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Abstract: Macrocyclic diterpenoids produced by plants of the Euphorbiaceae family are of considerable
interest due to their high structural diversity; and their therapeutically relevant biological properties.
Over the last decade many studies have reported the ability of macrocyclic diterpenoids to inhibit in
cellulo the cytopathic effect induced by the chikungunya virus. This review; which covers the years
2011 to 2019; lists all macrocyclic diterpenoids that have been evaluated for their ability to inhibit
viral replication. The structure–activity relationships and the probable involvement of protein kinase
C in their mechanism of action are also detailed.
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1. Introduction

Chikungunya virus (CHIKV) is an arthropod-borne virus causing an infectious disease
characterized by fever, arthralgia and, sometimes, a maculopapular rash [1]. Despite high morbidity
rate, there is currently no approved vaccine or antiviral treatment. Different classes of compounds that
target either a viral or a host factor have been reported to inhibit CHIKV replication in vitro [2], but
none have progressed to further development. The development of potent antiviral drugs against
CHIKV is, therefore, urgently needed.

Plant species of the Euphorbiaceae family are known to produce a vast array of macrocyclic
diterpenoids. They possess various types of carbon skeletons (e.g., jatrophane, lathyrane, myrsinane,
ingenane, tigliane, daphnane etc.), many of which are unique to this large plant family [3,4]. The genus
Euphorbia, which includes more than 2000 species, alone provided several hundred macrocyclic
diterpenoids, representative of more than 20 skeletal types [5,6]. With regard to their biogenesis,
these compounds also called lower diterpenoids are formed by a head-to-tail cyclization of a
tetraprenylphosphate precursor through the agency of a type I cyclase, leading to the formation
in a step-wise fashion of the monocyclic cembranes, the bicyclic casbanes and the tricyclic lathyrane
derivatives, the latter may lead to jatrophane after cyclopropane ring opening [7]. From a structural
standpoint phorboids, i.e., tiglianes, daphnanes, ingenanes and rhamnopholanes, are polycyclic
diterpenoids but are biogenetically derived from macrocyclic precursors. However, Appendino
pointed out that the relationship between macrocyclic diterpenoids and phorboids has remained a
mechanistic black box, despite obvious structural similarities between the lathyrane and the tigliane
skeletons [7].

Macrocyclic diterpenoids are of considerable interest due to their therapeutically relevant biological
properties, one of the most widely described being their ability to modulate protein kinase C (PKCs)
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activities [4,5]. PKCs are involved in many physiological functions [8]. In addition, it has been shown
that biologically active diterpenes containing a gem-dimethylcyclopropane subunit such as lathyrane-,
casbane-, premyrsinane-, ingenane- or tigliane-type diterpenoids are an intriguing source of PKC
modulators [9]. PKC activation is responsible for a wide variety of biological activities such as platelet
aggregation, tumor-promotion and anti-HIV activity.

Since the discovery of their anti-HIV properties in the early 1990s, macrocyclic diterpenoids have
attracted the interest of the scientific community [10–14] and a significant number of studies have
focused on their anti-HIV potential through PKC activation [15–18]. Some non-tumor-promoting
tiglianes such as prostratin and DDP (12-deoxyphorbol-13-phenylacetate) exhibit potent in vitro activity
toward the induction of HIV expression in latently infected cell lines and primary cells [19] and are
considered to be promising anti-HIV agents [20].

In contrast, the discovery of antiviral properties of macrocyclic diterpenes against CHIKV is much
more recent [20–24] as it followed the chikungunya African outbreak in the 2000s and its subsequent
emergence in the Indian Ocean [24]. The main vectors are Aedes mosquitoes from the Culicidae family
such as A. furcifer, A. africanus, A. luteocephalus, A. taylori and A. aegypti. Between 2005 and 2006, a new
vector (A. albopictus) spread in most of the tropical and subtropical areas and led to massive outbreak
in the Indian Ocean region.

As CHIKV reached epidemic level, the quest for novel and selective antiviral compounds was
launched on a large scale. A project entitled ‘Biodiversity and emerging viruses in the Indian Ocean:
selection of drug candidates targeting the Chikungunya virus′, was selected by the Centre for Research
and Monitoring of Emerging Diseases in the Indian Ocean (CRVOI) for financial support and was
developed between 2009 and 2011 [24]. The main objective was to discover and characterize new
selective antiviral compounds from the plant biodiversity of the Indian Ocean (Madagascar, Reunion
and Mauritius), which was then extended to that of New Caledonian and Mediterranean flora.
The research program, led by a tight network of virologists and natural products chemists, quickly
revealed the Euphorbiaceae as the most promising plant family in the fight against CHIKV.

This review focuses on the anti-CHIKV activity of about 80 naturally occurring macrocyclic
diterpenoids isolated from plant species belonging to the Euphorbiaceae family from 2011 to 2019,
along with about 30 commercially available natural diterpenoids. These compounds, which have been
classified according to their chemical features into 14 skeletal types have all been evaluated using
the methodology described by Bourjot et al. [21]. The discussion focuses on the structure–activity
relationships that are detailed when a sufficient number of compounds have been tested in each series.
The mechanism of action of the most promising compounds that involve PKCs is also discussed,
highlighting the close analogy with their anti-human immunodeficiency virus (HIV) activities.

