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A B S T R A C T   

The pandemic of COVID-19 has been haunting us for almost the past two years. Although, the vaccination drive is 
in full swing throughout the world, different mutations of the SARS-CoV-2 virus are making it very difficult to put 
an end to the pandemic. The second wave in India, one of the worst sufferers of this pandemic, can be mainly 
attributed to the Delta variant i.e. B.1.617.2. Thus, it is very important to analyse and understand the mutational 
trajectory of SARS-CoV-2 through the study of the 26 virus proteins. In this regard, more than 17,000 protein 
sequences of Indian SARS-CoV-2 genomes are analysed using entropy-based approach in order to find the 
monthly mutational trajectory. Furthermore, Hellinger distance is also used to show the difference of the mu
tation events between the consecutive months for each of the 26 SARS-CoV-2 protein. The results show that the 
mutation rates and the mutation events of the viral proteins though changing in the initial months, start sta
bilizing later on for mainly the four structural proteins while the non-structural proteins mostly exhibit a more 
constant trend. As a consequence, it can be inferred that the evolution of the new mutative configurations will 
eventually reduce.   

1. Introduction 

Almost two years but COVID-19, the disease caused by SARS-CoV-2 
is still disrupting our daily lives. Most of the cities around the globe 
including India have gone through various stages of lockdown to contain 
the spread of the virus. While the development and dissemination of 
vaccines have brought rays of hope, the circulation of the different 
variants of SARS-CoV-2 is still a cause of worry. As of now, the major 
variants of concern as declared by W.H⋅O are Alpha (B.1.1.7), Beta 
(B.1.351), Gamma (P.1) and Delta (B.1.617.2). Among these, the Delta 
variant was mainly responsible for the catastrophic second wave in 
India. Thus, mutations of SARS-CoV-2 need to be studied in order to 
understand its evolution. In this regard, Martin et al. (2021) studied 
Alpha, Beta and Gamma lineages to understand the evolutionary pattern 
of the virus. Dorp et al. (2020) curated 7666 SARS-CoV-2 genomes to 
analyse the genomic diversity of SARS-CoV-2, thereby identifying 198 
filtered recurrent mutations. Yuan et al. (2020) performed global 

analysis of 11,183 sequences to reveal the genetic diversity of SARS- 
CoV-2. Phylogenetic analysis was also carried out by Bai et al. (2020) 
with 16,373 SARS-CoV-2 genomes to reveal the evolution and molecular 
characteristics of SARS-CoV-2 while in Saha et al. (2021) the authors 
analysed more than 10,000 global SARS-CoV-2 genomes which identi
fied 7209, 11,700, 119 and 53 unique mutation points as substitutions, 
deletions, insertions and SNPs. In Ghosh et al. (2021) performed 
phylogenetic analysis on more than 18,000 sequences to identify 
signature SNPs. Furthermore, in Saha et al. (2020a, 2020b), Saha et al. 
performed analysis of 566 Indian SARS-CoV-2 genomes to find the major 
mutation points in such genomes. On the other hand, entropy has been 
proven to be a very potent tool for the analysis of epidemics (Lucia et al., 
2020). In Santos et al. (2021), Santos et al. proposed EntroPhylo which is 
an entropy based tool to select phylogenetic informative genetic regions 
and primer design. The tool considers the entropy value of each site and 
consequently the selected region is used for primer design. For evalua
tion purpose, EntroPhylo was used on the sequences of bovine 
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papillomavirus L1 gene. Vopson et al. (Vopson and Robson, 2021) have 
studied genetic mutations by considering information entropy of 
genome and have tested their method on the reference sequence of 
SARS-CoV-2. Site specific entropy analysis was carried out by Ghanchi 
et al. (2021) on 90 SARS-CoV-2 genomes to investigate phylogeny, ge
netic variation and mutation rates of the SARS-CoV-2 strains in Pakistan. 
They concluded that the higher entropy and diversity that was observed 
in the early days of pandemic as compared with later strains suggest the 
increasing stability of the genomes in the subsequent waves of COVID- 
19. 

