
EBioMedicine 71 (2021) 103569

Contents lists available at ScienceDirect

EBioMedicine

journal homepage: www.elsevier.com/locate/ebiom
Non-coding RNAs in depression: Promising diagnostic and therapeutic
biomarkers
Yachen Shia, Qingyun Wangb, Ruize Songa, Yan Kongc,*, Zhijun Zhanga,d,e,f,*
aDepartment of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanj-
ing, Jiangsu 210009, China
b College of Agricultural and Environmental Sciences, University of California, Davis, California 95616, United States
c Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
d School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
e Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
f Research Center for Brain Health, Pazhou Lab, Guangzhou, Guangdong 510330, China
A R T I C L E I N F O

Article History:
Received 9 May 2021
Revised 4 August 2021
Accepted 18 August 2021
Available online xxx
* Corresponding authors.
E-mail addresses: kongyancn@163.com (Y. Kong), jan

(Z. Zhang).

https://doi.org/10.1016/j.ebiom.2021.103569
2352-3964/© 2021 The Author(s). Published by Elsevier
A B S T R A C T

Non-coding RNAs (ncRNAs), including microRNAs, circular RNAs, and long non-coding RNAs, are important
regulators of normal biological processes and their abnormal expression may be involved in the pathogenesis
of human diseases including depression. Multiple studies have demonstrated a significantly increased or
reduced ncRNAs expression in depressed patients compared with healthy subjects and that antidepressant
therapy can alter the aberrant expression of ncRNAs in depressed patients. Although the existing evidence is
important, it is also mixed and a comprehensive review to guide an effective clinical translation is lacking.
Focused on human research, this review summarizes clinical findings of ncRNAs in depression, including
those in brain tissues and peripheral samples. We outlined the characteristics and functions of ncRNAs and
highlighted their performance in the diagnosis and treatment of depression. Although their precise roles in
depression remain uncertain, ncRNAs have shown potential value as biomarkers for diagnosis and therapy in
depressed patients.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Depression is the most common psychiatric disease and the lead-
ing cause of disability and suicide [1,2]. The specific pathogenesis of
depression is still unknown, although some potential aetiology has
been proposed and acknowledged [3-5], e.g., the monoamine hypoth-
esis, hypothalamic�pituitary�adrenal axis changes, neuro-inflam-
mation, neuroplasticity, and epigenetics. To date, clinical
manifestations are a primary reference to diagnose depression, but
the complexity of its pathophysiology directly affects diagnostic
accuracy [6]. Identification of effective biomarkers involved in the
pathogenesis of disease contributes to correctly diagnosing depres-
sion, with high abundance, stability, and convenience as the major
features for outstanding biomarkers in clinic. In addition, many
depressed patients fail to respond to antidepressant treatments and
blindly increasing pharmacotherapy may induce significant side
effects [7,8]. Hence, the identification of objective therapeutic bio-
markers is essential for the clinical treatment of depression, since
they could be used as targets for drug development as well as to
assess and predict the efficacy of therapeutic interventions, thus
guiding individualized medicine.

Non-coding RNA (ncRNA) is a special type of RNA that is tran-
scribed from DNA but does not encode proteins [9]. It includes micro-
RNA (miRNA), circular RNA (circRNA), long non-coding RNA
(lncRNA), and other yet-to-be-discovered small RNAs. Reported evi-
dence has demonstrated that ncRNAs can regulate gene expression
by multiple mechanisms, such as affecting the transcription or trans-
lation of messenger RNA (mRNA) or DNA/RNA methylation, and that
they may substantially impact pathophysiological processes in many
human disorders [10,11]. Simultaneously, these characteristics of
ncRNAs also make them potential targets for treatment and drug
development[12]. Therefore, gaining insight into these ncRNAs will
contribute not only to understanding the biological mechanisms of
disease but also to directing personalised therapies.

