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Background:Modern lifestyles mean that people are more likely to suffer from some form
of cancer. As anticancer peptides can effectively kill cancer cells and play an important role
in fighting cancer, they have been a subject of increasing research interest.

Methods: This study presents a useful tool to identify the anticancer peptides based on a
multi-kernel CNN and attention model, called ACP-MCAM. This model can automatically
learn adaptive embedding and the context sequence features of ACP. In addition, to obtain
better interpretability and integrity, we visualized the model.

Results: Benchmarking comparison shows that ACP-MCAM significantly outperforms
several state-of-the-art models. Different encoding schemes have different impacts on the
performance of the model. We also studied tmethod parameter optimization.

Conclusion: The ACP-MCAM can integrate multi-kernel CNN and self-attention
mechanism, which outperforms the previous model in identifying anticancer peptides.
It is expected that the work will provide new research ideas for anticancer peptide
prediction in the future. In addition, this work will promote the development of the
interdisciplinary field of artificial intelligence and biomedicine.
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INTRODUCTION

Anticancer peptide (Plumb et al., 2019) (ACP) is a polypeptide sequence with anticancer activity. It is
composed of 10–50 amino acid amino acids (Barras and Widmann, 2011). Its molecular structure is
complex. It is a molecular polymer between amino acids and proteins (Li et al., 2006), which is
composed of several or dozen amino acids connected by peptide bonds (Gaspar et al., 2013). It can
destroy the structure of the tumor cell membrane and inhibit the proliferation and migration of
cancer cells (Song et al., 2020). It can induce the apoptosis of cancer cells without damage to normal
human cells (Qiao et al., 2019; Ryu et al., 2021). At present, most anti-cancer drugs have side effects
on the kidney (Kamisli et al., 2015; Van Acker et al., 2016), nerve and heart (Plumb et al., 2019), and
gonads (Novin and Sciences, 2014; Gutierrez et al., 2016). Compared with conventional
chemotherapy, anticancer peptides have the advantages of high specificity, low production cost,
high tumor penetration rate, and easy synthesis and modification (Otvos, 2008). Due to the benefits
of anti-cancer peptides, more and more anti-cancer peptides are used in clinical trials. For example,
three peptides Didemin A, B, and C, which are extracted from sea squirt, have obvious inhibitory
effects on breast cancer, ovarian cancer, and uterine cancer, and have entered phase II clinical trials
(Clamp and Jayson, 2002). The synthetic peptide Elisidepsin (PM02734) has also entered phase II
clinical trials (Ratain et al., 2015). Identifying anti-cancer peptides is of great significance for
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discovering new and efficient treatments for diseases. Traditional
anti-cancer peptide prediction relies on biological experiments,
and the prediction is accurate, but it is inefficient, time-
consuming, and costly. With the development of Qualcomm
sequencing technology, protein sequence data is increasing
exponentially every year, and massive sequence data presents
severe challenges to biological experiment technology (Ratain
et al., 2015).

Some research methods have used machine learning and deep
learning methods to build anticancer peptide prediction models
(Su et al., 2019; Su et al., 2020; Wei et al., 2020). Tyagi et al.
proposed an anti-cancer peptide prediction method called
AntiCP (Tyagi et al., 2013), which uses amino acid
composition, dipeptide composition, and composition
differences between amino acid N-terminus and C-terminus,
combined with a support vector machine (SVM) model for
prediction. Chen et al. (Chen et al., 2016) used the features of
amino acid dipeptide composition and pseudo-amino acid
composition, combined with a support vector machine to
construct an anti-cancer peptide prediction algorithm called
iACP (Chen et al., 2016). Wei et al. have proposed the
ACPred-FL (Leyi et al., 2018) model and the PEPred-Suite
model (Leyi et al., 2019). The ACPred-FL (Leyi et al., 2018)
model used four sequence feature representation samples: binary
profile features (BPF), G-gap dipeptide composition (GDC),
overlapping property (OPF), and composition transition
distribution (CTD), and the frequency of each amino acid in
the sequence, combined with the SVM model to build 40 sub-
models, and then the output of the 40 sub-models are used as the
input feature to build the model for anti-cancer peptide
prediction. AntiCP 2.0 (Agrawal et al., 2020) uses SVM,
ETree, random forest, ridge algorithm, artificial neural
network (ANN), and the K nearest neighbor (KNN) method
to construct the prediction model of anticancer peptides. There
have also been integrated anti-cancer peptide prediction
methods, which integrate multiple or multiple machine
learning methods to predict various peptide sequences (Li
et al., 2017; Wei et al., 2017; Leyi et al., 2018).

