of F. prausnitzii [12]. In addition, F. prausnitzii
uses mucin (MUC) as its sole energy source and is considered one of the “next-generation
probiotics.”

Numerous lactic acid bacteria and yeasts have been reported to use mango as nutrients
thereby producing postbiotics [13–17]. Studies have demonstrated that the polyphenolic
compounds of mango peel and mangiferin conversion were increased through gastroin-
testinal digestion and gut microbiota fermentation [18,19]. Moreover, mango peel aids in
the regulation of gut microbiota, including an increase in the abundance of Faecalibacterium,
Bifidobacterium, Roseburia, Eubacterium, Catenibacterium, Prevotella, Phascolarctobacterium,
Collinsella, and Bacteroides genera [20].

MUC expression has been usually determined during the growth and differentiation
of the enterocyte-like Caco-2 and goblet cell-like LS174T cells. Caco-2 (expressing MUC-1,
MUC-3, MUC-4, MUC-5A/C, and MUC-13) and LS174T (expressing MUC-1, MUC-2, and
MUC-6) cell lines have been discovered great in vitro models for research the specific mech-
anisms responsible for expressing mucin [21]. It has been reported that oligosaccharides
including stachyose, cellobiose, raffinose, lactulose, and chitooligosaccharides can affect
the adhesion of F. prausnitzii to mucus-secreting intestinal epithelial cells [22]. Therefore,
we investigated the effects of Lactobacillus acidophilus BCRC14079-fermented mango on the
growth of F. prausnitzii and the protection of Caco-2 cells for the intestinal biological role in
human health. Finally, the preparation conditions of L. acidophilus BCRC14079-fermented
mango jam was investigated.

2. Materials and Methods
2.1. Chemicals

Fetal bovine serum (FBS) was purchased from Life Technologies (Auckland, New
Zealand). Dimethyl sulfoxide (DMSO) was obtained from Wako Pure Chemical Industries
(Saitama, Japan). Triton X-100, trypsin, and sodium dodecyl sulfate (SDS) were purchased
from Sigma Chemical Co. (St Louis, MO, USA). Dulbecco’s modified Eagle’s medium
(DMEM), streptomycin, and penicillin were purchased from HyClone Laboratories (Logan,
UT, USA). Lactobacilli MRS broth was purchased from Difco Laboratories (Detroit, MI,
USA). BHI medium was obtained from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Fermentation

The pulp of mango fruit was homogenized into a puree using a homogenizer, freeze-
dried to a powder, and stored at −80 ◦C. The mango powder was formulated (30%) as a
culture medium and fermented with L. acidophilus (BCRC14079; Food Industry Research
and Development Institute, Hsin Chu, Taiwan) for 1, 3, and 5 d. The bacterial counts, pH
level, and titratable acidity were determined on days 1, 3, and 5. pH value was detected by
a digital pH meter (OHAUS Corporation, Parsippany, NJ, USA) that calibrated with pH 4.0
and 7.0 buffers. In titratable acids measurements, 5 mL of the tested sample was used and
titrated by 0.1 N sodium hydroxide (NaOH) to pH 8.2.

L. acidophilus BCRC14079 was cultured in MRS broth under anaerobic conditions at
37 ◦C by using an atmosphere generation system (Oxoid, Basingstoke, UK). The number of
the lactobacilli was detected on MRS agar plates under anaerobic cultivation.
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The fermented products were centrifuged and divided into the L. acidophilus BCRC14079-
fermented mango supernatant and L. acidophilus BCRC14079-fermented mango precipitate.
Water extracts of unfermented mango were used as controls. L. acidophilus BCRC14079-
fermented mango supernatant was filtered through a 0.22 µm filter. L. acidophilus BCRC14079-
fermented mango precipitate contained the biomass of bacteria. Therefore, it was extracted
with 100 ◦C water for 1 h and the solution was then filtered through a 0.22 µm filter. Finally,
these products (L. acidophilus BCRC14079-fermented mango supernatant and L. acidophilus
BCRC14079-fermented mango precipitate–water extract) were freeze-dried and then stored
at −80 ◦C until use in the intestinal cell and microbial experiments.

2.3. Cell Culture

Cell culture and treatment Caco-2 cell line was purchased from the Bioresource Collec-
tion and Research Center (BCRC, Food Industry Research and Development Institute, Hsin
Chu, Taiwan). Cells were grown in a DMEM medium that contained 10% heat-inactivated
FBS, 2 mM of L-glutamine, and 2 mM of glutamine in a humidified atmosphere of 95% air
and 5% CO2 under 37 ◦C cultivation.