2. Tiglianes and Ingenanes

Tigliane diterpenoids form the largest group of phorboids. They possess a 5/7/6/3-tetracyclic
ring system, in which rings A and B, and B and C, are trans-fused while rings C and D are cis-fused.
A carbonyl is located at C-3, a double-bond at C-1, and most of the tiglianes are hydroxylated in
positions 4, 9, 12, 13, and 20 [5]. Also called phorbol esters (PE), most tigliane derivatives exist in
the form of 12,13 or 13,20-diesters, and a few also exist as 12- or 13-monoesters and 12,13,20-triesters.
They are classified as (i) phorbol esters including 12- and 13-monoesters, 12,13- and 13,20-diesters, and
12,13,20-triesters, (ii) 4-deoxyphorbol esters, (iii) 12-deoxyphorbol esters, (iv) 4,12- dideoxyphorbol
esters and (v) 4,20-dideoxyphorbol esters [4]. Ingenane diterpenoids, which are a biogenetically
advanced group of phorboids [7], possesses a scaffold composed of a 5/7/7/3-tetracyclic ring system
including a ketone bridge between C-8 and C-10 and are β-hydroxylated at C-4. Rings A and B are
trans-fused and double bonds can be found between C-1 and C-2 in ring A, and between C-6 and C-7
in ring B. The C-3, C-5, C-13, C-17, and C-20 positions can be oxygenated and/or esterified [5].

A total of 51 tiglianes (1–51) and three ingenanes (52–54) has been evaluated in a virus-cell-based
assay against CHIKV (Figure 1). These compounds were either commercially available.
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Figure 1. Structures of tiglianes 1–51 and ingenanes 52–54. 

R1
R2

H

OH

H

OH

OHO

O

21, 30

R1

O

H

OH

OH

H

R2

R3O

H

OH

HO

H

R2

R2R1
OH

phorbol esters 
(1-20, 22-29)

12-deoxyphorbol esters
(41-47)

H
O

OH

ingenol esters 
(52-54)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O HN

O

O

O

O
OH

OBuO-

HexO-

NonO-

DecO-

DodecO

TiglO-

MbO-

MA-

BzO-

HVA-

NonTriO-

O

O

OxoHDTO-

O

O

mBuO-

O

O

C9H19

OAc

H

OH

H

OH

OHO

OOH

24

9

7

6

3

OHO

H

OH

H

H

dBuO

4,12-dideoxyphorbol esters
(50-51)

O

O

dBuO-

OHO

H

OH

H

H

R2

4-deoxyphorbol esters 
(31-39)

R1

TiglO

O

H

OH

H

H

OiBu

40

O

R3

O

O

iBuO-

O

O

HexadecO-

13

R1

O

H

OH

H

H

HexadecO

O

OH
HO

HO

O

H

OH

H

H

HexadecO

OH
HO

HO

OH

OH

48

49

DecatriO-

DecadiO-

7-DecatriO-

OctadiO-
O

O

O

O O

O

3
O

O

O

O

TetradecO-

11
O

O

3

E-DecadiO-

1

4

6

20

12 13

7A
B

C

A B

C

O

O

C8H17

O

Figure 1. Structures of tiglianes 1–51 and ingenanes 52–54.
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(1–20,25,26,41–43,52–54) [16] or isolated from various Euphorbiaceae species i.e., Trigonostemon howii
(21) [21], Croton mauritianus (23,24) [25], Euphorbia semiperfoliata (33–35,40) [26], Stillingia lineata
(22,31,32,44,45) [27], Bocquillonia nervosa (46–49) [28], Euphorbia pithyusa (42,43,50,51) [29], Euphorbia
dendroides (36–39) [30], Euphorbia cupanii (27–30) [31]. Additionally, phorbols have also been identified
in Sandwithia guyanensis [32] and Sagotia racemosa bark extracts as potent putative anti-CHIKV agents.

First, the cytotoxicity of all compounds was evaluated against African green monkey kidney
epithelial cell line (Vero cells). The CC50 (50% antimetabolic concentration) values ranged from 4.1 to >

343 µM, phorbol (1) being the less cytotoxic compound. Among compounds with a selective index >

20 (see below), the highest cytotoxicity was obtained for compounds with a long acyl chain either at
C-12 or C-13 position (11, 15 and 48).

Most diterpenes have shown significant CHIKV inhibitory activities but the level of activity seems
to be highly dependent on the structural type and its decoration (Table 1). Phorbol-12,13- didecanoate
(11), 12-O-tetradecanoylphorbol-13-acetate (TPA, 15) and to a lesser extent 12-deoxyphorbol-13-
hexadecanoate (46) were found to be the most potent inhibitors yet reported as evidenced by their
lower EC50 (effective concentration or concentration which is calculated to inhibit virus induced cell
death by 50%) and higher selectivity indices values (EC50 = 6.0, 2.9 and 20 nM, and SI = 686, 1965
and 1500, respectively). Interestingly TPA did not show any significant antiviral activities against
Sindbis virus (SINV) and Semliki Forest virus (SFV), two other members of the genus Alphavirus [21].
Thirty-two other tiglianes and one ingenane have shown significant anti-CHIKV activities with EC50
values between 20 nM and 5 µM. They belong to all structural sub-classes defined previously. Among
these, phorbol esters 22, and 27–29, 4-deoxyphorbol esters 33, 35, 37 and 38, and 12-deoxyphorbol
esters 41 (prostratin), 44, and 47–49 exhibited selective indices >20.