Existing models have some problems, such as low recognition
accuracy, insufficient generalization ability, and there is a lack of
large-scale evaluation of features and prediction models. Almost
all the existing anticancer peptide prediction studies use sequence
features to construct anticancer peptide prediction models, which
show that the anticancer peptide prediction methods based on
sequence information are effective. But most research to date has
not considered the combination of protein structure and
sequence data characteristics or the feature space used was not
comprehensive enough. Most of them use single machine
learning methods, such as support vector machines, and
seldom use the attention mechanism (Vaswani et al., 2017).
To solve the above problems, this article takes the anti-cancer
peptide sequence data as the research object, exploring the anti-
cancer peptide prediction method based on the attention
mechanism (Vaswani et al., 2017) and deep learning models,
establishing a relatively advanced and effective anti-cancer
peptide prediction model. The main research contents are
summarized as follows:

1) The paper proposes a model with strong anti-cancer peptide
recognition ability based on learnable adaptive embedding
and amino acid structure features. It is a self-attention
mechanism that can automatically learn the context
sequence features of ACP, learns the contribution of each
amino acid node in the entire anti-cancer peptide sequence,
automatically captures the global information in the ACP
sequence, and can capture the contributions of protein cluster
formed by 3–5 amino acid nodes in the anti-cancer peptide
sequence to improve the ability to identify the anti-cancer
peptide model.

2) This article comprehensively evaluates the different feature
projects of anti-cancer peptides, constructs a deep learning
model with strong performance, and integrates the advantages
of multiple deep learning models to improve predictive
performance. To improve the interpretability of the model
prediction results, this article visualizes model prediction
characteristics to improve the interpretability of the model
prediction results.

3) The methods for identifying various functional peptides of the
same type from the same functional peptides are relatively
similar. It is difficult to identify anti-cancer peptides from
multiple peptide sequences. Most of the existing methods
recognize anti-cancer peptides from a single type of peptide
sequence, so research on new deep learning models is needed.
The new deep learning model studies the impact of different
coding schemes on the performance of the model, examining
the method of parameter optimization to build a better deep
learning model and obtain the best model for identifying
anticancer peptides from different functional peptides.

This article first examines the peptide datasets used, which are
introduced in Datasets Section. Second, the anticancer peptide
predicting model of multi-kernel CNN and the attention
mechanism is explained in detail in Model Overview Section.
Third, the performance evaluation index, loss function,
experimental process, and results of the model are presented
in Experiments and Results Section. Finally, the results and the
prospects for future work are discussed and summarized in
Conclusion Section.

MATERIALS AND METHODS

This chapter introduces the structural frame of the ACP-MCAM
model and the datasets of anti-cancer peptides in detail.

Datasets
The datasets used in this experiment come from the literature
(Leyi et al., 2018). The samples in this dataset were also collected
from literature (Tyagi et al., 2013; Atul et al., 2015). Among them,
the positive samples are anti-cancer peptides that have been
confirmed by physical experiments, and the negative samples
are selected from anti-microbial peptides that have no anti-cancer
activity. The training dataset ACPs500 consists of 250 anti-cancer
peptides and 250 non-anti-cancer peptides. The test dataset
ACPs164 consists of 82 positive samples and 82 non-
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anticancer peptide samples. All of the samples are filtered by CD-
HIT (Ying et al., 2010) to filter out redundant sequences with a
similarity higher than 90% so that the sequences in the training
dataset and the test dataset are different. Two other data sets,
neuropeptides and antifungal peptides, were also used in this
paper. The details of the dataset are shown in Table 1.

Model Overview
This chapter details the ACP-MCAM model structural frame
used to predict the anticancer peptides.

