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Abstract

Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis,
anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-
auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them
for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in
individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory
brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that
our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(2) groups and detected no
evidence of tinnitus in tinnitus(2) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle
amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded
any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels
had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our
diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-
emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral
assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other
impairments.
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Introduction

Tinnitus is a sound perception that occurs within the ear or

head in the absence of an external source. An estimated 50 million

Americans experience tinnitus, with 16 million seeking medical

intervention [1,2]. Tinnitus sufferers frequently struggle with

difficult sleeping [3–5], irritability [6,7], and cognitive deficits [8–

12], and are at greater risk for depression, anxiety [13–15], and in

some cases suicide [16]. From this, it is evident that the emotional

and cognitive effects of tinnitus have a significant impact on

patients and merit thorough investigation.

In support of the cognitive-emotional impact of tinnitus, a

growing volume of literature shows that related limbic structures,

including the hippocampus and amygdala, may be activated

during tinnitus perception. For example, the hippocampus may be

activated in tinnitus patients as revealed by increased regional

cerebral blood flow [17,18]. Studies in rats have demonstrated that

intense sound exposure previously shown to induce tinnitus alters

responses of hippocampal place cells [19] and impairs hippocam-

pal neurogenesis [20]. The amygdala may also be activated, as

evidenced by elevated regional cerebral blood flow [17] and

increased fos-like immunoreactivity following sound exposure and

salicylate injections, which are known tinnitus-inducers [21–23].

Higher cortisol levels and blunted cortisol response to stress have

also been found in tinnitus patients and are indicative of

hypothalamic pituitary adrenal axis activation, which is mediated

by the amygdala and the hippocampus [24,25].

Despite evidence linking limbic functioning and tinnitus

perception [17,26–28], the relationship between tinnitus, limbic-

associated functioning, and the underlying mechanisms remains

unclear. For example, tinnitus patients performed worse than

control subjects on verbal fluency and reading span tests,

indicating deficits in working memory [12]. Other memory

assessments however, including tests of serial and spatial recall

and five-choice serial reaction time with a dual task for memory,

have found no significant difference between tinnitus subjects and

controls [10,29]. Additionally, not all individuals with tinnitus

have anxiety [30]. In animal studies, rats that developed tinnitus

following acoustic trauma showed no impairment in spatial

learning and memory [31] and no significant increase in anxiety

level [32], though they did show compromised impulse control

and social interaction [32,33]. Tinnitus, therefore, has a complex

relationship with cognitive-behavioral functioning in both humans

and animals.
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Amidst the conflicting data, the presence of confounds is a

major complicating factor in the relationship between tinnitus,

cognition, and anxiety. One potential confound can arise when

tinnitus is induced by noise exposure, which is one of the most

prominent causes of tinnitus and can itself induce anxiety when

presented on a regular basis [34,35]. Hearing loss also frequently

accompanies tinnitus, and while some evidence suggests that

tinnitus perception is more anxiogenic than hearing loss, hearing

loss may provoke anxiety in some individuals [36,37]. Hyperacusis

reportedly co-occurs in between 40 to 80% of tinnitus patients

[38–40] and results in patients suffering distress from common

sounds, and in some cases, social withdrawal [41]. In addition,

tinnitus sufferers frequently struggle with comorbid depression and

anxiety [42–47]. This obfuscates the relationship between tinnitus

and limbic-associated functioning since depression and anxiety not

only affect emotional processing and alter neural activity in limbic

structures [48–51], but can also hinder cognitive functioning,

including memory [52,53].

To help address the clinical challenges posed by tinnitus, animal

models of noise-induced tinnitus have been utilized [54–67], and

some studies have begun examining its cognitive and emotional

correlates [31–33,68]. A critical task in this area, however, is

diagnosing tinnitus. Due to the number of different tinnitus animal

models, it can be difficult to compare tinnitus correlates across

studies. While gap-detection of the acoustic startle reflex has seen

prominent use over the past several years

[20,58,60,61,63,64,66,67,69–76], it presently lacks standardized

tinnitus diagnosis. Many studies using gap-detection have not

formally divided animals into tinnitus(+) and tinnitus(2) groups

[60,61,63,70,72,73,75,76], which is a critical step since not all

individuals exposed to acoustic trauma develop tinnitus. Addi-

tionally, those that have divided animals based on tinnitus

perception are still lacking a common, statistically-driven method

[20,64,66,67,71]. Increased commonality of tinnitus diagnosis and

a rigorous method to identify noise-exposed tinnitus positive rats is

needed to improve solidarity between various reports and to better

approach clinical challenges, such as the complicated relationship

between noise-induced tinnitus, related audiological impairment,

and cognition and emotion.

In the current study, we conducted experiments using Long-

Evans rats and investigated the effect of intense tone-induced

tinnitus, hearing loss, and hyperacusis-like behavior on spatial

learning and memory, and anxiety. Rats were individually

diagnosed with tinnitus using a gap detection paradigm and tested

for hearing loss, detection and responsivity using auditory

brainstem responses (ABRs) and prepulse inhibition (PPI). Rats

were then tested for spatial learning and memory with the Morris

water maze (MWM) and for anxiety with the elevated plus maze

(EPM). Our results showed that our tinnitus diagnosis method was

reliable and that the tinnitus(+) group also exhibited hyperacusis-

like behavior, although tinnitus exerted no significant effect on

cognition or anxiety at the group level.

Materials and Methods

Animal Subjects
Twenty-nine male Long-Evans rats (60–70 days-old) were

purchased from Charles River Laboratories. Eighteen rats were

exposed twice to an intense tone and were divided into tinnitus(+)

and tinnitus(2) groups, depending on tinnitus development

following exposure. Four rats exhibited poor acoustic startle reflex

performance and were excluded from the study prior to tone

exposure. A group of seven age-matched and unexposed rats

served as controls. All procedures were approved by the

Institutional Animal Care and Use Committee at Wayne State

University and were in accordance with the regulations of the

Federal Animal Welfare Act.

Gap detection (GAP) and Prepulse Inhibition (PPI) Testing
- Before Tone Exposure

Rats underwent behavioral testing for tinnitus and auditory

detection using GAP and PPI, as previously described [64]. All

behavioral testing was conducted inside a sound-attenuation booth

with acoustic startle reflex hardware and software (Kinder

Scientific, Poway, CA). In the GAP procedure, each rat was

presented with constant, 60 dB SPL background noise consisting

of bandpass signals centered at 6–8, 10–12, 14–16, or 26–28 kHz,

or broadband noise (BBN). A 115 dB SPL, 50 ms noise burst

served as the startle stimulus to induce the acoustic startle reflex.