Although it is difficult to draw clear structure–activity relationships within this family of
compounds, general rules can be highlighted. As was previously reported [16,26], the anti-CHIKV
activity of some phorbols can be modulated by the length and location at C-12 and/or C-13 positions
of the acyl chain(s) on the phorbol backbone, the relative configuration at C-4 and the presence of
additional carbonyl function at C-7 and/or C-20 (Figure 2). Generally, a stronger anti-CHIKV activity
was reported for phorbol monoesters (3,6,7) and phorbol di- and triesters (9,11,15,17, 19, and 26–30)
possessing long aliphatic side chains at C-12 and/or C-13. Conversely, those having short side chains
at C-12 and C-13 are less active and less selective, with the exception of compound 22 possessing an
acetyl side chain and a 2-methylbutyryl side chain at C-12 and C-13, respectively (EC50 = 3.3 µM,
and SI = 41). Comparison of the anti-CHIKV activities of compounds 11 and 12, and 15 (TPA) and 16
indicated that 4β-phorbol derivatives are much more potent than their 4α-counterparts. A similar
observation can be noted by comparing the antiviral activities of the 4α-deoxyphorbols 31 and 34, much
weaker than those of 4β-deoxyphorbols 35 and 33, all possessing short side chains in C-12 and C-13.
The 4α-deoxyphorbols 31 and 34 showed lower activities. In contrast, 4α-deoxyphorbol 32, which
possess a nona-2-enoyl side chain at C-13, showed a significant anti-CHIKV activity (EC50 = 1.4 µM,
and SI = 5.1). It should be noted that compound 32 as well as compound 45 also showed a significant
antiviral activity on the replication of SINV [27]. All 4β-deoxyphorbols but compound 39, exhibited
potent anti-CHIKV activity, among which 4β-deoxyphorbol 12-acetate-13-isobutyrate (35) has the
highest selective index (EC50 = 0.44 µM, and SI = 390). Finally, most of the 12-deoxyphorbols have
shown strong anti-CHIKV activities. In particular, compounds 46–48, which all have an hexadecanoyl
side chain at C-13, exhibited the best indices of selectivity. Among the latter, the presence of a 6,7-epoxy
function instead of a 6,7-dihydroxy moiety has a favorable effect on the anti-CHIKV activity (48 vs.
49). [28] In general, oxidation of phorbol esters [33] leading to an α,β-unsaturated carbonyl function at
C-20 or C-7 appears to be responsible for a significant decrease in antiviral activity (25 vs. 9, 26 vs.
15, 40, 21). Finally, it should be noted that ingenol-3,20-dibenzoate 54, was the first ingenane-type
diterpenoid showing a significant anti-CHIKV activity [16].
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Table 1. Anti-chikungunya virus (CHIKV) activities of tiglianes 1–51 and ingenanes 52–54.

Compound CHIKV EC50 SI R1 R2 R3
Phorbol esters

1 Phorbol >343 >1 HO- HO- HO-
2 Phorbol-12-acetate >245 0.8 AcO- HO- HO-
3 Phorbol-12-decanoate 4.9 ± 1.7 1.5 DecO- HO- HO-
4 Phorbol-13-acetate >174 n.d. HO- AcO- HO-
5 Phorbol-13-butyrate 20 ± 10 12.3 HO- BuO- HO-
6 Phorbol-13-decanoate 2.2 ± 0.1 9.7 HO- DecO- HO-
7 Phorbol-13-tetradecanoate 0.99 ± 0.03 9.0 HO- TetradecO- HO-
8 Phorbol-12,13-diacetate 9.4 ± 1.0 4.2 AcO- AcO- HO-
9 Phorbol-12,13-dibutyrate 1.8 ± 0.2 2.1 BuO- BuO- HO-

10 Phorbol-12,13-dihexanoate 3.2 ± 0.2 1.8 HexO- HexO- HO-
11 Phorbol-12,13-didecanoate 6.0 ± 0.9 nM 686 DecO- DecO- HO-
12 4α-Phorbol-12,13-didecanoate 1.5 ± 0.1 2.2 DecO- DecO- HO-
13 Phorbol-13,20-diacetate 24.6 ± 7.1 1.7 HO- AcO- AcO-
14 Phorbol-12,13,20-triacetate 32.6 ± 4.0 2.2 AcO- AcO- AcO-
15 12-O-Tetradecanoylphorbol-13-acetate (TPA) 2.9 ± 0.3 nM 1965 TetradecO- AcO- HO-
16 12-O-Tetradecanoyl-4α-phorbol-13-acetate 2.8 ± 0.5 1.9 TetradecO- AcO- HO-
17 12-O-Tiglylphorbol-13-decanoate 1.1 ± 0.3 3.3 TiglO- DecO- HO-
18 12-O-(N-methylanthranilate)-phorbol-13-acetate 15 ± 4 1.1 MA- AcO- HO-
19 12,13-O,O′-Dinonanoylphorbol-20-homovanillate 0.6 ± 0.1 3.7 NonO- NonO- HVA-
20 12-O-Phenylacetyl-13-O-acetylphorbol-20-homovanillate 1.7 ± 0.3 14.2 PhAcO- AcO- HVA-
21 Trigowiin A >100 >2.3 DodecO- AcO- -
22 12-O-Acetylphorbol-13(2”-methyl)-butyrate 3.3 ± 0.3 41 AcO- mBuO- HO-
23 12-O-Decanoylphorbol-13-acetate 2.4 ± 0.3 2.0 DecO- AcO- HO-
24 12-O-Decanoyl-7-hydroperoxy-5-ene-13-acetate phorbol 4.0 ± 0.8 1.9 - - -
25 20-Oxo-phorbol-12,13-dibutyrate 13.1 ± 0.5 2.7 BuO- BuO- O=
26 20-Oxo-TPA 0.7 ± 0.1 5.9 TetradecO- AcO- O=
27 12β-O-[Deca-2E,4Z-dienoyl]-13α-isobutyl-4β-phorbol <0.7 >77 E-DecadiO- iBuO- HO-
28 12β-O-[Deca-2E,4Z-dienoyl]-13α-(2-methylbutyl)-4β-phorbol <0.7 >12 E-DecadiO- mBuO- HO-
29 12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-4β-phorbol <0.8 >58 DecadiO- iBuO- HO-
30 12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-5-ene-7-oxo-4β-phorbol 4.5 ± 0.6 6 DecadiO- iBuO- -