The architecture of the ACP-MCAM model is shown in
Figure 1. It consists of five modules, 1) an embedding layer,
2) a Multi-kernel CNN layer, 3) the position embedding layer, 4)
the encoder layer, and 5) the task output layer. In module 1), the
embedding layer first processes the input anticancer peptide
sequence and converts each amino acid of the anticancer
peptide sequence into a low dimensional dense vector as the
embedding vector representation of amino acid nodes. No matter
where the amino acid appears in the sequence, the same type of
amino acid uniquely corresponds to the same vector. 2) In the
multi-kernel CNN layer, this paper uses convolution neural

network (CNN) technology to encode the amino acid nodes of
anticancer peptide sequence by using the context information
and different semantic information of specific amino acids in the
anticancer peptide sequence. We perform a two-dimensional
convolution operation with padding on the output of the
embedding layer to ensure that the dimensions of the input
and output are the same. The kernel can take odd numbers
such as 1, 3, and 5, connect them in the last dimension, and then
do a linear transformation. 3) The position embedding layer
encodes the position information of the amino acids in the anti-
cancer peptide sequence. It is a vector containing the position
embedding information of the amino acid sequence. 4) The
encoding layer is the core of the model, and the input feature
matrix is the output of the position embedding layer and the
multi-kernel CNN layer. The encoder layer includes multiple
encoder blocks. Each encoder block is based on a multi-head
attention mechanism and a fully connected neural network. The
feed forward part of each encoder block ensures that the input
and output sizes of each encoder block are consistent. The
sequential stacking of multiple coding layers makes the
representation of anticancer peptide sequences more effective.

TABLE 1 | Summary of datasets.

Datasets Dataset Type Total Number Number
of Positive Samples

Number
of Negative Samples

ACPs500 Training set 500 250 250
ACPs164 Test set 164 82 82
NPs1400 Training set 1400 700 700
NPs350 Test set 350 175 175
AFPs2336 Training set 2336 1168 1168
AFPs582 Test set 582 291 291

FIGURE 1 | The framework of the proposed ACP-MCAM. (A) Embedding layer. (B)Multi-kernel CNN layer. (C) Position embedding layer. (D) Encoding layer. (E)
Task-output layer.
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In module 4), the encoder layer is used to capture the context of
each remaining embedding vector at different positions, so that
the remaining embedding has different feature vectors according
to the context, and learning the discriminative features of ACP.
Finally, module 5) is the last part of the model, called the task
output layer, which is composed of a fully connected neural
network and a nonlinear activation function. It converts the
representation of ACPs into the probability distribution of the
classes for prediction. Please note that the penultimate neural
network in the task output layer is specifically designed for feature
visualization. These five modules are described in detail below.

Embedding Layer
The core idea of embedding is to map all of the amino acids in the
anticancer peptide sequence into a dense vector in a low-
dimensional space (mostly K = 50–300 dimensions). Since the
embedding layer maps each amino acid into a K-dimensional
vector. If there are n amino acids in all of the anti-cancer peptide
sequences. All of the peptide sequences can be represented by an
N × K dimensional matrix. In this article, the anticancer peptide
sequences are consist of 20 different amino acids
(’A’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’K’,’L’,’M’,’N’,’P’,’Q’,’R’,’S’,’T’,’V’,
’W’,’Y’). It is not enough to use the underlying embedding
feature as the representative feature of the original peptide
sequence, a higher level feature needs to be processed on
this basis.

Single CNN
Modern convolutional neural networks were proposed by LeCun
(Lecun et al., 1998). They show excellent performance in solving
computer vision problems such as image classification,
recognition, and understanding (Farabet et al., 2013; Wang
et al., 2017; Yu et al., 2017). The chief conception of the
convolutional neural network (CNN) is to capture the local
features of the object. At first, it achieved great success in the
image field, and later it has also been widely used in the text field.
For the anti-cancer peptide data, the local feature is the sliding
window composed of several amino acids which is similar to
N-gram. The advantage of the convolutional neural network is
that it can automatically combine and filter features to obtain
semantic information at a different level. For an anticancer
peptide sequence “GATCDCPLR”, if kernel = n, the features
of n consecutive amino acids on the anticancer peptide sequence
can be extracted by convoluting the amino acid of the anticancer
peptide sequence. Different kernels can gain different
combinations of semantic information of the amino acid in
the anticancer peptide sequences. Since each step of the
convolution uses the weight sharing mechanism, the training
speed is relatively fast. In this article, we use the weight sharing
mechanism of CNN to extract the feature of anticancer peptides
which have achieved good effects.