Motivated by the literature, in this work, we have analysed the 26 
virus proteins of SARS-CoV-2 using entropy-based approach to find the 
mutational trajectory of SARS-CoV-2. In this regard, more than 17,000 
protein sequences of Indian SARS-CoV-2 genomes from the months of 
March 2020 to July 2021 are considered for alignment using MAFFT 
(Katoh et al., 2002). Subsequently, it can be observed that till the 
months of February–March 2021 there is an increase in average entropy 
of each of the structural proteins and then they start declining, thereby 
indicating that the entropy of each such SARS-CoV-2 protein seem to 
have reached a sort of stability in India. On the other hand, the non- 
structural proteins mostly exhibit a more constant trend of mutational 
entropy. Moreover, Hellinger distance is also used in this work to show 
the difference of the mutation events between each consecutive month 
for each of the 26 virus proteins which further substantiates our claim 
that the evolution of the new mutative configurations will eventually 
reduce. It is to be noted that, in the past year, there has been a lot of work 
pertaining to the evolution of SARS-CoV-2. But mostly those works 
involve phylogenetic analysis to identify the mutation points in the virus 
like (Saha et al., 2021). However, to the best of the authors' knowledge, 
mutational trajectory considering entropy for Indian sequences is a 
novel topic which has not been addressed as yet in the literature. 

2. Materials and methods 

2.1. Preparation of sequence dataset 

Initially, 17,271 available genomic sequences of SARS-CoV-2 from 
India spanning March 2020 to July 2021 are retrieved from GISAID.1 

These sequences are aligned with respect to the reference sequence (NC 
045512.2)2 using MAFFT (Katoh et al., 2002). Thereafter, the aligned 
sequences are translated into the protein sequences. In this study, 26 
virus proteins are considered and corresponding sequence datasets are 
built accordingly from the aforementioned 17,271 protein sequences. 
Each dataset is cleaned by removing those sequences with 1) more than 
three amino acid consecutive deletions, 2) stop codons inside the Open 
Reading Frame and 3) number of consecutive deletions not a multiple of 
3. After these refinements, the number of sequences for each month is as 
reported in Table 1. Each sequence is related to a given month starting 
from March 2020 till July 2021. 

2.2. Entropy-based approach 

Let A be a set of symbols made of the twenty canonical amino acids 
plus the symbol “-” indicating a deletion. Let S = s1, s2, …, sm be a set of 
sequences of a given protein (in our case, we have considered the 26 
different virus proteins as reported above), where m is the total number 
of sequences. Since there are no insertions in the considered sequences 
with respect to the reference, a matrix M of dimension n × m (where n is 
the length of reference and m is the number of sequences) can be derived 
from the performed alignment where each element m(i, j) ∈ A is an 

Table 1 
Number of sequences SARS-CoV-2 proteins for each month.  

SARS-CoV-2 
Proteins 

Number of sequences per month 

Mar 
20 

Apr 
20 

May 
20 

Jun 
20 

Jul 
20 

Aug 
20 

Sep 
20 

Oct 
20 

Nov 
20 

Dec 
20 

Jan 
21 

Feb 
21 

Mar 
21 

Apr 
21 

May 
21 

Jun 
21 

Jul 
21 

STRUCTURAL 
Envelope 184 435 971 1062 681 631 628 380 451 981 500 980 1904 3051 2401 1289 631 
Membrane 189 441 977 1062 683 632 626 380 451 979 500 980 1857 3006 2407 1293 632 
Nucleocapsid 188 440 969 1054 679 629 629 380 449 976 495 971 1875 3032 2386 1279 620 
Spike 188 437 954 1025 669 616 602 353 410 893 476 893 1735 2600 2048 1124 601  

Open Reading Frames (ORFs) 
ORF3a 189 441 963 1049 633 560 589 334 376 832 354 783 1802 3014 2399 1289 631 
ORF6 189 441 976 1061 681 632 629 380 452 981 499 979 1905 3046 2401 1292 630 
ORF7a 186 440 968 1057 678 622 627 377 449 979 493 962 1881 3020 2330 1245 623 
ORF 7b 189 441 975 1055 681 626 627 379 448 969 488 942 1860 3041 2395 1288 628 
ORF8 159 432 951 1033 671 621 609 367 429 912 460 819 1266 2640 2352 1264 622 
ORF10 189 441 976 1057 680 632 629 377 450 968 497 973 1869 3051 2404 1292 625  