During the background noise, the rat was either presented with the

startle stimulus alone (startle only condition) or the startle stimulus

preceded by a silent gap embedded within the background noise

(GAP condition). Silent gaps were 40 ms in duration with a lead

interval of 90 ms to the startle stimulus. The startle reflex of rats

was measured in response to 3 conditions: 1) background noise

alone, 2) startle only, and 3) GAP. Four trials of the background

noise alone condition and 8 trials for the startle only and GAP

condition each were administered for every background noise

frequency and BBN.

The PPI procedure was the same as gap-detection except that

no background noise or gaps were used. Rats were either

presented with the startle stimulus alone (startle only condition)

or the startle stimulus preceded by a prepulse (PPI condition).

Prepulses were 40 ms in duration with a lead interval of 90 ms and

were presented at 60 dB SPL. The startle reflex of rats was

measured in response to 2 conditions: 1) startle only, and 2) PPI.

Eight trials for both the startle only and PPI conditions were

administered for each prepulse frequency and BBN prepulses.

Both GAP and PPI were run sequentially with a 2 min

acclimatization period before each test. Two trials of the startle

stimulus without background noise were presented after the

acclimatization period to trigger any initial, exaggerated startle

reflexes, and were not used in analysis. Startle-only and GAP or

PPI conditions were arranged in a pseudorandom sequence to

prevent order effects. The running time for both tests was

approximately 1 hour and 40 min. In order to achieve stable

baseline behavioral data, rats were tested an average of 10 times

over a month period.

Auditory Brainstem Responses (ABRs) - Before Tone
Exposure

Each rat underwent click and tone-burst ABR to assess hearing

thresholds. Anesthesia was induced through inhalation of mixed

air (0.6 L/min) and isoflurane (5%, v/v) and was reduced to

0.4 L/min and 2–3% v/v for maintenance during testing. ABR

responses were elicited by click and tone burst stimuli (10 ms

duration, 0.5 ms rise/fall) delivered from a TDT EC1 model

electrostatic speaker (Tucker Davis Technologies, Alachua, FL)

through a tube inserted into the external auditory canal. Stimuli

were generated by a TDT RX6 multifunction processor,

calibrated with a microphone (Model 4016, ACO Pacific) and

SigCalRPH software, and presented from 80 dB peak equivalent

SPL down to 5 dB in 5 dB decrements.

Evoked potentials were recorded using subdermal platinum-

coated tungsten needle electrodes. The positive recording

electrode was placed at the vertex, while the reference electrode

was placed below the ear pinna ipsilateral to the speaker, and the
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ground electrode was placed below the contralateral ear pinna.

ABR responses were amplified, bandpass-filtered at 300 to

3000 Hz, and notch-filtered at 60 Hz. Responses to click and

tone-burst stimuli were averaged 300 and 400 times, respectively.

The sampling rate for data acquisition was 50 kHz. Experimental

operation was controlled by SigGenRPH and BioSigRPH TDT

software installed in an IBM terminal connected to a System 3

TDT workstation. For analysis, ABR threshold was considered the

lowest intensity at which a distinct portion of the biological

waveform remained.

Intense Tone Exposure to Induce Tinnitus
After stable baseline GAP and PPI data were observed, rats

were unilaterally exposed (left ear) to a 118–120 dB peak SPL,

10 kHz tone for 2 hours. Unilateral exposure was conducted so

that at least one normal hearing ear remained, which has been

shown to be sufficient for normal gap-detection [63]. Five weeks

later, a second exposure was conducted for 3 hours and served to

reinforce or enhance the previously induced tinnitus. The second

exposure also increased relevance to clinical cases, where

individuals have often incurred acoustic trauma more than once.

For further clinical significance and to circumvent protective

effects of anesthesia [71,77,78], rats were exposed while awake.

Prior to exposure, each rat was anesthetized through inhalation

of mixed air (0.6 L/min) and isoflurane (5%, v/v). The right ear

canal was then occluded with an earplug followed by application

of mineral oil to seal any additional open spaces. The plugged ear

was sutured shut to keep the plug in place. Each rat was given

30 min to recover from anesthesia. Between 4 to 6 rats were

placed in a cage and exposed at a time. The exposure tone was

presented through a TW67 speaker (Pyramid Car Audio,

Brooklyn, N.Y.) placed face-down on top of a 44623622 cm

polycarbonate rat cage with floor bedding consisting of wood

shavings, and was calibrated at the estimated average position of

the rats (Bruel & Kjar, BZ-7100). The tone was produced by a

TDT multifunction processor and amplified through an RA 300

amplifier (Alesis, Cumberland RI). Operation was controlled by a

custom Constant Tone OpenEx program (TDT). Following tone

exposure, rats were again anesthetized and their earplugs and

sutures were removed. The control group underwent the same

procedures except that no tone was delivered. Some rats tended to

orient their heads toward the speaker during the initial minutes of

the tone exposure, however, rats remained relatively still

throughout the majority of the exposure so this did not appear

to be problematic.

GAP, PPI, and ABR Testing – After Tone Exposure
Behavioral testing and ABRs were conducted using the same

parameters as before tone exposure. Rats were tested behaviorally

one day after exposure and on a biweekly basis until MWM and

EPM testing (6 weeks after exposure). ABR testing was adminis-

tered at 1 and 8 weeks post-exposure.

Morris Water Maze (MWM)
As described elsewhere [79], a one-day water maze procedure

was carried out 6 weeks after exposure to assess spatial learning

and memory. Testing was conducted in a fiberglass pool (183 cm

in diameter) filled with water opacified with white, non-toxic paint.

For analytical purposes, the interior of the pool was virtually

divided into 4 zones of equal size. An escape platform 11 cm in

diameter was hidden in the middle of zone 4 (target zone) at 2 cm

below the surface level of the water.

Rats were given a total of 4 trials. Each trial was initiated from

one of 4 random starting points by lowering a rat into the water

while facing the pool wall. If a rat failed to locate the escape

platform within 90 seconds, it was taken from the water and placed

on the platform for 3 seconds. Following the last escape trial, the

platform was removed and a probe trial was administered where a

rat was allowed to swim freely for 90 seconds. The rat was dried

with a cloth towel and placed back inside its cage after each trial.