Multi-Kernel CNN Layer
The Multi-kernel CNN layer mainly connects multiple
convolution kernels of different lengths and combines different
anticancer peptide amino acids to obtain different semantic
information. For example, for an anti-cancer peptide sequence

“GATCDCPLR”, if kernel = 3, the amino acid letter “C” on the
anti-cancer peptide sequence is convoluted, and the result of
convolution features with sky blue color can be obtained, which is
shown in Figure 2. If kernel = 5, the amino acid letter “C” on the
anti-cancer peptide sequence is convoluted, and the result of
convolution features with yellow color can be obtained, as shown
in Figure 2. We concatenate these two convolution results to
obtain the convolution features in the first dimension.
Convolution kernels of different lengths act on the output
matrix of the anti-cancer peptide sequence embedding layer,
which can capture different semantic length information and
combine them as the input of the deep network.

Position Embedding Layer
The original input of the model is an embedding vector without
the position information of the amino acid, and the position
encoding layer combines the position information with the amino
acid embedding vector to form new features and then input into
the model. If an anti-cancer peptide sequence of length n is input,
the encoding mode of formula (1) (2) can output a unique
position code for each time step. Moreover, the distance
between any two time steps between anticancer peptide
sequences with different lengths is the same.

PE(p,2i) � sin(p/100002i/dmodel) (1)
PE(p,2i+1) � cos(p/100002i/dmodel) (2)

Among them, position embedding (PE) indicates the code
containing the specific position information of the anticancer
peptide after being coded. P represents the position of the amino
acid in the sequence, dmodel represents the dimension of the
position vector, and i ∈ [0, dmodel] represents the ith dimension
of the position dmodel dimensional position vector. So according
to the above formula, we can get the position embedding vector of
the pth amino acid.

Encoding Layer
The basic module of the encoder layer is the encoder model of the
transformer (Vaswani et al., 2017). Each encode block includes a
multi-head attention mechanism, a feed forward network, and two
residual connections. Multi-head attention consists of several self-
attention mechanisms, which are used to learn the contextual
representation of the sequence. If there are 3 heads, thenwe linearly
transform the features of the anticancer peptide sequence to get the
query vector (q1, q2, q3), key vector (k1, k2, k3), and value vector
(v1, v2, v3). The query and key calculate the correlation score,
named attention score, and then the value is weighted and summed
according to the attention score as shown in formula (3) (4).

⎧⎪⎨⎪⎩
Q � XWQ

K � XWK

V � XWV
(3)

Attention(Q,K, V) � softmax(QKT


dk

√ )V (4)

Suppose we now want to know the attention score of the first
amino acid node “G" in the anticancer peptide sequence. We
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calculate the respective attention score by the embedding vector
of the amino acid node “G" and the embedding vectors of all of
the other amino acid nodes in the anticancer peptide sequence.
These scores determine the attention weight of the amino acid
“G" node embedding vector when we encode the node “G".

In the first step, the query, key, and value vectors are obtained
by multiplying the anticancer peptide embedding vector with
three parameter matrices. These three parameter matrices are the
parameters that the model needs to learn. The second step is to
multiply Q by the transpose of K to obtain an initial attention
score. Then divide each score by




dk

√
, dk is the dimension of the

key vector which is used to make the model more stable when
calculating the gradient when backpropagating. The third step is
to pass these scores through a softmax function. The softmax
function can normalize the scores into probability representation.

Task-Output Layer
The output vector of the encoder layer is the feature of anticancer
peptides. The main job of the task-output layer is to convert the
output vector to binary classification. The task-output layer
mainly contains several important modules: linear connection
layer, residual network layer, normalization layer, and activation
function.

The linear connection layer is a fully connected neural
network. It obtains the output of the specified dimension
through the linear change of the previous step and plays the
role of transforming the dimension. The final dimension
corresponds to the number of output categories.

The residual network layer is implemented in the form of skip
layer connections, and the input unit is directly added to the
output unit. The residual network can solve the degradation
problem of the deep neural network well. The residual
network converges faster than the same number of layers.

The normalization layer is a standard network layer required
by the deep network model. As the number of network layers
increases, the output value will become too large or too small. It
may cause abnormal and the model may converge very slowly.
The normalization layer is used to normalize the output value.
Then the output value can be in a reasonable range.

The main role of the activation function is to provide the
nonlinear modeling capability of the network. To avoid the pure
linear combination, we add an activation function (tanh, ReLU,
Softmax, etc.) after the output of each layer. ReLU can keep the
gradient undecayed when x > 0, thereby alleviating the problem
of gradient disappearance. The output mean of tanh is 0, and its
convergence speed is fast, which can reduce the number of
iterations. Using different combinations of activation functions
can make the network achieve better results.