Non-Structural Proteins (NSPs) 
NSP1 189 441 970 1061 680 629 628 379 452 979 499 977 1903 3040 2398 1285 630 
NSP2 188 434 966 1060 683 630 629 380 450 977 499 966 1897 3036 2384 1276 627 
NSP3 185 429 961 1044 680 629 621 370 437 942 494 937 1777 2872 2334 1249 623 
NSP4 187 440 975 1062 683 631 629 380 451 983 498 976 1900 3045 2400 1290 632 
NSP5 189 440 977 1061 682 632 628 380 452 982 499 979 1906 3052 2408 1293 632 
NSP6 189 439 977 1061 682 632 629 380 452 981 499 951 1722 2938 2392 1288 631 
NSP7 189 441 977 1062 683 632 629 380 451 983 500 980 1905 3054 2406 1293 632 
NSP8 189 441 977 1062 683 632 629 380 452 982 499 980 1901 3053 2408 1293 632 
NSP9 189 440 977 1062 683 632 629 380 452 983 500 980 1905 3054 2407 1293 632 
NSP10 189 441 977 1062 683 632 629 379 452 981 500 980 1904 3053 2400 1293 632 
NSP11 189 441 977 1062 683 632 629 377 452 981 498 980 1907 3054 2408 1293 632 
NSP16 187 440 967 1053 675 605 613 371 450 969 496 972 1903 3041 2402 1292 632  

OTHER NSPs 
EndoRNAse 189 441 974 1060 683 632 628 380 451 979 499 979 1907 3042 2398 1291 632 
Exon 188 437 960 1035 658 599 627 376 450 975 489 964 1837 2946 2271 1240 567 
Helicase 189 440 974 1062 683 632 629 379 452 983 500 979 1906 3050 2401 1290 631 
RdRp 189 437 971 1057 681 632 629 376 449 963 495 974 1898 3049 2405 1290 629  

1 https://www.gisaid.org/  
2 https://www.ncbi.nlm.nih.gov/nuccore/1798174254 
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amino acid or a deletion occurring in the alignment in position i of the jth 

sequence. For every aligned position i, the distribution frequency pi(a) 
for a ∈ A is defined as the ratio between the number of occurrences of a 
in position i and the total number of sequences m. Entropy of a position i 
is computed through the canonical Shannon entropy as: 

E

(

i

)

=
∑

a∈A
pi

(

a

)

log2

(

pi

(

a

))

The average entropy AVE over all the positions of a given protein is 
defined as: 

AVE =

∑

i=1..n
E(i)

n 

When the average entropy is computed on a given subset of sites S, it 
is indicated as AVE(S): 

AVE(S) =
∑

i∈SE(i)
|S|

where ∣S∣ is the number of sites in S. 
Average entropy is separately computed on sequence sets related to 

each month starting from March 2020 till July 2021. Another instru
ment commonly used in information theory to compare two probability 
distributions, viz. the Hellinger distance is implemented to evaluate how 
residues are differently distributed between different sample sets for a 
given position. 

Given two sequence sets A and B (in our case they will correspond to 
sequence associated to two different months) the relative frequencies of 

a given amino acid (or “-” deletion) for a given position i are defined as 
pi

A(a) and pi
B(a) for A and B respectively. The Hellinger distance be

tween sequence sets A and B related to position i, H(i)A, B is defined as 
follows: 

H(i)A,B =
1
̅̅
(

√
2
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

a∈A

( ̅̅̅̅̅̅̅̅̅̅̅

pA
i (a)

√

−

̅̅̅̅̅̅̅̅̅̅̅

pB
i (a)

√ )
2

√

As for the entropy, as described above, the average Hellinger dis
tance between the two sets A and B over all the positions of the given 
protein is defined as: 

