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Comparing two machine learning 
approaches in predicting lupus 
hospitalization using longitudinal 
data
Yijun Zhao  1*, Dylan Smith1 & April Jorge2,3

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by flares 
ranging from mild to life-threatening. Severe flares and complications can require hospitalizations, 
which account for most of the direct costs of SLE care. This study investigates two machine learning 
approaches in predicting SLE hospitalizations using longitudinal data from 925 patients enrolled 
in a multicenter electronic health record (EHR)-based lupus cohort. Our first Differential approach 
accounts for the time dependencies in sequential data by introducing additional lagged variables 
between consecutive time steps. We next evaluate the performance of LSTM, a state-of-the-art deep 
learning model designed for time series. Our experimental results demonstrate that both methods 
can effectively predict lupus hospitalizations, but each has its strengths and limitations. Specifically, 
the Differential approach can be integrated into any non-temporal machine learning algorithms and 
is preferred for tasks with short observation periods. On the contrary, the LSTM model is desirable 
for studies utilizing long observation intervals attributing to its capability in capturing long-term 
dependencies embedded in the longitudinal data. Furthermore, the Differential approach has more 
options in handling class imbalance in the underlying data and delivers stable performance across 
different prognostic horizons. LSTM, on the other hand, demands more class-balanced training data 
and outperforms the Differential approach when there are sufficient positive samples facilitating 
model training. Capitalizing on our experimental results, we further study the optimal length of 
patient monitoring periods for different prediction horizons.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by heterogeneous disease 
manifestations, and disease activity can fluctuate over time. Patients with SLE can experience periods of severe 
disease flares, for which hospitalization may be necessary1. Hospitalizations for SLE are associated with significant 
morbidity and mortality and account for most of the direct costs of SLE care2,3. Predicting disease outcomes in 
chronic medical conditions such as lupus4 is challenging but critical to facilitate rigorous monitoring procedures 
and appropriate treatment. In recent years, data driven approaches such as machine learning (ML) models 
have have been applied to predicting clinical outcomes for SLE and other chronic conditions5–9. Clinical data 
associated with these studies are typically collected at regular time intervals and, thus, exhibit strong temporal 
dependencies. However, a common limitation is that most well-established models, including decision trees 
(DT)10, random forest (RF)11, logistic regression (LR)12, and neural networks (NN)13, are ill-suited for modeling 
time series data because they assume observations at different time steps are independent and identically dis-
tributed (i.i.d.).

An intuitive technique to capture data dependencies in non-temporal ML models is to focus on the changes 
in each temporal feature between consecutive observations in the longitudinal data, denoted as the “Differential” 
approach onward. Figure 1a illustrates the patient electronic health record (EHR) records acquired at regular 
intervals (e.g., 6M). In addition to static demographic features, each period contributes a set of time-stamped 
clinical features capturing a snapshot of the disease. Figure 1b presents the data construction process in the 
Differential approach for the task of predicting patients’ 1 year hospitalization outcomes using four observation 
periods (i.e., 2 years). Additional lagged variables are created for subsequent time periods to obtain the change 
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of each clinical variable between the current and previous periods. Consequently, desired ML models can be 
trained using the entire panel of features, including patient demographics. Because dependencies in the longi-
tudinal data are modeled with engineered lagged variables, the Differential approach facilitates the application 
of a rich family of non-temporal ML models (e.g., DT, RF, LR, NN, etc.) while still accounting for the progres-
sion of a patient’s disease. The feature engineering technique described here has delivered promising results in 
similar studies concerning the prediction of the disease courses in multiple sclerosis and lupus patients9,14,15 and 
in estimating in-scanner head pose changes during structural MRI16.

Another approach to investigate the dynamics of data sequences is to apply models based on recurrent neural 
networks (RNN17). Figure 1c shows a time series data prepared for deployment of an LSTM model to solve the 
task described above. Since the data dependencies are captured by the ML algorithm, lagged variables are no 
longer necessary. Instead, demographic features are appended to the clinical features at each time step to form 
equal-length sequences and, by that, facilitate model training. RNNs have the advantage over non-temporal 
ML models in that they can maintain contextual information across the entire sequence. Nevertheless, vanilla 
RNNs are known for their vanishing gradient issues18 which make it difficult to discover latent patterns over a 
long sequence of data. Long Short-Term Memory (LSTM) networks19 are a variant of RNN designed to address 
this issue and have delivered promising success in the medical domain20–23. We provide a brief introduction to 
the LSTM framework in the “Materials and methods” section.