Rats were analyzed on time required to locate the escape platform

(escape latency), swimming velocity, and time spent and entries

into the target zone (probe trial). Data were acquired using

Ethovision XT (Noldus Information Technology, Wageningen,

Netherlands), a video tracking and analysis software.

Elevated Plus Maze (EPM)
Rats were tested on the EPM 6 weeks after exposure to measure

anxiety level. The plus maze was constructed from wood and

made into a cross shape with two opposing open arms

(28 cm610 cm) and two opposing closed arms

(47.5 cm610 cm639 cm) extending from a center square

(10 cm610 cm). The maze was elevated approximately 60 cm

above the ground. Duct tape was applied to the maze surface

where rats would walk. A rat was placed in the center square

facing an open arm and allowed to explore the maze for 5 min.

Rats were observed by a hidden experimenter and scored on the

number of entries into the open and closed arms and time spent in

the open arms. An entry was defined as setting all four paws in an

arm. The maze was cleaned, deodorized and dried between each

test with 70% ethanol.

Data Analysis
All gap-detection startle force data were divided by the mean of

the corresponding startle only responses and converted into ratio

values, as described in previous work [60,64,70]. For a given

frequency, GAP ratios were computed by dividing the responses to

the GAP condition by the mean startle only response. A ratio value

close to 0 for the GAP condition indicated healthy gap-detection at

a given frequency, while a ratio value close to 1 indicated gap

impairment and tinnitus at that frequency. Startle only ratios for

each frequency were computed by dividing the responses to the

startle condition by the mean startle only response.

Following intense tone exposure, we determined which rats

were tinnitus(+) or tinnitus(2). First, outlier responses to the GAP or

startle only conditions were removed, which has been done by

others to eliminate extreme startle variability [58,66]. We defined

outliers as any responses greater than two standard deviations

above the mean. Second, to assess each rat for tinnitus, we pooled

the GAP ratios from four out of five baseline gap-detection tests

and compared them to four out of the last five gap-detection tests

preceding MWM and EPM testing. The worst test out of the five

(determined by the highest GAP ratios) was excluded to minimize

the chance of any one test inflating gap ratios. Eliminating outliers

and the worst test helps minimize false tinnitus positive outcomes.

A rat was considered to have tinnitus if it met two criteria: 1) post-

exposure GAP ratios were significantly higher than pre-exposure

ratios; 2) post-exposure GAP ratios were not significantly lower

than post-exposure startle only ratios. We used the first criterion to

ensure that gap-detection performance significantly worsened

following tone exposure. We used the second criterion to verify

that rats could not significantly suppress their startle reflexes in

response to the silent gap. Validating gap impairment in this

manner helped reduce the possibility that hearing loss, stress, or

some other factor significantly worsened but did not genuinely

impair gap-detection. Processing the data using these steps

reduced data variability, maintained objectivity, and provided a

stable behavioral profile for each rat to facilitate proper diagnosis.

Tinnitus, Hearing Loss, Anxiety and Cognition
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Tone-exposed rats not meeting the criteria were placed into the

tinnitus(2) group. Another 7 rats underwent pseudo-tone exposure

and served as sham controls, but were also individually analyzed.

For each group, mean pre-exposure GAP ratios were compared

with mean post-exposure GAP ratios to verify any changes

induced by the intense tone or pseudo-tone exposure. Addition-

ally, we assessed any changes in startle amplitude by comparing

startle force in response to the startle only condition between pre-

and post-exposure time points. Decreased startle amplitude could

artificially raise GAP ratios and compromise the tinnitus diagnosis

[58,66], whereas increased startle amplitude would indicate

hyperacusis-like behavior [80–82]. The same 4 out of 5 pre-

exposure and post-exposure tests used to evaluate behavior for

each rat were pooled for group-wise analysis.

PPI data were analyzed in the same manner as gap-detection

data and provided a general assessment of auditory detection and

startle stimulus responsiveness. Healthy rats would have reduced

their startle reflexes in response to the PPI condition and

generated a ratio significantly lower than 1. ABR thresholds were

used to evaluate hearing loss by comparing pre-exposure, post-

exposure week 1, and post-exposure week 8 recordings within each

group, and between the three groups (tinnitus(+), tinnitus(2) and

control) at each time point. To determine if there was any

relationship between hearing loss and tinnitus, correlation analysis

was conducted between post-exposure week 8 left ear ABR

thresholds and post-exposure GAP ratios for each group. The

post-exposure GAP ratios were averaged at each frequency for

each rat from the same 4 out of 5 tests used for tinnitus diagnosis.

MWM data were compared between the three groups to

examine the effects of acoustic trauma and tinnitus on spatial

learning and memory. Spatial learning was evaluated by the

escape latency trials, whereas spatial memory was gauged in the

probe trial by the amount of time spent and entries into the target

zone. Longer escape latencies and lower affinity for the target zone

would suggest impaired spatial learning and memory.

Anxiety level was determined in the EPM by the percent of

entries into and time spent in the open-arm. Compared to

controls, reduced entries and time in the open-arm would indicate

higher anxiety, while increased entries and time suggests less

anxiety. Individual rats were also placed into high and low anxiety

groups by ranking the percent of open arm time for all animals

and dividing the data into quartiles [83]. Rats in the lower quartile

below the median were characterized as having high anxiety (HA),

while those in the upper quartile above the median were

characterized as having low anxiety (LA). The rationale for this

analysis was that not all tinnitus patients suffer from anxiety

[44,46,84]. Therefore, certain tinnitus(+) rats may or may not have

anxiety, which would be missed if only group-wise analysis was

performed.

For all pre- and post-exposure and between-group comparisons,

one-way ANOVA was performed with a post-hoc Bonferroni test

to adjust alpha values. For pre- and post-exposure comparisons in

gap-detection and PPI data for individual rats, t-test assuming

unequal variances was used. Pearson correlation analysis was used

to assess the correlation between ABR thresholds and GAP ratios.

Statistics such as chi-square were not performed on the HA and

LA data from EPM testing due to small sample size. All P values

were set to 0.05.