Focal Loss Function
Focal loss (FL) is mainly a strategy proposed by Kaiming to solve
the classification problem of indistinguishable samples, that is, to
set weights according to the contribution of difficult and easy
samples to the loss. The formula is as follows:

FL(pt) � −αt(1 − pt)γ log(pt) (5)

where, αt and γ are parameters that are used to coordinate control
samples that are difficult to distinguish, and pt represents the
probability of ground-truth class. The easier the sample is to
distinguish, the larger pt is, and the smaller contribution to the
loss. Conversely, the greater the loss of the hard-to-separate
sample. This article uses the parameter αt � 0.3 and γ � 2
setting to achieve the best results.

EXPERIMENTS AND RESULTS

In this section, the performance of the ACP-MCAM model is
evaluated in several evaluation metrics. We compare it with other
models and discuss the results. The experimental parameters are
then discussed to verify the effectiveness of the model.

Evaluating Metrics
The following evaluation indicators were used to evaluate our
model. Including recall, precision, accuracy (ACC), Matthew
correlation coefficient (MCC), and the area under the ROC
curve (AUC) (Balachandran et al., 2018; Leyi et al., 2020;
Mehedi et al., 2020). The specific formula is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sensitive � Recall � TP
TP + FN

� TP
P

× 100%

Specif icity � TN
TN + FP

� TN
N

× 100%

Precision � TP
TP + FP

× 100%

Accuracy � TP + TN
TP + TN + FP + FN

� TP + TN
P + N

× 100%

MCC � TP × TN − FP × FN


































(TP + FN)(TP + FP)(TN + FN)(TN + FP)√ × 100%

F1 � 2 ×
precision × recall

precision + recall

TPR � TP
TP + FN

× 100%

FPR � FP
FP + FP

× 100%

Correct index � (TPR + 1 − FPR)/2
(6)

Among them, true positive (TP) and false negative (FN)
represent the number of true anticancer peptides that are
predicted correctly and incorrectly. True negative (TN) and
false positive (FP) represent the number of non-anticancer
peptides that are predicted correctly and incorrectly. Accuracy
is the percentage of correctly classified samples in all samples. The
sensitivity (SE) and specificity (SP) index measure the predictive
ability of predictors for positive and negative samples,
respectively. Precision represents the prediction success rate of
positive samples. The recall represents the proportion of
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predicting positive samples in all true positive samples. The F1
score is the coordinated average value of accuracy and recall. The
higher the selected value, the better the performance of the model.
The other two indicators, AUC and MCC measure the overall
performance of the predictor. AUC sorts all samples obtained
from model evaluation by score. By calculating the area enclosed
by the ROC curve, the AUC value can be obtained.

Comparison Between ACP-MCAM and
ExistingModels in Ten-fold Cross Validation
To verify the predictive performance of anticancer peptide ACP-
MCAM, we compared it with several existing models, including
iACP(Chen et al., 2016), ACPred-FL (Leyi et al., 2018), PEPred-
Suite (Leyi et al., 2019), ACPred-Fuse (Rao et al., 2020),
AntiCP_ACC (Vijayakumar and Ptv, 2015),
AntiCP_DC(Vijayakumar and Ptv, 2015) and
Hajisharifi’s(Hajisharifi et al., 2014). The cross validation
results are shown in Table 2.

As shown in Table 2, we can see that the performance of our
proposed method ACP-MCAM on all indicators (SE, SP,
Accuracy, MCC, and AUC) is significantly better than other
predictors, reaching 85.6, 95.2, 90.4, 81.3, and 91.9%, respectively.
SE, SP, Accuracy, and MCC are 8.4, 7.8, 8, and 16.1%, which is
higher than other predictors.

Comparison Between ACP-MCAM and
Existing Models in Independent Test
In order to verify the superiority of the proposed ACP-MCAM
model, we used an independent test dataset to compare its
performance with several existing predictions. As shown in
Table 3, we can see that the performance of our proposed
method ACP-MCAM on all indicators is significantly better
than other predictors. SE、SP、ACC、MCC和AUC have
reached 85.4, 96.3, 90.9, 82.2 and 94.8%, respectively.
Especially SE, MCC, and AUC are 13.4, 50.2, and 8% higher
than other predictors. In general, independent test results confirm
that our prediction method performs better than other prediction
methods, and can better distinguish true anti-cancer peptides
from non-anti-cancer peptides.