Our study focuses on comparing the effectiveness of the Differential and the LSTM approaches in predict-
ing hospitalization for patients with SLE. The two techniques are fundamentally different: the former explores 
limited temporal dependencies in order to leverage a wide variety of non-temporal models, while the latter 
focuses on the full exploitation of temporal phenomena employing a narrow class of RNN models. Another key 
difference is the technique used to capture disease progression in longitudinal data. The Differential approach 
relies heavily on feature engineering in the pre-processing stage that occurs before model training. The LSTM 
model, on the other hand, draws its strength from the model’s particular architecture and the learning process 
applied to train it. Thus, our study is a comparison of two distinct approaches to model longitudinal EHR data. 
Our findings suggest that the Differential approach is more stable than the LSTM model. However, the LSTM 
model can achieve notably better performance under certain conditions.

In our motivating domain, the practitioners are interested in both long- and short-term prognoses of SLE 
patients to necessitate close monitoring and proper treatment administration. Thus, we formulated our machine 
learning task to predict a patient’s hospitalization at a future horizon (Y) using a period of clinical observations 

Figure 1.   Experimental data construction. (a) Original patient longitudinal record extracted at regular time 
intervals. (b) Features and labels for the Differential approach. Additional lagged variables are created for 
subsequent time periods to capture the change of each clinical variable between the current and previous time 
periods. (c) Time series data for LSTM model. Demographic features are appended to the clinical features at 
each time step to form equal-length sequences to facilitate model training. Labels in both (b) and (c) indicate 
patients’ hospitalization outcomes in the year after the feature assessment periods.
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(X). We examined the two models’ performance over a set of varying X and Y time intervals and strive to identify 
the optimal method for each X

predict
−−−→ Y  task. An essential parameter for temporal machine learning models is 

the length l of the input sequences. In our study, l corresponds to the number of time intervals needed to collect 
the longitudinal clinical and lab data. While using an exceedingly small l could result in inadequate information 
to render an effective prediction, an overly large l will incur unnecessary costs and, more importantly, delayed 
treatment. Capitalizing on the experimental results, we also identified the optimal patient monitoring period 
(X) for each prediction horizon (Y).

Materials and methods
Data and preprocessing.  We utilized our study on longitudinal EHR-based clinical records from the Mas-
sachusetts General Brigham (MGB) lupus study cohort, which includes patients from two large academic medi-
cal centers and multiple community hospitals. Our study population includes 925 patients identified from the 
MGB’s observational, EHR-based lupus cohort from 2016 to 2019. These patients were selected from a previous 
SLE phenotype study24 cohort, with the additional requirement of at least two visits with an MGB rheuma-
tologist during the period of data accrual. Since each patient’s record forms a longitudinal time series with 6M 
intervals, we performed missing variable estimation for a given variable using linear interpolation/extrapolation 
fitted to its observed data points.

Each patient’s data includes five demographic and 52 time-stamped features that were selected by an SLE 
domain expert from readily available electronic health record data with clinical relevance to SLE. The latter is 
derived from categories including clinical manifestations, SLE medications, laboratory values, and healthcare uti-
lization. Supplemental Table S1 provides the detailed features included in each category. This study was approved 
by the Mass General Brigham Institutional Review Board, and informed consent was waived. All procedures 
were carried out following relevant guidelines and regulations.

The outcome of interest was hospitalization for SLE hospitalization (defined as a primary SLE discharge 
diagnosis code of ICD-9 7.10.0 and ICD-10 M32.* excluding M32.0). We incorporated features using a period 
of clinical observations (X) to predict this outcome at a future horizon (Y). We denote such a task as:

For X, we utilized with data sequences formed using time steps of 6, 12, 18, and 24 months, respectively. 
For Y, we varied the prediction horizons in 3, 6, 9, and 12 months, respectively. The above time intervals were 
provided by our domain experts based on their practical values.