2.4. Western Blotting

An ice-cold buffer containing 1% of Triton X-100, 0.1% of SDS, 500 mM of sodium
vanadate, 20 mM of Tris-HCl (pH 7.4), 10 mM of NaF, 2 mM of EDTA, 1 mM of phenyl-
methanesulfonyl fluoride, and 10 mg/mL of aprotinin was used to lyse the cells. The
supernatant of cells was obtained from centrifuged (12,000× g, 10 min) cell lysate. SDS–
PAGE (10%) was used to resolve the proteins and transferred them to a polyvinylidene
fluoride membrane. Nonfat milk (5%) was used to block membranes for 1 h, and then
primary antibodies were added to membranes for 2–4 h. Subsequently, the membrane
was washed with phosphate-buffered saline with Tween-20 (PBST) for 5 min three times
and incubated with horseradish peroxidase (HRP)-linked secondary antibody for 1 h.
After washing three times with PBST, the enhanced chemiluminescent reagent (Millipore,
Billerica, MA, USA) was used to determine the protein concentration.

2.5. L. acidophilus BCRC14079-Fermented Mango Inhibited C. difficile Growth

The C. difficile 630 strain (ATCC®® BAA-1382™) was anaerobically cultured in brain
heart infusion (BHI) medium with 0.05% L-cysteine for 16 h at 37 ◦C and then refreshed
the broth until grown to early stationary phase (OD600 ≈ 0.7). Subsequently, C. difficile
culture (1 × 106 CFU/mL) was added into fresh BHI broth containing 31.25, 62.5, 125, 250,
and 500 µg/mL L. acidophilus BCRC14079-fermented mango samples. Three independent
samples were analyzed for each experiment. OD600 was measured after culturing the cells
for different times.

2.6. C. difficile Infection in Caco-2 Cells

Caco-2 cells were incubated with DMEM medium without antibiotics and FBS be-
fore being infected. After overnight incubation, a pellet of C. difficile was collected and
resuspended in anaerobic presterilized DMEM. The bacterial suspension was used to infect
Caco-2 cells with the infected ratio of 100:1 (bacteria:cell) anaerobically for 30–180 min.
Cell viability was determined by using the reduced mitochondrial activity (MTT) assay
according to the manual (Sigma-Aldrich Chemical Co., St Louis, MO, USA).

2.7. Investigation of L. acidophilus BCRC14079-Fermented Mango Regulated Growth of F.
prausnitzii

F. prausnitzii (BCRC81047) was obtained from Food Industry Research and Devel-
opment Institute, Hsin Chu, Taiwan, which was cultured in YCFA medium in anaerobic
condition for 24 h at 37 ◦C (YCFA medium is formulated according to American Type
Culture Collection recommendations). After overnight incubation, bacterial pellets were
then refreshed in YCFA broth until to grow to early stationary phase (OD600 ≈ 0.8). Sub-
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sequently, fresh F. prausnitzii (1 × 106 CFU/mL) was then added to YCFA broth, which
contained 125, 250, and 500 µg/mL of samples. Triplicate repeats were analyzed for each
experiment. OD600 was measured after culturing the cells for different times.

2.8. Assay for Short-Chain Fatty Acids (SCFAs)

The bacteria cultural solution was collected and centrifuged at 13,000× g and 4 ◦C
for 15 min to obtain the supernatant for subsequent analysis. The levels of SCFAs such
as acetic acid, propionic acid, and butyric acid were performed by gas chromatography–
flame ionization detection (GC–FID) that used the Shimadzu GC-2010 (Shimadzu Corp,
Tokyo, Japan) with a capillary column (BP21 FFAP 30 m × 0.53 mm i.d., 0.50 µm film
thickness, Trajan, Melbourne, Australia). The carrier gas was nitrogen, and the splitless
injection volume was 1 µL. Auxiliary gases for the flame ionization detector were hydrogen
(30 mL/min of flow rate) and dry air (300 mL/min of flow rate). The temperatures of the
injector and detector were 220 ◦C and 240 ◦C, respectively. The temperature of the GC
oven was first set at 90 ◦C for 1 min and elevated to 150 ◦C at 10 ◦C/min, and then to
200 ◦C at 20 ◦C/min and following held for 1 min. Triplicate repeats were analyzed, and
the obtained data were normalized to the concentrations of external standards and are
showed in µM [23].