Results

Gap Detection and Prepulse Inhibition
To determine whether a rat had tinnitus, we compared GAP

ratios between baseline tests and 5 to 6 weeks following the second

noise exposure. Twelve out of eighteen rats met tinnitus criteria:

that is, at a given frequency, they exhibited post-exposure GAP

ratios that were both significantly higher than pre-exposure GAP

ratios and were not significantly lower than post-exposure startle

only ratios. PPI ratios were assessed the same way and revealed

that the GAP impairments were not accompanied by PPI

impairments at the same frequencies. These rats were placed into

the tinnitus(+) group, while the other six noise-exposed rats were

placed into the tinnitus(2) group. Gap-detection and PPI data from

a representative tinnitus(+) (Fig. 1A–B), tinnitus(2) (Fig. 1C–D), and

control rat (Fig. 1E–F) are shown. As can be seen, the tinnitus(+) rat

had tinnitus at 6–8 kHz [Pre vs. Post GAP (t [42] = 2.02,

p = 0.011), Post GAP vs. Post Startle Only (t [61] = 2.00,

p = 0.072)] and 26–28 kHz [Pre vs. Post GAP (t [49] = 2.01,

p = 0.003), Post GAP vs. Post Startle Only (t [59] = 2.00,

p = 0.560)]. Post-exposure PPI ratios were not elevated at 6–

8 kHz [Pre vs. Post PPI (t [58] = 2.00, p = 1.000)] or 26–28 kHz

[Pre vs. Post PPI (t [57] = 2.00, p = 0.318)], although PPI was

impaired at 14–16 kHz [Pre vs. Post PPI (t [55] = 2.00, p = 0.016),

Post PPI vs. Post Stl Only (t [61] = 2.00, p = 0.920)]. The

tinnitus(2) and control rats, on the other hand, had no significant

impairment in post-exposure GAP or PPI ratios.

Grouped GAP and PPI data are depicted in Fig. 2. At 1 to 2

weeks after tone exposure, tinnitus(+) rats showed significant

elevations in GAP ratios at 6–8 (F(2,1104) = 15.043, p,0.001), 10–

12 (F(2,1111) = 11.911, p,0.001), 14–16 (F(2,1114) = 31.269,

p,0.001), and 26–28 kHz (F(2,1114) = 41.108, p,0.001), and

BBN (F(2,1111) = 29.256, p,0.001) compared to pre-exposure ratio

values (ANOVA and post-hoc Bonferroni tests; Fig. 2A). Elevated

PPI ratios were also seen at post-exposure weeks 1 to 2, including

6–8 (F(2,1104) = 4.884, p = 0.006) and 10–12 kHz (F(2,1105) = 8.285,

p,0.001; ANOVA and post-hoc Bonferroni tests; Fig. 2B).

Tinnitus(2) rats demonstrated a significant elevation in Gap ratios

at 10–12 kHz (F(2,556) = 12.531, p,0.001) and BBN

(F(2,547) = 13.277, p,0.001), but also demonstrated elevated PPI

ratios at 10–12 (F(2,1111) = 4.678, p,0.008) and 14–16 kHz

(F(2,1114) = 3.154, p,0.037; ANOVA and post-hoc Bonferroni tests;

Fig. 2C–D). Although the 10–12 kHz Gap ratio was elevated, the

simultaneous elevation at 10–12 kHz PPI suggested that this was

due to impairment in auditory detection, as opposed to tinnitus

perception. The elevation in the BBN Gap ratio may be due to

hearing loss, since the other Gap ratios were not elevated and since

the BBN Gap elevation is consistent between tinnitus(2) and

tinnitus(+) groups. Control rats showed no differences except for a

significant decrease in the BBN PPI ratio (F(2,628) = 3.221,

p = 0.034; ANOVA and post-hoc Bonferroni tests; Fig. 2E–F). This

may suggest a high degree of variability and/or sensitivity in

responses to BBN PPI.

Five to six weeks after intense tone exposure, tinnitus(+) rats

retained GAP elevations at 6–8 (F(2,1104) = 15.043, p,0.001), 10–

12 (F(2,1111) = 11.911, p,0.001), 14–16 (F(2,1114) = 31.269,

p,0.001), and 26–28 kHz (F(2,1114) = 41.108, p,0.001), and

BBN (F(2,1111) = 29.256, p,0.001, and an elevation at BBN PPI

(F(2,1078) = 38.572, p,0.001; ANOVA and post-hoc Bonferroni

tests; Fig. 2A–B). Tinnitus(2) rats only showed an elevation at BBN

GAP (F(2,547) = 13.277, p,0.001; ANOVA and post-hoc Bonferroni

tests; Fig. 2C). The control group did not show any elevations for

GAP or PPI (Fig. 2D–F).

In addition to ratio data, we assessed the effect of noise and

pseudo noise exposure on startle force in response to the startle

only conditions of the gap-detection and PPI tests (Fig. 3). We

found that the tinnitus(+) group exhibited a significant increase in

startle force at 1 to 2 weeks post-exposure during BBN background

noise (F(2,1112) = 30.555, p = 0.036) and near 26–28 kHz PPI

Tinnitus, Hearing Loss, Anxiety and Cognition
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(F(2,1112) = 15.713, p = 0.030) and BBN PPI (F(2,1105) = 12.169,

p = 0.035; ANOVA and post-hoc Bonferroni tests; Fig. 3A–B). A

more dramatic increase in startle force was seen at 5 to 6 weeks

post-exposure during all background noise [6–8 (F(2,1120) = 17.723,

p,0.001), 10–12 (F(2,1130) = 21.576, p,0.001), 14–16

(F(2,1129) = 20.097, p,0.001), and 26–28 kHz (F(2,1121) = 29.638,

p,0.001), and BBN (F(2,1112) = 30.555, p,0.001)] and near-PPI

conditions [6–8 (F(2,1106) = 19.633, p,0.001), 10–12

(F(2,1116) = 13.236, p,0.001), 14–16 (F(2,1106) = 17.338, p,0.001),

and 26–28 kHz (F(2,1112) = 15.713, p,0.001), and BBN

(F(2,1105) = 12.169, p,0.001)], suggesting hyperacusis-like behavior

(ANOVA and post-hoc Bonferroni tests; Fig. 3A–B). The tinnitus(2)

group, however, showed no changes in startle force except for a

decrease near 26–28 kHz PPI at 1 to 2 weeks post-exposure

(F(2,557) = 4.364, p = 0.021), which may have been due to hearing

loss (ANOVA and post-hoc Bonferroni tests; Fig. 3C–D). The

Figure 1. GAP, PPI, and startle only ratios from a representative tinnitus(+), tinnitus(2) and control rat. Gap-detection data showed
tinnitus at 6–8 and 26–28 kHz in the tinnitus(+) rat (A), which was unaccompanied by same-frequency impairment in PPI (B), although PPI showed
auditory detection impairment at 14–16 kHz. Neither the tinnitus(2) (C–D) nor the control rat (E–F) demonstrated tinnitus or auditory detection
deficits. Error bars represent the standard error of the mean (SEM). * indicates p,0.05 between pre- and post-GAP, and p.0.05 between post-GAP
and post-Stl-Only.
doi:10.1371/journal.pone.0075011.g001
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control group also showed no changes in startle force except for an

increase during BBN background noise at 5 to 6 weeks post-

exposure (F(2,630) = 7.355, p,0.001; ANOVA and post-hoc Bonfer-

roni tests; Fig. 3E–F). Overall, our results indicate that unilateral

noise exposure may not always reduce startle force and can

actually increase it.