4-Deoxyphorbol esters
31 12β-O-Acetyl-4α-deoxyphorbol-13(2”-methyl)-butyrate 77 1.4 AcO- mBuO- -
32 12β-O-[Nona-2Z,4E,6E-trienoyl]-4α-deoxyphorbol-13-butyrate 1.4 ± 0.2 5.1 NontriO- BuO- -
33 4β-Deoxyphorbol-12-tiglate-13-isobutyrate 1.0 ± 0.4 25 TiglO- iBuO- -
34 4α-Deoxyphorbol-12-tiglate-13-isobutyrate 17.0 ± 1.0 7 TiglO- iBuO- -
35 4β-Deoxyphorbol-12-acetate-13-isobutyrate 0.44 ± 0.03 390 AcO- iBuO- -
36 12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-4β-deoxyphorbol 0.9 ± 0.1 6 DecadiO- iBuO- -
37 12β-O-[Deca-2Z,4E,6E-trienoyl]-13α-isobutyryl-4β-deoxyphorbol 0.6 ± 0.6 41 DecatriO- iBuO- -
38 12β-O-[Octa-2Z,4E-dienoyl]-13α-isobutyryl-4β-deoxyphorbol 0.4 ± 0.02 34 OctaDiO- iBuO- -
39 12β-O-[Deca-2Z,4E,7Z-trienoyl]-13α-isobutyryl-4β-deoxyphorbol 12.6 ± 46.2 4 7-DecatriO- iBuO- -

4,20-Dideoxyphorbol ester
40 4α,20-Dideoxyphorbol-12-tiglate-13-isobutyrate 51.1 ± 4.1 3 - - -

12-Deoxyphorbol esters
41 12-Deoxyphorbol-13-acetate (prostratin) 2.7 ± 1.2 22.8 H- AcO- HO-
42 13-O-Isobutyryl-12-deoxyphorbol-20-acetate 0.7 ± 0.1 5.0 H- BuO- AcO-
43 13-O-Phenylacetyl-12-deoxyphorbol-20-acetate 50.8 ± 2.1 1.9 H- PhAcO- AcO-
44 12-Deoxyphorbol-13(2”-methyl)butyrate 1.2 ± 0.2 >240 H- mBuO- HO-
45 12-Deoxyphorbol-13-[8′-oxo- hexadeca-2E,4E,6E-trienoate] 2.2 ± 1.5 5.9 H- OxoHDTO- HO-
46 12-Deoxyphorbol-13-hexadecanoate 0.02 ± 0.001 1500 H- HexadecO- HO-
47 12-Deoxy-5β-hydroxy-phorbol-13-hexadecanoate 0.13 ± 0.03 98 H- HexadecO- HO-
48 12-Deoxy-6,7-epoxy-5β-hydroxy-phorbol-13-hexadecanoate 0.09 ± 0.05 54 - - -
49 12-Deoxy-5β,6β,7α-trihydroxy-phorbol-13-hexadecanoate 2.14 ± 0.3 26 - - -

4,12-Dideoxyphorbol esters
50 4α-12-Dideoxyphorbol-13(2,3-dimethyl)butyrate-20-acetate >11 n.d - dBuO- OAc-
51 4β-12-Dideoxyphorbol-13(2,3-dimethyl)butyrate-20-acetate 4.0 ± 0.3 10.6 - dBuO- OAc-

Ingenanes
52 Ingenol 30.1 ± 19.2 4.8 HO- HO- -
53 Ingenol-3-mebutate 22.9 ± 5.2 2.3 MbO- HO- -
54 Ingenol-3,20-dibenzoate 1.2 ± 0.1 6.4 BzO- BzO- -

Chloroquine 10 ± 5 8.9 - - -

EC50s are given in µM, unless otherwise stated. Values are the median ±median absolute deviation calculated from
at least three independent assays. SI, selectivity index, calculated as CC50 Vero/EC50 CHIKV. n.d. = not determined
(EC50 50% effective concentration or concentration which is calculated to inhibit virus induced cell death by 50%,
and CC50 50% antimetabolic concentration or concentration which is calculated to inhibit the overall cell metabolism
by 50%). Anti-CHIKV results obtained with the methodology from Bourjot et al. [21].
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Most of tigliane and ingenane derivatives mentioned in Table 1 have also been evaluated against
HIV-1 and HIV-2 replications [16,27,28]. Overall, the structure–activity relationships that were
established for the anti-CHIKV activities of the tested phorbol derivatives were found to be similar to
those observed for anti-HIV-1 and anti-HIV-2. This concerns the role of the length and the position of
the acyl chains at C-12 and C-13, the requirement of a C-4β configuration for a strong antiviral effect,
and the deleterious effect of an oxidation at C-20. In particular the close antiviral profiles of the tested
compounds against CHIKV on one hand and HIV-1 and HIV-2 on the other hand have been confirmed
by the calculation of Pearson correlation coefficients between the EC50 values for each virus pair.
The results showed that EC50s against CHIKV and HIVs were positively correlated (CHIKV/HIV-1,
r = 0.81 ± 0.09; CHIKV/HIV-2, r = 0.84 ± 0.07) [16]. The authors concluded that, similarly to the
mechanism of action proposed for HIV inhibitors, phorbol ester derivatives could operate according to
a CHIKV-specific mechanism possibly associated with the activation of PKCs [34,35].