The longitudinal patient records are irregular and unevenly distributed, owing to the nature of medical 
records. To form regular temporal sequences across all patients, we divided the data according to the desired 
observation interval X for each experiment. Multiple visits within a same time step were averaged to offer a set 
of observations equivalent to one clinical visit. Data averaging was applied only to lab features when a patient 
had multiple lab visits within the same time step. Per our domain expert’s recommendation, averaging the lab 
results within a 6M interval is acceptable for the chronic disease with the potential benefit of reducing the noise 
in the data.

Differential approach.  As illustrated in Fig. 1b, our Differential approach captures a patient’s disease pro-
gression by setting the longitudinal data to a time series structure and lagged at 6-month intervals to capture the 
disease progression. We assembled the model’s training data D for a given observation interval X and prediction 
period Y in two stages. First, independent training sequences of length X were extracted while moving step-
wise along the time series. We labeled the instances with corresponding target outcome (i.e., with- or without-
hospitalization) at time Y on the horizon. As an illustration, for the task of 2Y

predict
−−−→ 6M , the goal was to use 

information in a 2-year observation interval to predict patients’ hospitalization outcomes in the next 6 months. 
The training data was created as follows for each patient pi (i = 1, 2, . . . , 925):

where xi denotes input time step i and each 2-year observation period consists of four time steps. n is the total 
length of the original time series. yi denotes the class label in 6 months intervals. The final dataset D consists of 
all sequences extracted from all patients. In the second stage, additional lagged variables were created between 
consecutive time steps for each training instance as illustrated in Fig. 1b.

The number of training sequences in D and their corresponding class labels are dependent on the choice of X 
and Y because fewer sequences can be extracted with a longer observation interval X and the prevalence of class 
1 patients increases with larger Y because a longer prediction period leads to increased chances of hospitaliza-
tion. Table 1 presents the distribution of D’s size and the number of class 1 (i.e., SLE hospitalization) instances 
across X and Y values selected for our study. In particular, the number of training instances decreases by 925 at 

X
predict
−−−→ Y

(1)

{x0, x1, x2, x3}pi
predict
−−−→ y4pi

{x1, x2, x3, x4}pi
predict
−−−→ y5pi

{x2, x3, x4, x5}pi
predict
−−−→ y6pi

.

.

.

{xn−4, xn−3, xn−2, xn−1}pi
predict
−−−→ ynpi
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each 6M increment of X (e.g., from 5550 to 4625 as X changes from 6M to 12M). This is because each patient 
will contribute exactly one less sequence when the observation interval is increased by one period.

LSTM model.  Long short-term memory (LSTM)19 belongs to the family of recurrent neural networks 
(RNNs)17, which is designed to model sequential or time series data. As illustrated in Fig. 2a, an RNN architec-
ture accounts for information from a contextual window of arbitrary length n via the edges that connect adjacent 
time steps. The same model structure and weights are used for each time period. Adjacent time steps are con-
nected via recurrent nodes in the hidden layer. Prediction is obtained at the last time step ( ̂y ). LSTM is a variant 
of RNN developed to mitigate the vanishing gradient problem that can be encountered when training traditional 
RNNs18. As illustrated in Fig. 2b, the LSTM model augments the traditional RNN hidden nodes with a memory 
cell. Inside each cell, three “regulators” help LSTM selectively remember and forget information passed into the 
cell. These regulators are named input gate, output gate, and forget gate. Specifically,

•	 Input gate: this gate decides what information is relevant to add to the cell for the current step. It takes activa-
tion from the current time step as well as from the hidden layer at the previous time step. If the gate’s value 
is zero, the flow from another node is cut off, whereas if its value is one, all flow is passed, i.e., 

•	 Forget gate: this gate regulates what information to discard from the cell. This decision is made by a sigmoid 
layer applied to the previous hidden state ht−1 and current input xt , i.e., 

(2)it = σ(Wi [̇ht−1, xt ] + bi)

(3)ft = σ(Wf [̇ht−1, xt ] + bf )

Table 1.   Data distribution across observation window X and prediction horizon Y. *Number in parentheses 
indicates percentage of class 1 (SLE hospitalization) instances out of total. X and Y denote observation window 
and prediction horizons, respectively.