Figure 2. GAP and PPI ratios for the tinnitus(+), tinnitus(2) and control groups. Gap-detection data showed tinnitus across all frequency
bands and BBN at 1 to 2 and 5 to 6 weeks post-exposure in the tinnitus(+) group (A). PPI data showed auditory detection impairment at 6–8 and 10–
12 kHz at 1 to 2 weeks post-exposure, indicating that 1 to 2 week gap impairments at these frequencies may not be specifically due to tinnitus (B).
PPI, however, recovered by 5 to 6 weeks post-exposure, except for BBN, which may indicate sensitivity at BBN PPI. The tinnitus(2) group exhibited 10–
12 kHz gap impairment at 1 to 2 weeks post-exposure and BBN impairment at 1 to 2 and 5 to 6 weeks (C). PPI, however, also showed 10–12 kHz
impairment at 1 to 2 weeks, negating the alleged 10–12 kHz tinnitus (D). The BBN GAP impairment, on the other hand, may be due to hearing loss,
since the individual frequency bands were not impaired for the tinnitus(2) group yet their BBN impairment matched that of the tinnitus(+) group,
which has similarly elevated hearing thresholds (see Figure 4). No tinnitus or auditory detection impairments were seen in the control group (E–F),
although a decrease in BBN PPI ratio was observed, which again may indicate sensitivity changes at this parameter. Error bars represent SEM. *
indicates p,0.05.
doi:10.1371/journal.pone.0075011.g002
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ABR Thresholds
ABR responses were recorded before tone exposure and at 1

and 8 weeks post-exposure to measure the effects of acoustic

trauma on hearing thresholds (Fig. 4). While click was unaffected

in either group, thresholds were significantly elevated across tone

burst frequencies in the exposed ear of the tinnitus(+) group at 8

(F(2,33) = 25.546, p,0.001), 12 (F(2,33) = 120.667, p,0.001), 16

(F(2,33) 96.083, p,0.001), and 28 kHz (F(2,33) = 49.811, p,0.001)

Figure 3. Startle force for the tinnitus(+), tinnitus(2) and control groups. The tinnitus(+) group only demonstrated enhanced startle force
during BBN background noise at 1 to 2 weeks post-exposure, but showed a dramatic increase during all carrier bands at 5 to 6 weeks (A). Enhanced
startle force without background noise was also seen to a small extent at 1 to 2 weeks post-exposure, but to a much greater extent at 5 to 6 weeks
(B). The tinnitus(2) group demonstrated no startle force changes (C–D) except for a decrease at 1 to 2 weeks near 26–28 kHz PPI (C–D). The control
group showed no startle force changes (E–F) except for an increase at 5–6 weeks during BBN noise (E–F). The tinnitus(+) group by far showed the
greatest change in startle force, suggesting hyperacusis-like behavior. All groups showed a sensitization to startle force during background noise, as
evidenced by stronger startle force during gap-detection testing (background noise present) compared to PPI testing (background noise absent). For
PPI tests, all startle only conditions were identical and were organized by the closest frequency of prepulse incidence to maintain similar comparison
to gap-detection. Error bars represent SEM. * indicates p,0.05.
doi:10.1371/journal.pone.0075011.g003
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and the tinnitus(2) group at 12 (F(2,15) = 5.687, p = 0.029), 16

(F(2,15) = 9.034, p = 0.006), and 28 kHz (F(2,15) = 7.678, p = 0.013;

ANOVA and post-hoc Bonferroni tests; Fig. 4A). Recordings

collected at post-exposure week 8 indicated that after several

weeks, hearing thresholds remained elevated in both the tinnitus(+)

group at 8 (F(2,33) = 25.546, p,0.001), 12 (F(2,33) = 120.667,

,0.001), 16 (F(2,33) = 96.083, p,0.001), and 28 kHz

(F(2,33) = 49.811, p,0.001) and in the tinnitus(2) group at 12

(F(2,15) = 5.687, p = 0.034), 16 (F(2,15) = 9.034, p = 0.008), and

28 kHz (F(2,15) = 7.678, p = 0.011; ANOVA and post-hoc Bonfer-

roni tests; Fig. 4A). No significant differences between time points

were observed in the unexposed ear of the tinnitus(+) and

tinnitus(2) groups (Fig. 4B), and no elevations were seen in either

ear of the control group.

Thresholds were also compared between the 3 groups at each

time point before and after tone exposure. This allowed us to

determine whether there was a pre-existing or induced difference

in hearing between groups, which could become a confound when

interpreting how tinnitus and hyperacusis-like behavior affected

learning, memory and anxiety. When compared to the control

group, thresholds collected from the exposed ear at post-exposure

week 1 were overall significantly elevated in the tinnitus(+) group

(F(2,122) = 34.711, p,0.001). Specifically, elevations were found at

8 (F(2,22) = 10.146, p = 0.001), 12 (F(2,22) = 47.273, p,0.001), 16

(F(2,22) = 52.754, p,0.001), and 28 kHz (F(2,22) = 17.759,

p,0.001). The tinnitus(2) group also showed overall elevated

thresholds (F(2,122) = 34.711, p,0.001), specifically at 12

(F(2,22) = 47.273, p,0.001), 16 (F(2,22) = 52.754, p,0.001), and

28 kHz (F(2,22) = 17.759, p = 0.002; ANOVA and post-hoc Bonfer-

roni tests; Fig. 4A). Thresholds remained elevated overall at post-

exposure week 8 in the tinnitus(+) group (F(2,122) = 40.256,

p,0.001), specifically at 8 (F(2,22) 13.520, p,0.001), 12

(F(2,22) = 63.444, p,0.001), 16 (F(2,22) = 43.218, p,0.001), and

28 kHz (F(2,22) = 25.711, p,0.001) and in the tinnitus(2) group

(F(2,122) = 40.256, p,0.001), specifically at 12 (F(2,22) = 63.444,

p,0.001), 16 (F(2,22) = 43.218, p,0.001), and 28 kHz

(F(2,22) = 25.711, p = 0.001; ANOVA and post-hoc Bonferroni tests;

Fig. 4A).