Parameter Analysis
Several important parameters may affect the performance of our
models, such as the learning rate and the kernel of multi-kernel
CNN. Learning rate is an important parameter of deep learning.
Through the adjustment of learning rate, we can see whether the
objective function can quickly converge to the minimum value
and fall into the local optimal value. An appropriate learning rate
can make the objective function converge to the optimal value
quickly.

FIGURE 2 | Multi-kernel CNN to extract anticancer peptide sequence features.

TABLE 2 | Cross validation results of ACP-MCAM and existing models.

Methods SE (%) SP (%) Accuracy (%) MCC (%) AUC (%)

iACP 57.2 84.0 70.6 42.8 80.9
ACPred-FL 71.6 84.4 78.0 56.5 84.6
PEPred-Suite 72.8 88.0 80.4 61.5 86.0
ACPred-Fuse 77.2 87.6 82.4 65.2 88.2
AntiCP_ACC 66.8 78.4 72.6 45.5 82.4
AntiCP_DC 71.6 77.6 74.6 49.3 82.5
Hajisharifi’s 67.2 83.6 75.4 51.5 83.1
ACP-MCAM 85.6 95.2 90.4 81.3 91.9

Note: The best results are marked in bold and the second best results are underlined.
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In this section, we will perform a sensitivity analysis on these
parameters. In our model, the number of training epochs is set to
50. The output dimension is 64.We train our model by modifying
the learning rate. Table 4 shows that as the learning rate changes,
the performance first gradually increases and then decreases. If
the learning rate is equal to 2e-4, three of the five main evaluation
indexes are the best. Accuracy, AUC, and F1-score are the
highest. The model has achieved the best performance.

Since the CNN kernel represents several amino acids on an
anti-cancer peptide sequence sharing the same parameters during
the process of convolution. Therefore, the different combination
of kernels means that the sequence of the anticancer peptide is
affected by different combinations of several amino acids.
Modifying the combination of the kernels may improve the
effect of the model. Therefore, the combination of the kernel
is also a very important parameter. As shown in Table 5, when
the combination of kernels = (Li et al., 2006; Plumb et al., 2019;
Song et al., 2020), the model achieved the best effect. Four of the
five main evaluation indexes are the best. Accuracy, precision,
AUC, and F1-score are the highest. This means that when using
multi-kernel CNN to extract features from the model, selecting 1,
3, and 5 amino acid combinations for convolution calculation,
and then combining these three features to obtain the best model
effect. Our model adopts the combination of one, three, and five
amino acids, which is better than considering all the amino acid
sequences or just considering the properties of a single amino
acid. This is the excellence of the CNN model.

Ablation Experiments
We compared our model to the ACP164 data set for ablation
experiments. It can be seen that the experiment is mainly to
compare three models: the embedding attention model, CNN
attention model, and Multi-kernel CNN attention model. From
Table 6 and Figure 3, we can observe the performance
comparison of three different embedding methods. In general,
the performance of multi-kernel CNN is better than that of all
existing methods on the ACP dataset, indicating that Multi-
kernel CNN’s embedding method is more powerful than
models based on other embedding features.

Figure 3 is a more intuitive comparison between the several
embedding methods of our model, including the ROC curve and
precision-recall (PR) curve. From Figure 3, we can see that in
both the ROC curve and PR curve, the embedding method of the
embedding_multi_cnn can achieve the best effect of the model.

Note that the experimental results in this section only reflect the
performance of the model on the ACP data set, and it is difficult
to avoid certain deviations. Therefore, we evaluate the
performance of this model through experiments on other
peptide datasets (NPs and AFP). The dataset is shown in
Table 1. NPs1400 was used as the training set, NPs350 was
used as the test set; AFPs2336 was used as the training set, and
AFPs582 was used as the test set to verify the model.

The results in Table 6 show that Multi-kernel CNN performs
best on the ACP dataset and AFPs dataset, especially in ACC and
AUC. On the NPs data set, CNN has the best feature extraction
effect. Therefore, it can be inferred that on the NPs data set, every
three consecutive amino acids were regarded as an amino acid
group for classification prediction to achieve the best effect.