3. Daphnanes

Daphnane diterpenoids, which are believed to be derived from a tigliane precursor [36] are based
on a 5/7/6-tricyclic skeleton, rings A and B and rings B and C being trans-fused. A double bond or an
epoxy group may be present between C-6 and C-7 carbons. A large number of daphnane diterpenoids
possess an orthoester moiety (Daphnane Diterpenoid Orthoesters, DDO), which can be attached on
ring C at various positions i.e., C-9, C-11, C-12, C-13, and C-14 [36,37].

In several recent studies, the anti-CHIKV activities of the commercially available resiniferatoxin
(55) [16], as well as DDOs isolated from Trigonostemon cherrieri (56-63) [22,23,38], Neoguillauminia
Cleopatra (64) [28], and Codiaeum peltatum (65,66) [37], have been reported (Figure 3). Most of them
have shown significant anti-CHIKV activities with EC50 values ranging from 0.6 to 18 µM (Table 2).
From this chemical series, trigocherrierin A (56) possessing a 2-methyl-decanoyl side chain at C-12, and
a 9,13,14-orthoester moiety exhibited the strongest antiviral activity with the highest selective index
(EC50 = 0.6 µM, and SI = 72). Finally, it has been shown that anti-HIV activities of trigocherriolides are
100 to 1000 times higher than those of trigocherrins, suggesting a different mechanism of action [39].
Interestingly, compounds 59–62, and to a lesser extent compounds 57 and 58, showed significant
antiviral activities on the replication of SINV and SFV viruses. [23] Finally, compounds 57, 60 and 61
also showed significant inhibitory activity against NS5 RNA-dependent RNA polymerase of dengue
virus (DENV) [23].
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Table 2. Anti-CHIKV activities of daphnanes 55–66.

Compound CHIKV EC50 SI
Daphnanes

55 Resiniferatoxin 1.8 ± 0.2 2.3
56 Trigocherrierin A 0.6 ± 0.1 71.7
57 Trigocherrin A 1.5 ± 0.6 23
58 Trigocherrin B 2.6 ± 0.7 36
59 Trigocherrin F 3.0 ± 1.2 7.7
60 Trigocherriolide A 1.9 ± 0.6 2.4
61 Trigocherriolide B 2.5 ± 0.3 2.1
62 Trigocherriolide C 3.9 ± 1.0 2.7
63 Trigocherriolide E 0.7 ± 0.1 9.4
64 Neoguillauminin A 17.7 ± 0.8 2
65 Codiapeltine A 10.0 ± 2.3 5
66 Codiapeltine B 4.4 ± 0.5 11

Chloroquine 10 ± 5 8.9

EC50s are given in µM; values are the median ± standard deviation calculated from at least three independent
assays. SI, selectivity index, calculated as CC50 Vero/EC50 CHIKV. n.d. = not determined. Anti-CHIKV results
obtained with the methodology from Bourjot et al. [21].

4. Jatrophanes

Jatrophane diterpenes are based on a 5/12-bicyclic ring system. The number of substitutable
positions on the bicyclic core, provides jatrophanes with a great chemical diversity [5].

In 2014 and 2016, 25 jatrophanes (Figure 4) were isolated from Euphorbia amygdaloides ssp.
semiperfoliata [40], and Euphorbia dendroides [41]. Their anti-CHIKV activities are reported in Table 3.
Within the 9,14-dioxojatropha-dienes (67–73), an acetyl group at position 2 proved to be deleterious for
anti-CHIKV activity (69 vs. 72, and 70 vs. 73). Regarding compounds 67–70 and 71–75, the authors
ranged the influence of the C-8 substitution on the activity as follows: tiglyloxy > benzoyloxy >

acetyloxy ≈ isobutyryloxy. In the 9-oxojatropha-dienes series, the 2-methylbutyryl group of 76 seemed
to be deleterious for the antiviral activity (76 vs. 74 and 75). It should be noted that compound 69
exhibited moderate anti-SINV activity, while compounds 74–76 exhibited significant, albeit weak,
antiviral activities on the replication of SINV and SFV viruses [40].

Molecules 2019, 24, x FOR PEER REVIEW 8 of 16 

 

Table 2. Anti-CHIKV activities of daphnanes 55–66. 

 Compound CHIKV EC50 SI 

 Daphnanes 

55 Resiniferatoxin 1.8 ± 0.2 2.3 

56 Trigocherrierin A  0.6 ± 0.1 71.7 

57 Trigocherrin A 1.5 ± 0.6 23 

58 Trigocherrin B 2.6 ± 0.7 36 

59 Trigocherrin F 3.0 ± 1.2 7.7 

60 Trigocherriolide A 1.9 ± 0.6 2.4 

61 Trigocherriolide B 2.5 ± 0.3 2.1 

62 Trigocherriolide C 3.9 ± 1.0 2.7 

63 Trigocherriolide E  0.7 ± 0.1 9.4 

64 Neoguillauminin A 17.7 ± 0.8 2 

65 Codiapeltine A 10.0 ± 2.3 5 

66 Codiapeltine B 4.4 ± 0.5 11 

 Chloroquine 10 ± 5 8.9 

EC50s are given in μM; values are the median ± standard deviation calculated from at least three 

independent assays. SI, selectivity index, calculated as CC50 Vero/EC50 CHIKV. n.d. = not 

determined. Anti-CHIKV results obtained with the methodology from Bourjot et al. [21]. 

4. Jatrophanes 

Jatrophane diterpenes are based on a 5/12-bicyclic ring system. The number of substitutable 

positions on the bicyclic core, provides jatrophanes with a great chemical diversity [5]. 

In 2014 and 2016, 25 jatrophanes (Figure 4) were isolated from Euphorbia amygdaloides ssp. 

semiperfoliata [40], and Euphorbia dendroides [41]. Their anti-CHIKV activities are reported in Table 3. 