2.9. Preparation of L. acidophilus BCRC14079-Fermented Mango Jam Treated with High-Pressure
Processing (HPP)

The L. acidophilus BCRC14079-fermented mango solution was mixed thoroughly with
sucrose and pectin. The pH was maintained at 3.05 using citric acid. The pulp solution was
divided into HPP-treatment and heat-treatment groups. For HPP treatment, L. acidophilus
BCRC14079-fermented mango pulp was processed at 150, 300, and 500 MPa after being
vacuum-packaged in a plastic bag. The processing time and temperature were 20 min and
25 ◦C, respectively [24]. For heat treatment, L. acidophilus BCRC14079-fermented mango
pulp was mixed with sucrose and pectin and heated by a gas burner at 180 ◦C. Total soluble
solids were monitored during boiling. The solution was continuously stirred and stopped
heating when the soluble solids were reached at 65◦ Brix. The mixture was then poured
into glass beakers to cool under ambient conditions.

2.10. Texture Profile Analysis (TPA)

The texture profile analysis (TPA) assay of L. acidophilus BCRC14079-fermented mango
jam (60 g; sample height was 24 cm) was performed by a texture analyzer (RapidTA®®

Texture analyzer, Horn Instruments Co., Ltd., Taoyuan, Taiwan). A knife blade probe (RP40)
was used, and the trigger was compressed to 40% at a 1 mm/s speed rate. Triplicate repeats
were detected and analyzed by TAdivser software (Version 2.0.1.55, Taoyuan, Taiwan).

2.11. Color Measurement

Color analysis of fermented mango jam was determined by using a HunterLab col-
orimeter (Hunter Associates Laboratory, Inc., Reston, VA, USA). For each sample, triplicate
measurements were taken in each shell area, and the average of the four samples was
recorded. We determined the lightness component L* (range, 0–100), and the chromatic
components a* (redness/greenness [+/−]) and b* (yellowness/blueness [+/−]) [25].

2.12. Sensory Evaluation

The appearance, odor, texture, flavor, and overall acceptability of each sample were
evaluated by panelists. For a trained sensory panel, panelists were trained to isolate each
factor and to focus on each independently of the others for evaluation of the property that
is of interest to the researcher. There are 20 panelists in this study, including 9 men and 11
women. Assign a rating to each parameter on a 9-point descriptive hedonic scale, in which
9 is reserved for the highest-quality sample [26].
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2.13. Statistical Analysis

The data were expressed as means ± SD. The statistical analysis was performed by
one-way analysis of variance (ANOVA) to compare among groups through Duncan’s
multiple-range test (SPSS statistical software package, version 17.0, SPSS, Chicago, IL,
USA). Statistic differences with a p value < 0.05 were considered statistically significant.

3. Results and Discussion
3.1. Properties of L. acidophilus BCRC14079-Fermented Mango

L. acidophilus, L. plantarum subsp. plantarum, and L. paracasei subsp. paracasei have
been used to ferment plant products to improve their antioxidation, anti-inflammation,
and lipid metabolism, as well as abilities to prevent acute gastric ulcers, antiatherosclerosis,
and antiobesity [27,28]. Moreover, some active ingredients, such as γ-aminobutyric acid
(GABA) and angiotensin I converting enzyme inhibitor (ACEI), have been found in lactic
acid bacteria-fermented products [29]. Titratable acid and pH values were determined
in lactic acid bacteria L. acidophilus BCRC14079-fermented mango pulp (30%) after 1, 3,
and 5 d of fermentation. The pH value decreased significantly (p < 0.05), as fermenta-
tion progressed from days 3 to 5 (Figure 1A). An increase in titratable acid caused by
L. acidophilus BCRC14079 produced lactic acid (Figure 1B). Figure 1C shows the results
of L. acidophilus BCRC14079 growth in mango pulp (30%). The number of L. acidophilus
BCRC14079 increased after mango pulp had been fermenting for 3 days, which can exceed
approximately 1010 CFU/mL. However, the number of L. acidophilus BCRC14079 was lower
on day 5, suggesting that the growth of L. acidophilus BCRC14079 in mango pulp as a
fermentative material is limited.
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3.2. Inhibition of the Growth on C. difficile by L. acidophilus BCRC14079-Fermented Mango

The focus of CDI treatment guidelines is to stop continuing using antibiotics and
switching to metronidazole and vancomycin [30,31]. However, C. difficile develops antibi-
otic resistance to a number of antibiotics. Therefore, alternative treatment or prevention
strategies are needed. The fermented products were centrifuged and divided into L. aci-
dophilus BCRC14079-fermented mango supernatant and precipitate. The inhibition of C.
difficile growth by L. acidophilus BCRC14079-fermented mango extracts was evaluated.