Feature Representations and Visualization
Principal Component Analysis (PCA) (Smith, 2002) is a common
linear dimensionality reduction method, while t-distributed
Stochastic Neighbor Embedding (TSNE) (Laurens and Hinton,
2008) is a non-linear dimensionality reduction method. Due to
different principles and mechanisms, TSNE runs slower, while

TABLE 3 | Independent test results of ACP-MCAM and existing models.

Methods SE (%) SP (%) Accuracy (%) MCC (%) AUC (%)

iACP 54.9 88.8 87.7 22.6 76.1
ACPred-FL 69.5 85.8 85.3 25.9 85.1
PEPred-Suite 68.3 90.6 89.9 32.0 86.1
ACPred-Fuse 72 89.5 89 32.0 86.8
AntiCP_ACC 68.3 88.5 87.9 28.8 85.3
AntiCP_DC 68.3 82.6 82.2 22.3 83.0
Hajisharifi’s 69.5 88.4 87.9 29.2 85.5
ACP-MCAM 85.4 96.3 90.9 82.2 94.8

Note: The best results are marked in bold and the second best results are underlined.

TABLE 4 | The performance of the ACP-MCAM model affected by the
learning rate.

Learning Rate Accuracy Precision Recall F1-Score AUC

1e-4 0.8292 0.8 0.878 0.8372 0.9225
2e-4 0.9085 0.9589 0.8536 0.9032 0.9479
3e-4 0.8841 0.8888 0.878 0.8834 0.9341
4e-4 0.8902 0.9 0.878 0.8888 0.9388
5e-4 0.8841 0.8705 0.9024 0.8862 0.9375
6e-4 0.8902 0.8902 0.8902 0.8902 0.9298
7e-4 0.9085 0.9135 0.9024 0.9079 0.9301
8e-4 0.8902 0.9102 0.8658 0.8875 0.9144
9e-4 0.8841 0.8987 0.8658 0.8819 0.9207
1e-3 0.8658 0.8571 0.878 0.8674 0.9162

Note: The best results are highlighted in bold.

TABLE 5 | The performance of the ACP-MCAM model affected by kernel
combination.

Kernel Accuracy Precision Recall F1-Score AUC

1 0.8536 0.8372 0.878 0.8571 0.9177
3 0.8475 0.8275 0.878 0.852 0.932
5 0.8353 0.8021 0.8902 0.8439 0.9143
7 0.8475 0.8131 0.9024 0.8554 0.9158
1 + 3 0.8658 0.8488 0.8902 0.869 0.9439
1 + 5 0.8597 0.8831 0.8292 0.8553 0.9244
1 + 7 0.8109 0.8591 0.7439 0.7973 0.8856
3 + 5 0.8536 0.8536 0.8536 0.8536 0.9118
3 + 7 0.7987 0.7752 0.8414 0.807 0.9015
5 + 7 0.817 0.8095 0.8292 0.8192 0.9028
1 + 3+5 0.9085 0.9589 0.8536 0.9032 0.9479
1 + 3+7 0.8597 0.8831 0.8292 0.8553 0.9074
1 + 5+7 0.8353 0.8666 0.7926 0.828 0.9131
3 + 5+7 0.8719 0.8765 0.8658 0.8711 0.9434
1 + 3+5 + 7 0.8719 0.8961 0.8414 0.8679 0.9158

Note: The best results are highlighted in bold.
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TABLE 6 | The performance of three different models on three different peptide datasets.

Model Accuracy Precision Recall F1 AUC

Embedding + ACP 0.8719 0.9178 0.817 0.8645 0.8719
Embedding_cnn + ACP 0.8658 0.8947 0.8292 0.8607 0.9321
Embedding_multicnn + ACP 0.9085 0.9589 0.8536 0.9032 0.9479
Embedding + NPs 0.8343 0.8197 0.8571 0.8380 0.8840
Embedding_cnn + NPs 0.8229 0.8192 0.8286 0.8239 0.8894
Embedding_multicnn + NPs 0.8400 0.8479 0.8285 0.8381 0.9063
Embedding + AFPs 0.8625 0.8371 0.9003 0.8675 0.9161
Embedding_cnn + AFPs 0.9038 0.8803 0.9347 0.9067 0.9580
Embedding_multicnn + AFPs 0.8762 0.8119 0.9793 0.8878 0.9677

Note: The best results of different dataset are highlighted in bold.