We also compared thresholds between the tinnitus(+) and

tinnitus(2) group. While there was no difference between these

two groups at 1 week post-exposure (F(2,122) = 34.711, p = 0.251),

the tinnitus(+) group showed overall higher thresholds than the

tinnitus(2) group at 8 weeks post-exposure (F(2,122) = 40.256,

p,0.030). Although there were no significant differences between

these two groups in clicks or individual frequencies, that may be

due to lower sample size and less statistical power compared to

combined-frequency analysis. To further explore the relationship

between hearing loss and tinnitus, we conducted correlation

analysis between ABR thresholds and GAP ratios for each group.

We found that thresholds and ratios were not significantly

correlated for the tinnitus(+) (r = 20.081, p = 0.586), tinnitus(2)

(r = 0.336, p = 0.109), or control group (r = 20.122, p = 0.536)

(Fig. 5A–C), suggesting that although hearing loss may have been

greater overall in the tinnitus(+) group, it was not specifically linked

to elevated GAP ratios.

Morris Water Maze (MWM)
Tinnitus(+) and tinnitus(2) rats underwent a one-day MWM

procedure as described elsewhere [79] 6 weeks after tone exposure

to assess the effects of tinnitus, hearing loss, and hyperacusis-like

behavior on spatial learning and memory (Fig. 6). No significant

differences were found between any of the three groups, including

tinnitus(+) and tinnitus(2) (F(2,97) = 1.498, p = 1.000), tinnitus(+) and

control (F(2,97) = 1.498, p = 0.687), and tinnitus(2) and control

(F(2,97) = 1.498, p = 0.280; ANOVA and post-hoc Bonferroni tests;

Fig. 6A). Although rats only underwent 4 escape latency trials, the

mean escape latencies of their last 2 trials (when learning had been

established) were similar to the last 4 trials of Sprague-Dawley

control rats from our unpublished study using a one-day, 12 trial

procedure (data not shown), which has been successfully used in

other studies to substantiate strong spatial learning and memory

[85,86]. In addition, Long-Evans rats tend to have superior spatial

cognition compared to many other domesticated strains [87].

Taken together, this justified our one-day MWM protocol.

Probe trial testing followed trial 4 of escape latency testing.

There were no significant differences between groups in target

zone entries, including tinnitus(+) and tinnitus(2) (F(2,22) = 0.588,

p = 0.883), tinnitus(+) and control (F(2,22) 0.588, p = 1.000), and

tinnitus(2) and control (F(2,22) = 0.588, p = 1.000; ANOVA and

post-hoc Bonferroni tests; Fig. 6B). There were also no significant

differences in target zone time between tinnitus(+) and tinnitus(2)

(F(2,22) = 1.999, p = 1.000), tinnitus(+) and control (F(2,22) = 1.999,

p = 0.256), or tinnitus(2) and control groups (F(2,22) = 1.999,

p = 0.308; ANOVA and post-hoc Bonferroni tests; Fig. 6C). Finally,

there were no significant differences in swimming velocity between

tinnitus(+) and tinnitus(2) (F(2,97) = 0.586, p = 1.000), tinnitus(+) and

control (F(2,97) = 0.586, p = 1.000), or tinnitus(2) and control

Figure 4. Auditory brainstem responses from the exposed left
ear (A) and unexposed right ear (B). In the exposed ear (A), both
the tinnitus(+) and tinnitus(2) groups showed significant threshold shifts
across tone-burst frequencies at 1 and 8 weeks post-exposure, with the
strongest elevations occurring at 12 and 16 kHz. Overall, the tinnitus(+)

group had significantly higher hearing thresholds than the tinnitus(2)

group, although the thresholds were not significantly higher at any
individual frequency or click. (B) No significant threshold shifts were
seen in the unexposed ear for tinnitus(+) and tinnitus(2) groups. The
control group showed no changes in either ear (A–B). Error bars
represent SEM.
doi:10.1371/journal.pone.0075011.g004

Tinnitus, Hearing Loss, Anxiety and Cognition

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e75011



Figure 5. Correlation between ABR thresholds and GAP ratios
for tinnitus(+) (A), tinnitus(2) (B), and control (C) groups. No
groups exhibited a significant correlation, suggesting that although
tinnitus(+) rats had more overall hearing loss (see Figure 4), it was not
the only factor accounting for elevated GAP ratios and thus behavioral
manifestation of tinnitus.
doi:10.1371/journal.pone.0075011.g005

Figure 6. Morris water maze escape latency and probe trial
data. No significant differences were seen between the tinnitus(+),
tinnitus(2) and control groups in escape latency (A), probe trial target
zone entries (B), probe trial target zone time (C), and velocity (D). This
indicated similar spatial learning and memory across groups. Error bars
represent SEM.
doi:10.1371/journal.pone.0075011.g006
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(F(2,97) = 0.586, p = 1.000), suggesting similar mobility levels

(ANOVA and post-hoc Bonferroni tests; Fig. 6D).

Elevated Plus Maze (EPM)
EPM was conducted to explore the effects of intense tone-

induced tinnitus, hearing loss, and hyperacusis-like behavior on

anxiety (Figure 7). No significant differences were observed

between groups on percent of open-arm entries, including

tinnitus(+) and tinnitus(2) (F(2,22) = 1.049, p = 1.000), tinnitus(+)

and control (F(2, 22) = 1.049, p = 0.525), and tinnitus(2) and control

(F(2,22) = 1.049, p = 1.000; ANOVA and post-hoc Bonferroni tests;

Fig. 7). Furthermore, no differences were found between groups

on percent of open-arm time, including tinnitus(+) and tinnitus(2)

(F(2,22) = 0.479, p = 1.000), tinnitus(+) and control (F(2,22) = 0.479,

p = 1.000), and tinnitus(2) and control (F(2,22) = 0.479, p = 1.000;

ANOVA and post-hoc Bonferroni tests; Fig. 7).