Within the 9,14-dioxojatropha-dienes (67–73), an acetyl group at position 2 proved to be deleterious 

for anti-CHIKV activity (69 vs. 72, and 70 vs. 73). Regarding compounds 67−70 and 71−75, the authors 

ranged the influence of the C-8 substitution on the activity as follows: tiglyloxy > benzoyloxy > 

acetyloxy ≈ isobutyryloxy. In the 9-oxojatropha-dienes series, the 2-methylbutyryl group of 76 

seemed to be deleterious for the antiviral activity (76 vs. 74 and 75). It should be noted that compound 

69 exhibited moderate anti-SINV activity, while compounds 74–76 exhibited significant, albeit weak, 

antiviral activities on the replication of SINV and SFV viruses [40]. 

 

Figure 4. Structures of jatrophanes 67–92.  

OiBu

OAc

R1

R4

AcO

OAc

O

O

R2

O

H

1

4
6

91113

1516

17

1819

20

21

22

R3

R3

O
OAc

R5

R4R2

HO

H

R1
1

4

6

1011

12

14

15

16

17

18

1920

O

O

O

O

BzOAcO-

AcO

H

O

O

AcO OR1

OAc

R2O

AcO

1

4

6 9

11

14

16

18

19

20

15

17

HO

H

OR2

O

AcO OR1

OAc

BzO

9,14-oxojatropha-dienes
(67-73)

9-oxojatropha-dienes
(74-77)

14-oxojatropha-dienes
(78-88)

terracinolides
(89-92)

Figure 4. Structures of jatrophanes 67–92.



Molecules 2019, 24, 2336 9 of 16

Table 3. Anti-CHIKV activities of jatrophanes 67–92.

Compound Name CHIKV EC50 SI R1 R2 R3 R4 R5
9,14-Dioxojatropha-dienes

67 3,5,7,8,15-Pentaacetoxy-2-hydroxy-9,14-dioxojatropha-6(17),11E-diene >164 n.d. AcO- H - - -
68 3,5,7,15-Tetraacetoxy-2-hydroxy-8-isobutyryloxy-9,14-dioxojatropha-6(17),11E-diene >196 n.d. iBuO- H - - -
69 3,5,7,15-Tetraacetoxy-2-hydroxy-8-tigloyloxy-9,14-dioxojatropha-6(17),11E-diene 0.76 ± 0.14 208 TiglO- H - - -
70 3,5,7,15-Tetraacetoxy-8-benzoyloxy-2-hydroxy-9,14-dioxojatropha-6(17),11E-diene 4.3 ± 0.2 29 BzO- H - - -
71 esulatin B 60 ± 14 >2.6 AcO- AcO- - - -
72 2,3,5,7,15- Pentaacetoxy-8-tigloyloxy-9,14-dioxojatropha-6(17),-11E-diene 17.4 ± 0.7 8.3 TiglO- AcO- - - -
73 2,3,5,8,15- Pentaacetoxy-7-benzoyloxy-9,14-dioxojatropha-6(17),11E-diene 17.1 >2.9 BzO- AcO- - - -

9-Oxojatropha-dienes
74 5,7,14- Triacetoxy-3-benzoyloxy-8,15-dihydroxy-9-oxojat-opha-6(17),11E-diene 19.5 ± 3.6 7.8 AcO- H - - -
75 5,7-Diacetoxy-3-benzoyloxy-14,15-dihydroxy-8-isobutyryloxy-9-oxojatropha-6(17),11E-diene 21.0 ± 3.4 2.8 iBuO- H - - -
76 5,7-Diacetoxy-3-benzoyloxy-14,15-dihydroxy-8-(2-methylbutyryloxy)-9-oxojatropha-6(17),11E-diene 111 ± 14 >1.7 mBuO- H - - -
77 5,7,14-Tri- acetoxy-3-benzoyloxy-15-hydroxy-9-oxojatropha-6(17),11E-diene 80 ± 6 1.9 H AcO- - - -

14-Oxojatropha-dienes
78 Euphodendroidin E >29.2 n.d H AcO- iBuO- BzO- AcO-
79 Euphodendroidin F 57.3 1.9 HO- AcO- iBuO- BzO- AcO-
80 Euphodendroidin J >144.4 n.d. HO- BzO- HO- BzO- AcO-
81 Euphodendroidin A >28.6 n.d. AcO- H iBuO- BzO- AcO-
82 Euphodendroidin K >124.4 <1.0 AcO- iBuO- iBuO- BzO- AcO-
83 Euphodendroidin L >44.9 n.d. AcO- AcO- iBuO- BzO- AcO-
84 Euphodendroidin M >42.8 n.d. AcO- AcO- iBuO- iBuO- AcO-
85 Euphodendroidin B 133.6 0.5 AcO- H mBuO- BzO- AcO-
86 Euphodendroidin N >42.5 1.1 AcO- H BzO- BzO- AcO-
87 Euphodendroidin O 27.4 1.3 AcO- H BzO- BzO- H

88 2,3,5,7,8,9,15-Heptahydroxyjatropha-6(17),11-diene-14-one 2,5,8,
9-tetraacetate-3-(benzoyloxyacetate)-7-(2-methyl-propionate) 5.5 ± 1.7 3.2 AcO- BzOAcO- AcO- iBuO- AcO-

Terracinolides
89 13α-Terracinolide G >132.6 n.d. AcO- AcO- HO- H -
90 13α-Terracinolide B >125.6 n.d. AcO- AcO- HO- AcO- -
91 Terracinolide C 15.0 ± 3.8 2.4 AcO- iBuO- H H -
92 Terracinolide J >135.4 n.d. H AcO- H AcO- -