As shown in Figure 2A, the mango extract, L. acidophilus BCRC14079-fermented
mango supernatant and precipitate could inhibit the growth of C. difficile dose dependently
(31.25–500 µg/mL). The suppressive effect of L. acidophilus BCRC14079-fermented mango
supernatant was similar to that of L. acidophilus BCRC14079-fermented mango precipitate
(24 h treatment). In addition, a dose of 250 µg/mL was used to evaluate the inhibitory
effect in C. difficile treated with mango extracts, L. acidophilus BCRC14079-fermented mango
supernatant, and L. acidophilus BCRC14079-fermented mango precipitate for 8, 12, 18, 24,
and 36 h. As shown in Figure 2B, the ability of L. acidophilus BCRC14079-fermented mango
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supernatant to inhibit C. difficile growth was greater than that of the mango extract and L.
acidophilus BCRC14079-fermented mango precipitate during 18–36 h.
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C. difficile belongs to Gram-positive bacillus that produces spores. It is an important
pathogenic bacterium in adults and children. C. difficile was first isolated from the intestinal
tract of infants and was clinically important when it became one of the main causes of
antibiotic-associated diarrhea [30]. Recurrence is an important hallmark of CDI due to
the ability of C. difficile to produce resistant spores, partly due to the inability to recover
the gut microbiota after antibiotic treatment; importantly, 25% of CDI patients may occur
recurrence, and the rate of secondary recurrence can be as high as 40–60% [31,32].

Cytotoxins toxin A and toxin B are cytotoxic proteins, which are the principal virulence
factors of C. difficile. Toxins A and B of C. difficile are secreted and bound to host receptors,
subsequently, entered into the cytoplasm of enterocytes [30,31], which causes intestinal
inflammation and surface of the epithelial mucosal disruption [33,34]. In a clinical study,
probiotic therapy is also considered in CDI treatment and in antibiotics (vancomycin,
metronidazole, and fidaxomicin). Therefore, next-generation probiotics or other probiotic
species (such as lactic acid bacteria) are promising novel candidates for the development
of CDI adjunct therapy. The protective role of L. casei LBC80R and L. acidophilus CL1285
against CDI has been reported [33]. Moreover, the application of L. reteri products on
inhibiting C. difficile colonization has been evaluated [35]. We found that L. acidophilus
BCRC14079-fermented mango can inhibit the growth of C. difficile.

In a cell model, toxins A and B have been shown to induce cell necrosis and apoptosis
in intestinal epithelial cells [36,37]. Therefore, the maintenance of the intestinal barrier
is a potential defense against C. difficile and reduces the risk of infection. The intestinal
mucosa is the first site for the contact between host and pathogen (i.e., virus, bacteria, yeast,
protozoa) while infection. Intestinal epithelial cells are able to produce mucin, which can
form a mucosal barrier to block tissue represent sits and avoid pathogenic infection.