In addition to group-wise analysis, we investigated whether

individual rats had high anxiety (HA) or low anxiety (LA). For the

tinnitus(+) group, 4 rats had HA and 1 had LA, while for the

tinnitus(2) group, no rats had HA and 1 had LA. For the control

group, 1 rat had HA and 2 had LA. HA rats had a lower number

of open-arm entries and a similar number of closed-arm entries

compared to LA rats (not shown), indicating that the groups truly

differed on anxiety level. Although sample sizes in the HA and LA

groups were small, these results support clinical findings by

showing that tinnitus and hyperacusis may result in a greater

likelihood for comorbid anxiety, but that not all affected

individuals experience anxiety.

Discussion

Noise-induced Tinnitus and Individualized Diagnosis
We found that two exposures to a 10 kHz tone at 118–120 dB

SPL and 2–3 hours duration (2 hours for first exposure, 3 hours for

the second) induced noise-like tinnitus for at least 6 weeks in twelve

out of eighteen rats. First, the current study may be clinically

relevant to patients who have sustained acoustic trauma on

multiple occasions, or on a regular basis as a result of occupational

hazard [2,88–90]. Second, our findings are corroborated by other

reports showing that exposure to tones in the range of 10 to

17 kHz can produce tinnitus from anywhere between 6 to 32 kHz

[20,33,54,73,91]. A recent study by our lab demonstrated that

single blast exposure (14 psi, 10 ms pulse duration) induced

immediate noise-like tinnitus, which later shifted towards high-

frequencies [60]. Overall, experimental findings are in line with

human data, where individuals have been exposed to acoustic

trauma with a range of characteristics and experience tinnitus with

varying features [88–90,92,93].

A key goal of this study was to develop a reliable method to

diagnose chronic tinnitus in rats at individual level. This is a

critical factor since many studies have either not divided animals

into tinnitus positive and negative groups

[60,61,63,70,72,73,75,76] or used a standardized method to do

so [20,64,66,67,71]. Our results demonstrated that taking the best

four out of five behavioral tests and removing outliers generated a

stable baseline behavioral profile for a rat, as evidenced by the

significantly attenuated GAP responses compared to startle only

responses (Figure 1). This analytical method provides an objective

and reliable way of determining whether and when rats have

stable baseline behavior. Determining not only baseline stability

but the typical GAP responses for each rat is crucial since baseline

GAP values affect whether post-exposure values appear elevated

or not, which in turn influences tinnitus diagnosis. Our data also

showed that this method generated a stable post-exposure

assessment, which is important in achieving accurate diagnosis

and avoiding false tinnitus positive results. This is validated by the

fact that twelve exposed rats were diagnosed with tinnitus while six

were not, and that no control rats were diagnosed with tinnitus.

Our results support other reports that noise exposure does not

induce tinnitus in every subject [20,64–67,71,94].

Another finding from individualized analysis was that different

rats developed tinnitus at different frequencies. Specifically, we

found that tinnitus ranged from 8 to 28 kHz. This is in line with

another study where intense tone exposure (12 kHz, 126 dB, SPL,

2 h) induced tinnitus between 6–24 kHz [20]. In such cases,

maladaptive neuroplastic changes giving rise to tinnitus perception

may vary across animals over time and account for the disparity in

pitch. Identifying the frequencies of tinnitus in specific rats may

play an important role in pinpointing correlates of tinnitus, such as

latency and amplitude changes in ABR waves, and changes in

spontaneous activity, bursting, and synchrony in tonotopically-

organized structures such as the dorsal cochlear nucleus, inferior

colliculus, and auditory cortex. Relying solely on group-wise

analysis may obscure certain frequencies of tinnitus manifestation

and fail to yield the most accurate profile of tinnitus induction.

Our tinnitus(+) rats exhibited higher post-exposure hearing

thresholds than tinnitus(2) or control rats, suggesting that hearing

loss plays a role in tinnitus manifestation. The lack of significant

correlation between hearing thresholds and GAP ratios, however,

indicates that the currently used diagnostic method adequately

revealed tinnitus manifestation in the tinnitus(+) rats.

Influence of Tinnitus and Hearing Loss on Hyperacusis
In addition to behavioral evidence of tinnitus, the tinnitus(+)

group showed some significantly increased startle response

amplitudes to the startle only conditions at 1 to 2 weeks after

tone exposure, followed by more substantial increases at 5 to 6

weeks post-exposure. This is suggestive of hyperacusis-like

behavior in the tinnitus(+) group and is supported by similar

findings [80,81], though only Chen and colleagues tested for

simultaneous tinnitus. Other studies have found an association

between salicylate- and noise-induced tinnitus and stronger than

expected prepulse inhibition, which may also be indicative of

hyperacusis [74,95]. A close association between tinnitus and

hyperacusis would be expected, since the two are highly correlated

in the clinical population [38–40] and putatively share similar

Figure 7. Percent of open-arm entries and open-arm time in
the elevated plus maze. No significant differences were seen
between the tinnitus(+), tinnitus(2), and control groups in percent of
open-arm entries or percent of open-arm time, indicating similar
anxiety level across groups. Error bars represent SEM.
doi:10.1371/journal.pone.0075011.g007
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pathophysiology [81,96–98]. In fact, several studies reporting

increased startle amplitude in response to noise exposure, age-

related hearing loss, and salicylate injections might have also found

tinnitus manifestation if they had tested their subjects [81,82,99–

101]. Future work in animals should consider simultaneous

assessment for tinnitus and hyperacusis, so that the relationship

can be better studied and understood.

Despite these common findings, others have found a decrease in

startle amplitude following noise exposure and/or hearing loss

[58,66,102]. One reason for the disparity may be the degree and

frequencies of the induced hearing loss. That is, partial hearing

loss may be necessary to enhance startle amplitude. The present

study used 10 kHz tone exposures to induce a transient 6–12 kHz

loss in auditory detection and permanent hearing threshold

elevations from 8 to 28 kHz, with 12 and 16 kHz sustaining the

highest elevations (,49–57 dB) and 8 kHz sustaining the lowest

elevations (,39–42 dB). Studies finding increased startle respon-

sivity as a result of aging [82,101] and salicylate injections [99,100]

also reported high-frequency hearing loss, which is theorized to

have caused the hyperacusis-like behavior through overrepresen-

tation of low frequencies and increased central auditory system

gain. Sun and colleagues (2012) found high-frequency hearing loss

immediately following noise exposure (11–13 kHz, 1 hour, 120 dB

SPL), which was accompanied by increased startle responsivity to

low-frequency stimuli. Rybalko and colleagues, however, found no

hearing loss at 3–5 months following noise exposure (BBN, 125 dB

SPL, 8 minutes) at postnatal day 14, but found reduction in startle

responsivity to all but 2 kHz stimuli. For others that reported

reduced startle responsivity after noise exposure, either hearing

loss was not assessed [58] or a wide band noise exposure was used

[66], which may not have led to overrepresentation of certain

frequencies. Therefore, the rats in our study may have developed

hyperacusis from hearing loss (12–16 kHz), which resulted in

overrepresentation of low frequencies (below 8 kHz) and increased

startle responsivity to noise burst stimuli. While the current study

did not test startle reflexes in response to low-frequency stimuli, it

is likely that lower-frequency responsivity fed into broadband

responsivity [102].