An extensive body of research has indicated that ncRNAs play a
critical role in the pathogenesis of depression (e.g., in neuroplasticity
and neurogenesis), which results in relevant clinical symptoms (e.g.,
suicidal behaviour), and are influenced by antidepressant treatments
[13-16]. However, given the large number of reported ncRNA
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biomarkers, it is difficult to determine which are the most clinically
translational ones. In the present review, we focus on valuable dis-
coveries related to miRNA, circRNA, and lncRNA to briefly introduce
their biogenesis and function. Additionally, our main objective was to
assess the clinical value of these ncRNAs as diagnostic and therapeu-
tic biomarkers in depression and pinpoint the most valuable ncRNA
biomarkers for clinical application in patients with depression based
on multifaceted evidence comprising depressive-like animal models,
post-mortem brain tissue, human cerebrospinal fluid, and human
peripheral blood. We hope the present review can provide a helpful
insight that contributes to clinical translation of ncRNA biomarkers in
depression.

2. MiRNA

2.1. MiRNA biogenesis and characteristics

MiRNAs are a class of single-stranded small ncRNAs formed of
about 18-25 nucleotides, and they were firstly identified by Reinhart
et al. by controlling the development timing in Caenorhabditis ele-
gans [17]. Being the best-studied ncRNA, the biogenesis of miRNAs
has been clearly described in previous reports [18,19]. In the nucleus,
the miRNA gene are transcribed to long primary miRNA (pri-miRNA)
by RNA polymerase II or III. Due to processing of the Class 2 RNase III
enzyme Drosha, pri-miRNAs become small hairpin miRNA precursors
(pre-miRNA) with about 60»100 nucleotides in length and a stem-
loop structure. Subsequently, pre-miRNAs are transferred into the
cytoplasm by the exportin-5/RanGTP complex for further biological
processing. Under the action of RNase III enzyme Dicer with TAR
RNA-binding protein, pre-miRNAs are converted into double-
stranded mature small RNAs. Then, one of the double strands is
loaded onto Argonaute homologue proteins to generate the RNA-
induced silencing complex (RISC) that fulfils the biological function
of mature miRNA, while the other strand is degraded rapidly [20,21].

In addition, the ability of miRNAs to regulate gene expression is a
fundamental component of complex biological processes. Since the
unique sequences of RISC/miRNA complex can bind to the 3’ untrans-
lated region of targeted mRNAs, miRNAs are generally considered to
cause translational repression or degradation of mRNAs and direct
the post-transcriptional gene regulation [22,23]. Consequently, miR-
NAs play an important role in regulating development and cellular
differentiation, and particularly in the brain, their expression can sig-
nificantly modulate neuronal development and the intracellular
pathway signalling in apoptosis [24].

Furthermore, miRNAs have the following attractive properties: (1)
they are stably maintained and transported in diverse biological flu-
ids, e.g., cerebrospinal fluid and peripheral serum / plasma; (2) the
method used to detect them is technically simple and inexpensive;
(3) their expression is tissue- and disease-specific [25,26]. Therefore,
the abnormal expression of miRNAs in the brain tissue or in biological
fluids (e.g., cerebrospinal fluid, peripheral blood) has potential to
emerge as a valuable biomarker and to help diagnose disease and
predict responses to therapeutic interventions.

2.2. MiRNAs as diagnostic biomarkers for depression

In 2010, Xu et al. demonstrated that miRNA polymorphisms (i.e.,
the polymorphism ss178077483 in the miRNA-30e precursor) was
correlated with depression susceptibility, which firstly linked miR-
NAs to the pathogenesis of depression [27]. Subsequently, Smalheiser
et al. and Belzeaux et al. respectively identified differential miRNA
profiles in prefrontal cortex (Brodmann Area 9) or peripheral blood
samples in depressed patients compared with healthy subjects for
the first time [28,29]. These findings supported that abnormal miRNA
expression may contribute to distinguishing depressed patients from
healthy subjects. Numerous miRNAs have been identified in
depression, however, the most valuable ones are yet to be deter-
mined. Hence, it is necessary to investigate the expression of miRNAs
to adequately assess the value of miRNAs for the clinical diagnosis of
depression.
2.2.1. miRNAs in brain tissues
Many miRNAs are highly expressed in brain tissues and may be