Apart from mucin, epithelial integrity is associated with intestinal tight junction
proteins such as zonula occludens-1 (ZO-1) and occludin (OCC). These proteins regulate
cellular permeability and maintain intestinal barrier functions [38]. We investigated several
tight junction proteins involved in intestinal barrier function, including mucin-13, ZO-1,
and OCC in Caco-2 cells treated with L. acidophilus BCRC14079-fermented mango. As
shown in Figure 3, both L. acidophilus BCRC14079-fermented mango supernatant and
precipitate (250 µg/mL) treatment significantly increased the expression of mucin-13, ZO-1,
and OCC in Caco-2 cells when compared with mango-extract treatment.
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One study has found that C. difficile-derived toxin A causes cell apoptosis and reduc-
tion of mucosal integrity in Caco-2 cells [39]. Janvilisri et al. (2010) have tried to induce
C. difficile infection in Caco-2 cells, and their results showed that the cell viability was
decreased after 60 min infection [40]. We investigated the survival of Caco-2 cells treating
with C. difficile for 30, 60, 90, 120, 150, and 180 min. As shown in Figure 4A, cell viability
decreased after C. difficile treatment for 120 min. In addition, both L. acidophilus BCRC14079-
fermented mango supernatant and precipitate extract treatment markedly alleviated the
cytotoxic effect of C. difficile on Caco-2 cells (Figure 4B). A research study investigates the
transcriptomic variation of Caco-2 cells infected with C. difficile to understand a framework
of host–bacteria interactions. It has been indicated that several biomarkers associated with
the epithelial barrier (tight junction proteins) were suppressed by Rho signaling mediation,
leading to enterocytes disruption [40,41]. In our study, L. acidophilus BCRC14079-fermented
mango has the potential to improve the intestinal barrier and attenuate cell death induced
by C. difficile in Caco-2 cells.
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3.3. Regulation of L. acidophilus BCRC14079-Fermented Mango on the Growth of F. prausnitzii

In this study, we evaluated the effects of L. acidophilus BCRC14079-fermented mango
on the growth of F. prausnitzii (Figure 5). Growth of F. prausnitzii was not promoted
under culture conditions with the whole mango, L. acidophilus BCRC14079-fermented
mango supernatant, or L. acidophilus BCRC14079-fermented mango precipitate extracts. S
supplements of the whole mango, L. acidophilus BCRC14079-fermented mango supernatant,
or L. acidophilus BCRC14079-fermented mango precipitate extracts in YCFA medium (5%)
significantly increased growth of F. prausnitzii (Figure 5) and production of SCFA (butyrate)
(Table 1).

Table 1. The production of short-chain fatty acid production in F. prausnitzii treated with L. acidophilus BCRC14079-
fermented mango.

Short-Chain Fatty Acids
Acetic Acid Propionic Acid Butyric Acid

Concentration (µM)

Control 103.0 ± 13.2 c 9.5 ± 1.5 1477.0 ± 210.6 b

Mango extracts 168.1 ± 18.2 b 11.3 ± 3.1 1892.0 ± 141.7 b

Mango-fermented supernatant extracts 228.3 ± 12.5 a 10.6 ± 2.6 2521.0 ± 115.3 a

Mango-fermented precipitate extracts 241.5 ± 10.6 a 12.8 ± 2.2 2263.0 ± 179.1 a

Data are shown as means ± SD (n = 3). Significant difference was shown by various letters (p < 0.05).
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The population of F. prausnitzii is potentially regulated by diet and host since it is
unable to utilize mucin to be a nutrient, limiting the population within the gut microbiota.
However, F. parausnitzii would use mucin metabolites after its degradation; hence, mucin
may induce the growth of F. prausnitzii while this species is under adequate nutritional
condition [42]. Several studies have found that the number of F. parausnitzii is increased
after prebiotics intervention (e.g., fructooligosaccharides, inulin-type fructans, and raf-
finose). Evidence suggests that some dietary factors may influence the abundance of F.
prausnitzii [43]. Several factors including fibers, vitamins, and cofactors (biotin, folate,
niacin, and thiamine) are essential nutrients to support the growth of F. prausnitzii [44].
Mango is a fiber- and vitamins-riched fruit, it may be a good raw material to elevate the
growth of F. prausnitzii.

F. prausnitzii produces short-chain fatty acid butyrate in the colon, which inhibits the
growth of C. difficile. Moreover, some anti-inflammatory bacteria such as F. prausnitzii and
lactic acid bacteria support the innate immune response and minimize bacterial burden and
negative effects during antibiotic and C. difficile exposure [45]. Antioxidants-riched lactic
acid bacteria (L. rhamnosus R0011) supplements have shown intestinal protection against
CDI [46]. Moreover, F. prausnitzii-cultured supernatant showed the ability for inhibiting
inflammatory cytokines production in Caco-2 cells [47]. SCFAs promote the expression of
tight junction proteins in intestinal cells, including occludin and claudin-5, hence reducing
the permeability of the blood–brain barrier (BBB) to avoid the entry of pathogenic bacteria
or microbial metabolites into blood [48]. For example, when the concentration of propionate
is at least 1 µM, the permeability of BBB can be protected [49]. Taken together, we consider
that L. acidophilus BCRC14079-fermented mango can suppress the growth of C. difficile,
increase the expression of tight junction proteins, and inhibit C. difficile by promoting the
growth of F. prausnitzii and increasing the level of butyrate. These results show that L.
acidophilus BCRC14079-fermented mango can be developed as a health product to improve
the intestinal microenvironment and gut microbiota, and has the potential to be used in the
adjuvant treatment of CDI.