FIGURE 3 | Performance comparison of ACP-MCAM and existing methods. The left figure is the ROC curves of different models on the ACP dataset. The right
figure is the PR curve of different models on the ACP dataset.

FIGURE 4 | Dimension reduction of each samples on ACP500 and ACP164 dataset by TSNE and PCA.
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PCA is relatively fast. PCA transforms a set of potentially
correlated variables into a set of linearly uncorrelated
variables through orthogonal transformation, and the
transformed set of variables is called principal components.
The idea of PCA is to map n-dimensional features to
k-dimensions (k < n), which are brand new orthogonal
features. In this paper, k is equal to 2. The basic idea of
TSNE is that similar data points in high-dimensional space
map to similar distances in low-dimensional space. The
attribute information retained by TSNE is more
representative and can relatively reflect the differences
between samples. To visually verify the effectiveness of the
ACP-MCAM model and improve the interpretability of the
model, this paper uses principal component analysis (PCA) and
t-distributed stochastic neighborhood embedding (TSNE) to
learn the high-dimensionality of ACP sequences at different
stages. The high-dimensional feature representation vectors of
anticancer peptide sequences at different stages are reduced to a
two-dimensional plane for easy visualization, and the results are
shown in Figure 4.

The figure shows that in the ACP dataset, the positive
examples (represented by train:1 and purple dots) and
negative examples (represented by train:0 and blue dots) in
the training dataset are mixed in the initial stage because they
are initialized randomly. The same is in the test dataset (positive
examples are represented by test:0 and red dots, and negative
examples are represented by test:1 and blue dots), which indicates
that the model has no distinguishing ability before training. As
the training epoch number increases, positive and negative
samples are gradually separated from the sample points. We
can observe that in the training dataset and the test dataset, the
embedding vectors of the ACP samples almost belong to the same
cluster, and after training, the positive and negative examples
have similar distributions, which indicates that the model has
indeed learned feature of the positive and negative samples. This
shows that the model in this paper can learn the common features
and distinguishing features of positive and negative cases.

In addition, there are many ACPs in the negative cluster, but
few non-ACPs in the positive cluster, which explains the reason
why the performance of SP is better than SE to some extent. We
speculate that those ACPs predicted to be negative samples have
characteristics that our method cannot capture. Therefore, the
unique physical and chemical properties of these
indistinguishable samples should be further studied in the future.

CONCLUSION

A very important point in deep learning is how to extract features
from data. The quality of the extracted features will largely affect
the effectiveness of the model. The advantage of natural language
processing (NLP) is that it can effectively extract word embedding
and sequence information from sequence data, and use it for
subsequent specific tasks. Our method can automatically learn
useful information from the amino acid sequence data of anti-
cancer peptides and perform feature representation on node
features and sequence features.

In this work, we proposed a new predictive model called ACP-
MCAM. This is a powerful bioinformatics tool. The model can
predict anti-cancer peptides based on a convolutional neural
network and self-attention mechanism network, which can
extract effective amino acid nodes and anti-cancer peptide
sequence information. The advantage of ACP-MCAM is that
it can effectively use the position information and the information
of the amino acid node cluster. The ACP-MCAM model mainly
includes the following modules: embedding layer, multi-kernel
convolutional neural network layer, position coding layer,
attention encoding layer, and task output layer. The
experimental results of 10-fold cross-validation and
independent testing show that this predictor can effectively
distinguish anti-cancer peptides from non-anti-cancer
peptides. Moreover, we used the model to predict
neuropeptides and antifungal peptides and achieved good
prediction results. The excellent predictive ability of this
model will accelerate its application in cancer treatment.

Our model has achieved good prediction performance, but
there are still some shortcomings to be overcome. First of all, the
prediction performance of the model fluctuates greatly, and
different parameters have a greater impact on the prediction
results. The main reason is that 500 pieces of data in the training
set and 164 pieces of data in the test set are too small for deep
learning to train all parameters. This is where we will strive to
improve in the future. In future work, we will expand more
datasets and try more computing techniques, such as pre-training
strategies for automatic feature extraction, to achieve more
accurate and better predictions. Second, in our current case
study, we only made computer model predictions based on
the original database and did not verify it in silicon
experiments. In the future, we will plan to cooperate with
biologists to conduct wet laboratory experiments to verify the
predicted results.
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