implicated in the pathological changes of the central nervous system
(CNS) in depression. Compared with normal rats, 26 miRNAs with dif-
ferential expression in prefrontal cortex were detected in chronic
corticosterone-induced depressed rats, and these miRNAs regulated
genes that are critical to stress response and could result in depres-
sive-like behaviour via a hyperactive hypothalamic-pituitary-adrenal
axis [30]. However, although multiple miRNAs have been identified
in brain tissues from depressive-like rodent models, so far only
expression of miR-124 showed a relatively consistent increase in
depressed rodents compared with normal rodents among different
research groups [30-35]. In addition, to obtain more direct evidence
that supports miRNAs as clinical biomarkers of depression, post-mor-
tem brain tissues, including prefrontal cortex, anterior cingulate cor-
tex, have been used as an important resource to investigate miRNAs
changes between healthy and depressed subjects. To date, approxi-
mately 50 miRNAs were reported as abnormally expressed in post-
mortem brain tissues of depressed patients [28,36-49]; however,
none but miR-12438, 40, 45 was repetitively found by more than one
research group, and these three studies [38,40,45] reported
completely different results regarding miR-124 in depressed patients
although the available evidence suggests that miR-124 may mediate
the neuronal differentiation, synaptogenesis, and microglial activa-
tion by regulating target genes (Table 1). As discussed above, examin-
ing miRNA expression in the brain may contribute to elucidating the
association between miRNAs and depression, but the differences in
animal models and the heterogeneity of brain tissues and patient
populations could lead to inconsistent results.
2.2.2. miRNAs in peripheral blood
For routine examination and clinical screening of depressed

patients, peripheral blood is a more convenient and non-invasive
source than brain tissues. Recently, Zhang et al. [50] found that
plasma miR-134 levels, which may be related to synaptic transmis-
sion and plasticity [51], were significantly downregulated in
depressed patients. In agreement with this, reduced miR-134 levels
were reported in plasma samples, hippocampus tissue, and prefrontal
cortex tissue of chronic unpredictable mild stress (CUMS) rats [50].
These consistent findings between humans and rodents or between
CNS and peripheral circulation suggested that miR-134 may serve as
a potential biomarker for the diagnosis of depression [50], although
this needs to be corroborated due to contradictory results reported in
other studies [52,53].

To date, a large number of miRNAs has been identified in periph-
eral blood samples, including whole-blood, serum, plasma, peripheral
blood mononuclear cells (PBMCs), and blood-derived exosome, and a
part of them showed great clinical potential for depression. To
achieve an effective clinical translation in the diagnosis of depression,
promising peripheral blood miRNA biomarkers should have the fol-
lowing characteristics: (1) significant differential expression between
depressed and healthy subjects, verified by different laboratories
(basic evidence); (2) consistent verification in brain tissues of depres-
sive-like animal models (moderate evidence); (3) consistent verifica-
tion in post-mortem brain tissues (strong evidence); (4) consistent
verification in the human brain in vivo using molecule positron emis-
sion tomography (PET) imaging (stronger evidence); (5) brain biopsy
(strongest evidence) (Fig. 1). Therefore, in the present review, 18
peripheral blood miRNAs with relatively consistent findings across
studies were proposed, comprising 13 miRNAs supported by strong



Table 1
The expression of promising microRNA diagnostic biomarkers in depressed patients or depression-like animals.

microRNAs Study Species Sample type Change Possible targets in depression

Strong evidence
miR-124 Wang et al. [38] Humans Prefrontal cortex (BA44) Decrease Neuronal differentiation; synapto-

genesis and neuronal prolifera-
tion; BDNF-TrkB signaling
pathway; microglial activation;
target SAT1 and SMOX genes