AVHA,B =

∑
i=1..nH(i)A,B

n  

3. Results 

The mutation rate of SARS-CoV-2 is evaluated in time (with a tem
poral interval of a month) by considering average entropy AVE and 
average Hellinger distance AVH between consecutive months. Figs. 1 
and 2 report entropy and Hellinger analysis respectively. In the four 
panels of both figures, data related to four classes of proteins are re
ported: structural proteins (panel A), Open Reading Frames (ORF) 
(panel B), Non-Structural Proteins (NSP) (panel C) and other NSPs 
(panel D). In panel A of Fig. 1, the analysis is also focused on the Re
ceptor Binding Domain (RBD) of Spike protein restricting the average 
entropy on positions from 318 to 540 (yellow plot). The entropy analysis 
clearly shows a significant different behavior between structural, ORF 
and NSP proteins. In panels A (structural) and B (ORF), there is an 
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Fig. 1. Average entropy, AVE, over all position sites of amino acid distribution is shown for each month starting from March 2020 till July 2021. Panel A is related to 
structural proteins (yellow plot is related to average entropy restricted to Receptor Binding Domain of Spike, AVE (RBD)), Panel B to ORF, Panel C to NSP and Panel D 
to other NSP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Average Hellinger distance, AVH, over all position sites, between amino acid distribution of two consecutive months is shown starting from March 2020 till 
July 2021. Panel A is related to structural proteins, Panel B to ORF, Panel C to NSP and Panel D to other NSP. 
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overall increase of mutation entropy from March 2020 till Februar
y–April 2021, where structural proteins typically report the highest 
entropy values. On the other hand, panels C (NSP) and D (other NSP) 
exhibit a constant and significantly lower entropy values. Spike (panel A 
black plot) and Nucleocapsid proteins (panel A red plot) show a more 
evident and constant increase of entropy till March 2021 while Mem
brane (panel A blue plot) shows a smaller peak in the same period. After 
initial higher values (March–April 2020 probably due to deletions 
around position 38), Envelope (panel A green plot) protein shows low 
entropy values till July 2021. RBD in Spike follows the same trend as the 
whole Spike protein, even if with smaller entropy values till February 
2021 and then values rapidly decrease till July 2021. From March 2021 
till July 2021 entropy values of Spike, Nucleocapsid and Membrane 
decrease due to the delta variant becoming predominant and limiting 
the exploration of new mutations that were initially less homogeneously 
distributed. Plots of Panel B (ORF) show a less homogeneous behavior, 
in particular ORF8 is the only protein with a constant entropy increase 
along the entire observed interval time. ORF7a shows a trend that is very 
similar to structural proteins with a clear entropy peak in April 2021. 
NSP proteins (panels C and D) show low entropy values and there is no 
particularly significant increase excepting NSP6 which shows compar
atively higher values from November 2020. Obtained results clearly 
highlight different mutational scenarios between structural and non- 
structural proteins. Structural proteins typically show high and 
increasing entropy values in time till March 2021 as the result of the 
escape strategy from immune system pressure while non-structural 
proteins, being less under immune system pressure, show lower and 
constant entropy values. 

Hellinger analysis provides a complementary information about how 
the overall mutation rate, estimated through entropy, is differentially 
distributed in terms of residue distribution between consecutive months. 
The entropy accounts for how much the virus is mutating while the 
Hellinger distance shows the difference of the mutation events between 

two months. In general, Hellinger distance between two months could 
be high even if the corresponding entropies assume the same value. 
Considering this view, a high Hellinger distance value coupled with low 
difference between entropy values can be interpreted as a change of 
direction of the mutational trajectory. Hellinger distance values, 
observed in Fig. 2, are coherent with entropy values observed in Fig. 1, 
typically showing regular behavior. This is particularly evident for non- 
structural proteins (panels C and D) showing flat Hellinger distance 
profiles. 