X

Y

3M 6M 9M 12M

Total Class 1 Total Class 1 Total Class 1 Total Class 1

6M 5550 117 (2.11%)* 5550 207 (3.73%) 5550 286 (5.15%) 5550 358 (6.45%)

12M 4625 99 (2.14%) 4625 172 (3.72%) 4625 234 (5.06%) 4625 291 (6.29%)

18M 3700 76 (2.05%) 3700 131 (3.54%) 3700 181 (4.89%) 3700 221 (5.97%)

24M 2775 59 (2.13%) 2775 96 (3.46%) 2775 131 (4.72%) 2775 160 (5.77%)

30M 1850 36 (1.95%) 1850 59 (3.19%) 1850 74 (4.00%) 1850 96 (5.19%)

36M 925 12 (1.30%) 925 24 (2.59%) 925 31 (3.35%) 925 44 (4.76%)

Figure 2.   RNN and LSTM Cell. (a) Unfold illustration of RNN for training time series data of length n. Same 
model structure and weights are used for each time period. Adjacent time steps are connected via recurrent 
nodes in the hidden layer. Each subsequent step receives information from current input and previous hidden 
layer. Prediction is obtained at the last time step ( ̂y ). (b) Cell that replaces hidden nodes in (a) in the LSTM 
model.
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•	 Output gate: this gate decides what the next hidden state should be. Similar to the forget gate, it is another 
sigmoid layer applied to the previous hidden state ht−1 and current input xt , i.e., 

•	 Finally, an updated cell state ( Ct ) and a new hidden state ( ht ) will be passed to the next cell as follows: 

ht = ot ◦ tanh(Ct)

	   where C̃t = tanh(Wc [̇ht−1, xt ] + bc]) and operator ◦ denotes element-wise multiplication.

The W’s and b’s in Eqs. (2)–(5) denote the weight matrices and bias vectors that need to be learned during 
training. Our training data for the LSTM model is the same as the Differential approach in terms of size and 
positive instance prevalence. However, the LSTM data does not include the extra lagged variables because the 
temporal dependencies of the time series are captured by the model architecture.

We assembled the LSTM model’s training data following the same two-stage process outlined in for the 
Differential approach. In the first stage, independent training sequences were extracted according to Eq. (1) 
depending on the observation interval X and prediction period Y. In the second stage, equal-length time series 
data was formed using the process described in Fig. 1c.

Addressing data imbalance.  We observe in Table  1 that the prevalence of SLE hospitalization events 
(class 1) ranges from 1.3 to 6.45% in the study data depending on the X and Y values. This severe imbalance 
in class distribution poses a challenge for predictive modeling because standard machine learning algorithms 
assume an equal number of class representations in the training data. Learning directly from an imbalanced 
dataset would lead to unsatisfactory performance in the minority class when the algorithms strive to minimize a 
global loss. While there are various techniques to rectify the data imbalance issue in training ML models, some 
methods such as undersampling and SMOTE25 are ineffective for severely imbalanced datasets due to their 
technical limitations26.

For the Differential approach, we experimented with the oversampling and the bootstrap aggregating with 
random undersampling27 (i.e., bagging) methods, and the latter led to better performance with consistent higher 
AUC scores across various observation (X) and prediction (Y) intervals. Detailed comparison results are pro-
vided in Supplemental Fig. S2. We used the better model to compare with the LSTM approach. In particular, the 
“bagging” technique learns multiple decision boundaries between the minority and various subsets of majority 
samples and simultaneously leverages the advantages of ensemble learning. To this end, we first generated 100 
“bags” of balanced datasets from the training data, where each “bag” contained all minority instances and an 
equal number of majority instances randomly sampled (with replacement) from the entire majority population. 
We next trained 100 sub-models on the balanced “bags” and aggregated the results of all sub-models by averag-
ing their class predictive probabilities. The number of bags (i.e., 100) was selected as a hyperparameter. For the 
LSTM model, due to its computational constraints, we addressed the class imbalance issue by oversampling28. 
That is, each minority sequence is duplicated r − 1 times to create balanced training data, where r is the ratio 
between the majority and minority instances.