Effect of Tinnitus on Cognition and Anxiety
Tinnitus(+) rats showed no significant differences on escape

latency or probe trials compared to tinnitus(2) or control rats. This

suggests that there was no significant difference in spatial learning

and memory, which is consistent with previous reports [31]. Mixed

results have been found in animal studies, with tinnitus affecting

some cognitive and behavioral functioning such as impulse control

and social interaction [32,33], but not affecting spatial cognition

and serial reaction time accuracy [31,33]. The inconsistent

findings from animal studies match those from clinical studies in

that some subjective accounts by patients and experimental

evidence suggests that tinnitus interferes with cognitive functioning

[8–12,29]. Other accounts and assessments in humans including

tests of serial and spatial recall and five-choice serial reaction time

with a dual task for memory [10,29] have found no tinnitus effect.

The cognitive-behavioral test paradigms used, as well as the

characteristics of the tinnitus perception, may therefore play a

significant role in tinnitus assessment. The inconsistent results in

humans may also suggest that some cognitive deficits are not

caused by the tinnitus itself, but may be due to underlying factors,

such as comorbid mood, anxiety, or other psychological disorders.

We did not find any significant differences in anxiety level

between the tinnitus(+), tinnitus(2), or control rats using group-wise

analysis. These results match other studies that exposed rats to

noise (95–110 dB SPL, 1–2 hour duration) and found no effect on

EPM performance [33,35], though only Zheng and colleagues

tested for tinnitus and neither group examined the long-term

progression of hearing loss or hyperacusis. When examining

individual animals, we found that 4 tinnitus(+) rats had high

anxiety (HA) and 1 had low anxiety (LA). Among the tinnitus(2)

group, no rats had HA and 1 had LA, while in the control group, 1

rat had HA and 2 had LA. Although human studies have reported

significantly higher anxiety in tinnitus patients compared to the

general population [44,46,84], our results agree with these studies

in that anxious predisposition is found in some but not all tinnitus

patients. More studies with a greater sample size and varying

severities of tinnitus are needed to further investigate this

relationship. The causative factors within this relationship must

also be taken into consideration, given the high comorbidity rate of

tinnitus with anxiety, as well as depression [42–47]. It remains

undetermined whether tinnitus can always cause anxiety and

depression, or whether individuals with pre-existing or predispo-

sitions to anxiety and depression are more inclined to suffer from

tinnitus perception.

As with tinnitus and cognitive functioning, anxiety and

emotional deficits may only manifest in tinnitus with certain

characteristics and with certain tests. In humans, anxiety can often

occur when the affected individual is trying to sleep or at various

times during routine activities. Monitoring sleep and using other

methods to evaluate the emotional status of rats may help clarify

the relationship between tinnitus and anxiety. Examples include

measuring insomnia, corticosterone, 5-HIAA level (a metabolite of

5-HT that can reflect serotonergic activity and stress), the light-

dark box test, and weight levels. Assessing depression-like behavior

with forced-swim and sucrose consumption tests may also yield

valuable information.

Effect of Hyperacusis on Cognition and Anxiety
Since the tinnitus(+) group demonstrated hyperacusis-like

behavior but showed no significant cognitive deficits or increased

anxiety, it appeared that hyperacusis also had no effect on

cognition and anxiety. Like with the negative effect of tinnitus on

cognitive-emotional functioning, these results were unexpected

since hyperacusis can result in distress, social withdrawal [41],

sleeping impairment [103], and increased propensity for depres-

sion and anxiety [104–106]. Although the relationship between

hyperacusis and cognition has not been addressed in previous

studies, it is reasonable to project that hyperacusis and its negative

side affects would impair cognitive functioning, including learning

and memory. Published MRI data have shown that semantic

dementia patients with tinnitus or hyperacusis sustain relative

preservation of grey matter in the posterior superior temporal lobe

and decreased grey matter in the orbitofrontal cortex and medial

geniculate nucleus [107], suggesting involvement of the limbic

system, which may account for their emotional reactivity to

auditory perception. As with tinnitus, however, it may be that

other tools besides MWM and EPM should be sought to assess the

cognitive-emotional effects of hyperacusis in rats. Additionally, the

measurement used to identify hyperacusis may need refining.

Since hyperacusis is most often defined as decreased tolerance to

moderate, everyday sound, the most convincing evidence of

hyperacusis in rats may be a statistically significant startle response

to a moderate-intensity startle stimulus (i.e. lower than 80 dB),

which has not been reported to date. Clearly, future studies in this

area are needed.
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Conclusions

The current study used a statistically-driven method to

demonstrate that tinnitus can be reliably identified in individual

rats. This was supported by our results showing that noise-exposed

rats can be separated into tinnitus(+) and tinnitus(2) groups and

that all non-exposed controls tested tinnitus negative. In addition,

the tinnitus(+) group demonstrated evidence of hyperacusis-like

behavior, which is frequently seen in the clinical population. We

found, however, that neither tinnitus, hearing loss, nor hyperacusis

yielded a group-wise effect on cognition and anxiety, although the

majority of rats with high anxiety came from the tinnitus(+) group.

These results, however, are all in line with complex clinical

findings, and underscore the difficulties of characterizing non-

auditory dysfunction in tinnitus patients and developing treatment

methods. The effects of tinnitus on functioning, including

difficulties in sleeping and concentrating, irritability, and increased

risk for depression, anxiety, and even suicide, all underline the fact

that they are among the most important consequences of tinnitus.

In order for animal models of tinnitus to achieve the greatest

relevance, these factors must be considered, and optimal methods

for detecting tinnitus and related auditory and non-auditory

functioning, including alternative tests for cognition and anxiety/

depression, must be sought.
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