The overall coherence between the two measures (Figs. 1 and 2) 
means that the mutational scenario, in particular for structural proteins 
is following a quite regular trend evolving more rapidly till February to 
March 2021 and then stabilizing the mutational events after those 
months due to the predominance of Delta variant. Furthermore, Fig. 3 
depicts the fragment wise entropy of Spike protein for Delta variant. As 
can be seen from the figure, the highest contribution to entropy is due to 
the 1–200 amino acid region. It is to be noted that mutations for Delta 
variant like T19R, V70F, T95I, G142D, E156-, F157- and R158G occur in 
this region of Spike protein. The pink line in the figure refers to the 
reference sequence of the entire Spike protein. Moreover, Fig. 4(a) and 
(b) show the plot of confirmed and deceased cases in India till 31st 
October 2021. For example, western part of India has a very high 
number of confirmed and deceased cases which can be attributed to the 
Delta variant which was mostly responsible for the catastrophic 2nd 
wave in India. These two figure are considered from https://www.covi 
d19india.org/. 

4. Conclusion 

The present work focuses on analysing the average mutation rate of 
SARS-CoV-2 by considering the 26 virus proteins in India from March 
2020 to July 2021 through an entropy-based approach. It is clearly 
shown that, concerning structural proteins, there is an overall increase 

Fig. 4. Illustration of (a) Confirmed and (b) Deceased cases of India to show the effects of SARS-CoV-2 in the different regions of the country.  
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of mutation rate from March 2020 till March 2021 and then it starts to 
decrease, thereby indicating that the mutation scenario is reaching a sort 
of stability so that the average entropy decreases. This can be explained 
by the emergence of Delta variants becoming predominant, so that 
evolution of the new mutative configurations have reduced. The same 
trend is observed among the four structural proteins, even if with 
different scales and minor differences, for both entropy and Hellinger 
analysis. This reinforces the significance of results providing effective
ness to our insights. On the contrary, non-structural proteins show an 
overall constant or slightly increasing trend with low entropy values. 
This behavior can be read as the result of the immune system pressure, 
acting primarily on structural proteins, pushing the virus to preferen
tially mutate those proteins, while the effect of selective pressure on 
non-structural proteins has a minor impact. 

In conclusion, the proposed work constitutes a novel approach to the 
study of mutational trajectories in India and can be applied to different 
countries and biological datasets to shed light and to provide a different 
point of view of virus evolution. 
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Santos, F.L.S.G., de Sá Leitão Paiva Júnior, S., de Freitas, A.C., et al., 2021. EntroPhylo: 
an entropy-based tool to select phylogenetic informative regions and primer design. 
Infect. Genet. Evol. 92, 104857 https://doi.org/10.1016/j.meegid.2021.104857. 

Vopson, M.M., Robson, S.C., 2021. A new method to study genome mutations using the 
information entropy. Phys. A: Stat. Mech. Appl. 584, 126383 https://doi.org/ 
10.1016/j.physa.2021.126383. 

Yuan, F., Wang, L., Fang, Y., et al., 2020. Global SNP analysis of 11,183 SARS-CoV-2 
strains reveals high genetic diversity. Transbound. Emerg. Dis. 11 https://doi.org/ 
10.1111/tbed.13931. 

D. Santoni et al.                                                                                                                                                                                                                                 

http://www.nitttrkol.ac.in/indrajit/projects/COVID-MutationTrajectory-India/
http://www.nitttrkol.ac.in/indrajit/projects/COVID-MutationTrajectory-India/
https://doi.org/10.1016/j.ijid.2020.08.066
https://doi.org/10.1016/j.meegid.2020.104351
https://doi.org/10.1016/j.meegid.2020.104351
https://doi.org/10.1371/journal.pone.0256451
https://doi.org/10.1016/j.ymeth.2021.09.005
https://doi.org/10.1016/j.ymeth.2021.09.005
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.3389/fphy.2020.00274
https://doi.org/10.1016/j.cell.2021.09.003
https://doi.org/10.1016/j.cell.2021.09.003
https://doi.org/10.1016/j.meegid.2020.104457
https://doi.org/10.1016/j.meegid.2020.104522
https://doi.org/10.1093/bib/bbab025
https://doi.org/10.1016/j.meegid.2021.104857
https://doi.org/10.1016/j.physa.2021.126383
https://doi.org/10.1016/j.physa.2021.126383
https://doi.org/10.1111/tbed.13931
https://doi.org/10.1111/tbed.13931