Experimental framework.  Figure 3 illustrates our model training framework. We evaluated each model’s 
performance using a 20-fold (outer) cross-validation. The process involves randomly splitting the entire dataset 
into 20 disjoint groups (i.e., folds), of approximately equal size. Subsequently, each model is trained 20 times 
using the i-th ( i = 1, 2, . . . , 20 ) fold as the test data, and the remaining 19 folds as the training data ( Ti ). For each 
evaluation metric, we report a model’s performance as the mean of the 20 out-of-sample scores on the 20 test 
folds, indicated by the upper right box in Fig. 3.

Red boxes in Fig. 3 indicate additional layers for the Differential approach corresponding to the bagging 
method used in addressing class imbalance. Therein, each Differential’s training iteration produces 100 sub-
models fitted on 100 balanced bags. We compute the class label of each test instance by averaging its class scores 
produced by the 100 sub-models. For the LSTM models, since we replaced bagging with oversampling, each of its 
training iterations produces one test classifier trained on a balanced dataset with duplicated minority instances.

Lastly, we applied a nested cross-validation to facilitate hyper-parameter selection. To this end, we further 
partitioned training data Ti in each outer iteration i ( i = 1, 2, . . . , 20 ) into 20 folds and conduct a grid search29 
on a set of algorithm-specific parameters. The optimal parameter set ( Pi ) for Ti was chosen to produce the high-
est average AUC (Area Under the ROC Curve)30 score on the 20 test folds. We reported the performance of the 
model trained using Ti and Pi.

We trained our models on a PowerEdge R740 Linux machine with two Xeon 2.60GHz CPUs (12 cores), 192GB 
of memory, and a 32GB NVIDIA Tesla V100 GPU. We trained the LSTM model for 50 epochs with a batch size 
of 72. The convergence was accomplished using the Adam optimizer with a learning rate of 0.0001, minimizing 
the cross-entropy loss between the model output and class labels.

We evaluated the Differential approach’s performance using a majority-voting ensemble of six non-temporal 
base learners, namely, decision trees10, random forests11, logistic regression12, naive Bayes, neural network13, 
and support vector machine31. In addition to overall accuracy, we compared recall and specificity to study the 
models’ respective efficacy in the positive and negative classes across varying observation periods (i.e., X = 6M, 
12M, 18M, 24M, 30M, and 36M) and varying prediction horizons (i.e., Y = 3M, 6M, 9M, and 12M). We further 
compared the models using additional evaluation metrics, including AUC, PPV, F1, and F0.

(4)ot = σ(Wo [̇ht−1, xt ] + bo)

(5)Ct = ft ◦ Ct−1 + it ◦ C̃t
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Figure 3.   Model training framework. Red boxes indicate additional layers in the Differential approach due to 
the bagging method in addressing class imbalance.

Figure 4.   Performance comparison in overall accuracy, recall, and specificity. Each row represents an 
observation period X, and each column represents a prediction horizon Y. Performance blocks under the 
“Differential” and “LSTM” columns adopt color scale green-to-red for values from high to low. Blocks under the 
“L–D” column uses a brown-to-yellow scale indicating large to small gains LSTM has over Differential.
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Results
Figure 4 displays the overall accuracy, recall, and specificity across varying feature assessment periods and 
outcome assessment periods. We applied color scales to visualize the relative performance. The color scale is 
green-to-red for the performance blocks under the “Differential” and “LSTM” columns, corresponding to values 
from high to low. Blocks under the “L–D” column uses a brown-to-yellow scale indicating large to small (can be 
negative) gains LSTM has over Differential.

Overall trends.  From the overall accuracy blocks in Fig.  4 (Row #1), we observe that the Differential 
approach is stable compared to the LSTM model. We believe this is due to the bagging technique, which not 
only balanced the training data but also offers the benefit of ensemble learning32 (i.e., an ensemble of 100 sub-
models). Although it was infeasible to institute the same method for LSTM due to resource limitations, LSTM 
achieved notably better performance than Differential with longer intervals of the feature assessment period 
X and longer intervals of the outcome assessment period Y (i.e., the lower right regions). One explanation for 
LSTM’s advantage in this region is the long observation periods and the model’s efficacy in capturing long-term 
contextual information in the time series data.