3.4. Development of Innovative Probiotics-Fermented Mango Jam

Jam, a kind of medium-moisture food product, is prepared by boiling fruit pulp with
sugar, acid, pectin, and/or other substances to achieve a suitable and strong consistency
to maintain the texture of the fruit. Jam is usually made by mixing fruit and sugar in
a ratio of 45%:55% by weight. Typically, jams are widely consumed for breakfast and
incorporated into bakery products and confectionery. With the increasing attention to
health and wellness, and the increasing incidence of obesity, metabolic syndrome, and
diabetes, the interest in low-calorie foods has also increased [50]. For example, one study
produces fiber-fortified fruit jams to enhance the nutrition and texture of jam [51].
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HPP, also called high hydrostatic pressure processing, is one kind of cold pasteuriza-
tion technique by which products with the final package are introduced into a vessel and
subjected to 100–700 MPa of isostatic pressure that is transmitted by water. L. acidophilus
BCRC14079-fermented mango was investigated in this study for developing the fermented
jam that contained probiotics. Browning and color loss were found to be higher in the heat-
treatment group than the HPP-treatment group under all conditions (Table 2). Hardness is
defined as the force required to achieve a certain amount of deformation and is a regular
parameter to determine the texture of the jam [52]. In sensory analysis, hardness refers to
the force required to press food between the teeth during the first bite [53]. Adhesiveness
represents the work required to extract the pressure probe from the sample. In sensory
analysis, adhesiveness (viscosity) is the work required to overcome the gravity between
the food surface and the food contact surface including teeth, tongue, and palate) [52].
Cohesiveness represents the internal resistance of the food structure, which means the
ability to combine product ingredients [54].

Table 2. The parameters of L. acidophilus BCRC14079-fermented mango jam by HPP treatment. L*: lightness component
(range, 0–100); a*: chromatic component (redness/greenness [+/−]); b*: chromatic component (yellowness/blueness [+/−]).

Groups
HPP Treatment (MPa)

Heat Treatment
150 300 500

L. acidophilus BCRC14079-fermented mango solution (%) 53.5 53.5 53.5 53.5
pH 3.05 3.05 3.05 3.05

Total sugars (%) 45 45 45 45
Pectin (%) 1.5 1.5 1.5 1.5

L* 30.76 30.53 31.81 35.49
a* −3.16 −3.16 −3.14 −2.66
b* 8.14 8.53 8.37 11.24

We assessed textural characteristics, including hardness, adhesiveness, and cohesive-
ness (Figure 6). We found that L. acidophilus BCRC14079-fermented mango jam had better
hardness, adhesiveness, and cohesiveness than that prepared using mango pulp treated
with HPP or heat. Moreover, L. acidophilus BCRC14079-fermented mango jam with HPP
treatment at 500 MPa had the highest sensory quality (aroma, taste, color, and overall
acceptance) among all groups (Figure 7). Many foods containing lactic acid bacteria can
improve human health and inhibit the growth of pathogens; these probiotics are used to
develop innovative foods [55,56]. A novel type of mango jam was produced in this study,
which can enhance the population of next-generation probiotics and inhibit the growth of
C. difficile. This jam was fermented using lactic acid bacteria L. acidophilus BCRC14079 and
treated with HPP to retain its physicochemical, textural, and rheological properties.
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4. Conclusions

In this study, L. acidophilus BCRC14079-fermented mango products exhibited beneficial
effects by promoting the growth of F. prausnitzii and protected intestinal cells against C.
difficile infection via preventing the cell death of Caco-2 cells. This enteroprotective role of
L. acidophilus BCRC14079-fermented mango products is related to improve the gut barrier
function through upregulating tight junction proteins expression and mucin secretion. A
novel type of mango jam that was fermented by L. acidophilus BCRC14079 and treated
with high hydrostatic pressure processing was produced, which had favorable textural
characteristics and sensory quality, and had the potential to be developed as an innovative
food product for inhibiting the growth of pathogens and improving the human health.
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