Chloroquine 10 ± 5 8.9 - - - - -

EC50s are given in µM, unless otherwise stated. Values are the median ±median absolute deviation calculated from at least three independent assays. SI, selectivity index, calculated as
CC50 Vero/EC50 CHIKV. n.d. = not determined. Anti-CHIKV results obtained with the methodology from Bourjot et al. [21].
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5. Myrsinanes and Premyrsinanes

Myrsinane and premyrsinane diterpenes possess a 5/7/6-fused tricyclic or a 5/7/6/3-fused tetracyclic
skeleton, respectively. Rings A and B and rings B and C are trans-fused in both series, and an additional
cyclopropane ring is present in premyrsinanes. Myrsinanes generally possess ester groups at positions
C-3, C-5, C-7, and C-15, and a double bond between C-8 and C-9. In premyrsinanes, an hemiacetal
ring or a 13/17-epoxy function can be present [5]. Seven premyrsinols (93–99) and one myrsinol (100)
(Figure 5) were evaluated on the CHIKV-cell-based assay (Table 4). None of the compounds tested
except compound 98 (EC50 = 11 µM, SI = 5.8) showed significant anti-viral activity. In the premyrsinol
series, all compounds but 98 possess an ester group at C-7. It was suggested that this ester group could
have a deleterious effect on anti-CHIKV activity [29].
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Table 4. Anti-CHIKV activities of premysinanes 93–99 and myrsinane 100.

Compound CHIKV
EC50 SI R1 R2 R3 R4 R5

Premyrsinol esters
93 3β,7β,13β,17-O-Tetraacetyl-5α-O-benzoyl-14-oxopremyrsinol 78 2.2 AcO- BzO- AcO- AcO- H
94 3β,7β,15β,17-O-Tetraacetyl-5α-O-benzoyl-14-oxopremyrsinol >152 n.d. AcO- BzO- AcO- H AcO-

95 3β,7β,13β,17-O-Tetraacetyl-5α-O-(2-methylbutyryl)-14-oxopre-
myrsinol >50 <5 AcO- mBuO- AcO- AcO- H

96 7β,13β,17-O-Triacetyl-5α-O-(2-methylbutyryl)-3β-O-propanoyl-
14-oxopremyrsinol 107 2.2 PrO- mBuO- AcO- AcO- H

97 7β,17-O-Diacetyl-5α-O-benzoyl-13β-nicotinyl-3β-O-propanoyl-
14-oxopremyrsinol >107 <2.4 PrO- BzO- AcO- NicO- H

98 13β,17-O-Diacetyl-5α-O-benzoyl-7β-hydroxy-3β-O-propanoyl-
14-oxopremyrsinol 11 ± 1.4 5.8 PrO- BzO- H H AcO-

99 Premyrsinol-3-propanoate-5-benzoate-7,13,17-triacetate >144 n.d. PrO- BzO- AcO- AcO- H
Myrsinol ester

100 5α,7β-O-Diacetyl-14β-O-benzoyl-3β-O-propanoylmyrsinol 84 1.9 - - - - -
Chloroquine 10 ± 5 8.9 - - - - -

EC50s are given in µM, unless otherwise stated. Values are the median ±median absolute deviation calculated from
at least three independent assays. SI, selectivity index, calculated as CC50 Vero/EC50 CHIKV. n.d. = not determined.
Anti-CHIKV results obtained with the methodology from Bourjot et al. [21].

6. Flexibilanes

Flexibilanes are rare 15-membered macrocyclic diterpenes that possess an intramolecular furan,
a hydroxy group in position 10 and a side chain in position 8. In general, a pyranol ring complement
their structural features. The structure of flexibilanes is rigid due to strong internal hydrogen bonds
between the hydroxy group at C-10 and the ester oxygens of the side chain. The presence of five methyl
groups on the macrocycle increases the rigidity of the flexibilanes [42,43]. Among the 10 flexibilanes
evaluated (101–110) (Figure 6), tonantzitlolones B, C and F (102, 103 and 106) showed moderate
anti-CHIKV activities with EC50 values of 12, 24 and 19 µM, and SI = 10.2, >9 and 3, respectively
(Table 5) [27]. Compound 106 also showed moderate anti-SINV and anti-SFV activities.
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Table 5. Anti-CHIKV activities of flexibilanes 101–110.

Compound CHIKV EC50 SI
Flexibilanes

101 tonantzitlolone A >215 n.d.
102 tonantzitlolone B 12 ± 3 10.2
103 tonantzitlolone C 24 ± 1 >9
104 tonantzitlolone D >222 n.d.
105 tonantzitlolone E >107 n.d.
106 tonantzitlolone F 19 ± 2 3
107 tonantzitlolone G 168 >1.3
108 tonantzitlolone H >191 n.d.
109 tonantzitlolone I >208 n.d.
110 tonantzitloic acid >201 n.d.

chloroquine 10 ± 5 8.9

EC50s are given in µM; values are the median ± standard deviation calculated from at least three independent
assays. SI, selectivity index, calculated as CC50 Vero/EC50 CHIKV. n.d. = not determined. Anti-CHIKV results
obtained with the methodology from Bourjot et al. [21].

7. Protein Kinase C (PKCs) as Targets of Phorbol Esters for Inhibition of Chikungunya
Virus (CHIKV)

Recently, it has been shown that HIV-1 and HIV-2 inhibitory effects of phorbols esters were
strongly correlated with those occurring on CHIKV [16]. These results were quite surprising given the
fact that CHIKV and HIV belong to two different virus genera, Alphavirus and Lentivirus, respectively,
but most probably can be explained through a common PKC-based mechanism of action. Although
the mechanism remains poorly defined, this provides evidences that inhibition of CHIKV-induced cell
death of phorbol esters might result from an activation of PKCs [44], and that PKC is an important
target in CHIKV replication.