Another observation is that LSTM’s predictions are generally biased towards the positive class. This pattern 
is evidenced by the brown-colored cells in the “L–D” block for the Recall metric and the yellow-colored cells 
for the respective Specificity metric. A potential explanation for LSTM’s discriminatory behavior is due to the 
oversampling technique, which is equivalent to imposing extra penalties when the model misclassifies positive 
instances. We discuss this limitation in more detail in the “Discussion” section.

Performance analysis across X values.  Intuitively, longer monitoring intervals (X) are likely to bring 
performance gains due to extra clinical information. However, a larger X value also leads to a smaller size of 
training data (Table 1). Thus, there is a trade-off between the length of the monitoring window and the number 
of training samples. We observe that the Differential approach’s overall performance decreases as the monitor-
ing window X increases for all predictive horizons (Y), suggesting that the reduction in sample size outweighs 
the extra information embedded in the data. The LSTM model exhibits the same pattern when Y = 3M and 6M. 
However, the trend reverses with Y > 6M where the LSTM’s performance increases alongside the X values. This 
performance gain is likely due to the increased number of positive training samples, which helped the LSTM 
capture long-term dependencies in the sequential data.

In addition, the Differential results are most effective with short (X = 6M and 12M) observation intervals. 
The approach loses its efficacy as X increases. This trend is particularly pronounced for class 1 (Recall blocks), 
where the accuracy is above 88% for X < 18 M and dropped to approximately 50% with a 36M observation. On 
the contrary, the LSTM model is more effective with larger X values, further confirming LSTM’s ability to capture 
long-term contextual information in the data. For instance, LSTM’s recall accuracy achieved 74% when X = 24 M, 
but the Differential approach’s performance was 64%. A similar pattern exists for Specificity. For X = 24 M, the 
Specificity for LSTM and Differential results are 79% and 74%, respectively.

Performance analysis across Y values.  We expect a model’s overall performance to improve as the pre-
dictive horizon Y increases because the raised percentage of positive (class 1) instances alleviates the class imbal-
ance issue. This pattern is salient for LSTM by examining the overall accuracy metric blocks, where LSTM’s best 
overall performance improved from 53% to 81% across different Y values. In contrast, the Differential approach 
maintained a stable performance across all Y values, which indicates that the bagging technique can address 
highly imbalanced datasets. Based on the results in the “L–D” blocks, LSTM starts to outperform Differential 
when the prediction horizon Y is longer than 6M. Together with the above findings over the X values, our study 
suggests employing the LSTM model when Y > 6M and X > 18M and the Differential approach for the remain-
ing cases.

Comparison on additional performance metrics.  Figure 5 presents comparisons on additional evalu-
ation metrics (AUC, PPV, F1, and F0) between the Differential and LSTM approaches. Each column follows 
the same color schedule as in Fig. 4, that is, green-to-red for Columns “D” and “L” and brown-to-yellow for 
Column “L–D”. We further adjusted the color scales according to the min/max values of each evaluation metric 
to account for different value ranges. All blocks under the “L–D” column consistently indicate that the gain of 
LSTM over Differential is evident when moving towards longer durations for X and Y. The Differential approach 
had a maximum AUC of 0.86 for a 6-month feature assessment period and a 12-month outcome assessment 
period. The LSTM model achieved a maximum AUC of 0.88 for 24 months of feature assessment and 9 months 
of outcome assessment. For the PPV measure, the Differential approach’s precision decreased with large X val-
ues. The highest precision for class 1 (0.19) was achieved at X = 6M and Y = 12M. Conversely, the LSTM model’s 
precision improved with larger X values and achieved its highest PPV value of 0.52 at X = 36M and Y = 12 M. 
This opposite trend between the two models once again highlights LSTM’s strength in modeling long-term data 
dependencies, which is further confirmed by the same patterns in the F1 and F0 measures.

Optimal observation windows.  To identify the best X value for each Y target, we focused on the AUC 
scores in Fig. 5 and followed the model selection analysis across the X and Y values. Specifically, for Y = 9 M and 
12M, the optimal choice is X = 24 M (i.e., a 2-year total observation). The respective AUC scores are 0.87 and 
0.88, achieved by the LSTM model. For Y = 3 M and 6M, the Differential results showed higher AUC scores, 
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which decrease as X increases. Thus, for a short predictive horizon, it is sufficient to monitor the patient for a 
period of 6M using the non-temporal models with a Differential approach.

Discussion
We aimed to predict the likelihood of hospitalization for SLE in the next 3–12 months, within a multicenter EHR-
based SLE cohort. The task is essential in managing patients’ risks of developing irreversible organ damage33,34 
and lower health-related quality of life35, and also impacts the direct cost of SLE care2 but is challenging given the 
heterogeneous nature of this disease with variability in disease course1. We utilized longitudinal EHR data and 
explored two temporal ML models to capture disease course development in the time series data. The Differential 
approach accounts for the temporal dependencies by introducing additional lagged variables between consecutive 
time steps. As demonstrated in this study, the technique can be adopted by any non-temporal machine learning 
methods that assume all features are independent. The LSTM approach capitalizes on the model’s architecture 
to memorize sequential data’s contextual information.

To accommodate different clinical needs, we experimented with predicting a patient’s hospitalization at vari-
ous future horizons (Y) using different observation windows (X). Our findings suggest that LSTM outperforms 
the Differential approach only when X is sufficiently large. Since a larger X implies longer training sequences, the 
results are consistent with LSTM’s reputation in retaining long-term contextual information in sequential data.

Our findings further suggest that LSTM outperforms the Differential approach only when Y is sufficiently 
large. Since large Y values are associated with more positive training samples, one explanation for this outcome 
is the limited availability of positive instances and the oversampling technique employed to handle the imbal-
anced data. In particular, for a highly imbalanced dataset, bagging can be preferred in addressing class imbalance 
because it learns multiple decision boundaries between the minority and various subsets of majority samples 
and simultaneously leverages the advantages of ensemble learning. Due to the time constraints in training LSTM 
models, we replaced bagging with oversampling, which is equivalent to increasing the misclassification penalty 
of the minority class by r = 1

p times, where p is the percentage of minority samples. Consequently, for Y = 3 M, 
low p values (1.3–2.14%, Table 1) led to excessive r values, resulting in LSTM’s biased predictions of positive 
samples. As the interval for Y increases, LSTM becomes more effective as r decreases. While it is tempting to 
search for an optimal r as a model hyper-parameter, the exploration would again lead to computational resource 
constraints. Since LSTM demands a higher balance of the underlying data, we recommend training an LSTM 
model for predicting SLE patients’ hospitalization only if the interested prognostic interval is above 6 months.

Lastly, we recognize two limitations in our study. First, the EHR data were collected as part of clinical care and 
not for primary research purposes. As a result, clinical visits and lab results are captured at irregular intervals. 
Furthermore, sicker patients may have more frequent visits than healthier patients, resulting in a higher volume 
of patient information. Second, the hospitalization outcomes are limited to the MGB healthcare system. Thus, 
our data may contain misclassified labels for patients hospitalized outside of the system. However, due to the 

Figure 5.   Comparisons on additional evaluation metrics.
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large sample size and a prior validated SLE phenotype study for these patients24, we believe the misclassification 
bias is minimal in our cohort.

Conclusion
Our study compares the efficacy of two temporal machine learning approaches in predicting SLE hospitalizations 
using EHR data. Our experimental results demonstrate that both methods can be effective for our task but each 
has its strengths and limitations. The Differential approach can be integrated into all non-temporal machine 
learning algorithms and is suitable for short observation periods. Conversely, LSTM excels at capturing long-
term dependencies embedded in the longitudinal data and, thus, is desirable for tasks with long-term observa-
tion windows. In addition, the Differential approach is adept in handling class imbalance in model training and 
delivers stable performance across different prognostic intervals whereas LSTM demands a higher quality of 
the underlying data and outperforms Differential when there are sufficient positive samples facilitating model 
training. These models can be applied accordingly to predict future SLE hospitalizations from various patient 
monitoring periods ranging from 6M to 36M. We further suggest 6M and 24M as the desirable observation 
windows for short- and long-term assessment horizons, respectively. Our approach could be applied to other 
clinical conditions to leverage time-dependent EHR data to predict longitudinal health outcomes.

Data availability
The data used in the current study is not publicly available due its proprietary nature but will be provided to 
qualified investigators upon reasonable request. Requests should be directed to Dr. April Jorge, AMJORGE@
mgh.harvard.edu.
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