Protein kinase C (PKC) is a family of related serine/threonine kinases that regulate many cellular
processes such as proliferation, differentiation and apoptosis. They have been classified into several
distinct subfamilies depending on their specific requirements for activation. Classical isoforms
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(α, βI, βII, and γ) require calcium and diacylglycerol (DAG); novel isoforms (PKC-δ, -ε, -η, and
-θ) require DAG but not calcium for activation, while activation of the atypical isoforms (Mζ- ι/λ
isoforms) is independent of calcium and DAG. Following activation, PKCs undergo translocation from
the cytoplasm to the plasma membrane and act trough phosphorylation of downstream signaling
factors [45–47]. Due to their structural similarity with DAG, phorbol esters are powerful ligands of the
regulatory domain of all classical and novel PKC isoforms.

The interaction of phorbols with PKC is dependent on their substitution pattern and requires
a combination of optimal hydrogen bonding and hydrophobic contacts for high potency. Phorbols
bind to a cysteine-rich site replacing a molecule of water and establishing hydrogen bond interactions
through the oxygen atoms bound to carbons C-3, C-4, and C-20 [48–50]. The hydrophobic acyl chains of
phorbol esters allow complex formation with PKCs and their anchoring to the membrane [50]. Changes
on the C-3 oxygen atom led to lower PKC activation due to the loss of inductive and steric effects
exerted on the C-4 hydroxy group [49,51]. Since the cis-configuration of the A/B rings junction might
create a spatial arrangement incompatible with PKCs binding, the most potent PEs that modulate
PKCs activity belong to the β-series (trans-fused A/B rings) [52]. By using computer-assisted modeling,
it has been shown that the pharmacophore model for PEs required a hydrophobic region consisting of
acyl substituents on C-12 and/or C-13 and a cyclohexane- cyclopropane-annellated ring system, and
a hydrophilic domain spanning the C-3 to C-9 region including four groups able to form hydrogen
bonds. An adequate distance and orientation of the ring system relative to membrane lipid bilayer are
also necessary [51,53].

Tigliane diterpenoids, are one of the most important classes of diterpenoids from the Euphorbiaceae
family [4,5]. Among tiglianes, prostratin is a 12-deoxyphorbol ester that has been demonstrated to be a
potent activator of PKCs [47]. This compound, which has no pro-tumoral effect [10], was reported
to inhibit the entry of HIV and to compromise latent HIV viral reservoirs through PKC-dependent
mechanisms [54,55]. During the past 20 years many studies showed that phorbol derivatives stimulate
HIV replication while inhibiting virion formation thus suppressing viral latent reservoirs through
the same “kick and kill” strategy [13,34,35,56–58]. Recently, prostratin was shown to be a potent
and selective inhibitor of CHIKV [21,44]. In particular, Neyts and colleagues demonstrated that its
antiviral activity was dependent on the multiplicity of infection of the virus, and proved to be strongly
dependent on the cell type [44]. A potent antiviral activity was observed in human skin fibroblast
cells, the primary target cells of CHIKV infection. Prostratin mainly inhibits CHIKV replication at
the post-entry stage hence exhibit antiviral activity when added to cells several hours post-infection.
When tested in association with PKC inhibitors of known spectrum, the effect of prostratin appeared to
be mediated mainly by the activation of classical PKC isoforms [44].

Considering the anti-CHIKV activity of PEs related to the present work, the structure–activity
relationships have suggested the importance of the C-4 configuration, the influence of carbonyl
at C-20 or C-7 and 6,7-epoxy function (which is spatially close to C-20) and the key role of acyl
chains (See Section 1). These assumptions are in complete agreement with the pharmacophore model
developed for phorbol-PKCs interactions [44–48].

A major concern about phorbols is their pro-tumoral effect. It has been attributed to hydrophobic
acyl chains that exposed outward from the PKC/phorbol complex and likely retain complexes at the
plasma membrane. This results in a sustained PKC activation which ultimately lead to the loss of its
regulatory activity. Among PEs, a long side chain in position 13 associated with the absence of hydroxyl
in position 12 (12-deoxyphorbol esters) seemed to be responsible for a strong tumor-promoting activity.
Accordingly, PEs bearing short or medium acyl chain(s) may activate classical PKCs and should be
devoid of tumor promoter activity. This sub-class of compounds might ideally be considered for
anti-CHIKV compounds development [15,35,59,60].
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8. Conclusions

Macrocyclic diterpenoids are an important source of lead compounds for drug development [61–63].
The non-tumor-promoting tiglianes, prostratin and DDP, are considered to be promising anti-HIV
agents [20]. Ingenol mebutate a natural product identified from Euphorbia peplus is used as a topical gel
(Picato®) for treatment of keratose actinic [61–63]. Others are currently in preclinical or clinical studies.
Tigilanol tiglate (EBC-46®) has completed safety and efficacy studies for the treatment of solid tumors
in dogs [64] and is currently in clinical study for the treatment of head and neck tumors in human
adults [65].

In this review, we have shown than macrocyclic diterpenoids can also provide compounds with
powerful antiviral activities. In particular, phorbol esters, 4-deoxy and 12-deoxyphorbol esters proved
to be among the most promising anti-CHIKV agents yet reported. Considering that PKCs are potential
host targets for the inhibition of CHIKV replication and that PEs most likely act though a PKC-dependent
pathway, these compounds and their analogs offer interesting development opportunities as potential
therapeutic agents for chikungunya treatment.
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