Lopez et al. [45] Humans Prefrontal cortex (BA44) No difference
Roy et al. [40] Humans Prefrontal cortex (BA46)

Serum
Increase
Increase

He et al. [100] Humans Peripheral blood mononuclear cells Increase
Fang et al. [55] Humans Plasma Increase
Wang et al. [31] Rodents Hippocampus Increase
Pan et al. [32] Rodents Hippocampus Increase and decrease with duloxe-

tine intervention
Dwivedi et al. [30] Rodents Prefrontal cortex Increase
Xu et al. [33] Rodents Basolateral amygdala Increase
Lou et al. [101] Rodents Hippocampus Decrease
Tang et al. [34] Rodents Hippocampus Increase
Yang et al. [35] Rodents Hippocampus Increase

miR-139-5p Lopez et al. [45] Humans Prefrontal cortex (BA44) Increase Neural stem cell proliferation and
neuronal differentiation; target
SAT1 and SMOX genes

Wei et al. [102] Humans
Rodents

Blood-derived exosome
Blood-derived exosome
Brain-derived exosome

Increase
Increase
Increase

miR-221 Smalheiser et al. [39] Humans Prefrontal cortex (BA10) Increase Wnt2/CREB/BDNF axis; anti-neuro-
inflammatory signaling cascades
via the IRF2/IFN-a pathway

Lian et al. [57] Humans
Rodents

Cerebrospinal fluid
Serum
Hippocampus

Increase
Increase
Increase

Wan et al. [36] Humans Cerebrospinal fluid
Serum

Increase
Increase

Kuang et al. [103] Humans Serum Increase
Feng et al. [104] Humans Serum Increase

miR-218 Torres-Berrío et al. [37] Humans
Rodents

Prefrontal cortex (BA44)
Prefrontal cortex

Decrease Target Netrin-1 guidance cue recep-
tor DCC; regulating density of thin
dendritic spinesMendes-Silva et al. [105] Humans Plasma Decrease

Torres-Berrío et al. [106] Rodents Medial prefrontal cortex Decrease
miR-17-5p Roy et al. [107] Humans Locus coeruleus Increase Target CREB1, CHRM2, NTRK3, and

SLC17A7 genesCamkurt et al. [108] Humans Plasma Increase
miR-335 Smalheiser et al. [28] Humans Prefrontal cortex (BA9) Decrease Target GRM4, SOX4, PTPRN2, and

MERTK genesLi et al. [54] Humans Whole-blood Decrease and increase with citalo-
pram intervention

miR-1202 Lopez et al. [43] Humans Prefrontal cortex (BA44) Decrease Target GRM4 gene; regulating the
metabolism of glutamateGheysarzadeh et al. [109] Humans Serum Decrease

miR-135a Issler et al. [41] Humans Dorsal raphe / raphe magnus
Whole-blood

Decrease
Decrease and increase with cogni-
tive behavioral therapy

Serotonin transporter and serotonin
receptor-1a transcripts

Gheysarzadeh et al. [109] Humans Serum Decrease
miR-184 Azevedo et al. [47] Humans Anterior cingulate cortex Decrease Target NCOR2 and PDE4B genes

Mendes-Silva et al. [110] Humans Plasma Decrease
miR-34c-5p Lopez et al. [45] Humans Prefrontal cortex (BA44) Increase Target SAT1, SMOX, and NOTCH1

genesSun et al. [111] Humans Peripheral blood leukocytes Increase
miR-24-3p Lopez et al. [43] Humans Prefrontal cortex (BA44) Increase MAPK/Wnt signaling pathway

Maffioletti et al. [112] Humans Whole-blood Increase
miR-146a Smalheiser et al. [28] Humans Prefrontal cortex (BA9) Decrease TLR4 signaling pathway

Hung et al. [113] Humans Peripheral blood mononuclear cells Decrease and increase with antide-
pressant intervention

miR-425-3p Lopez et al. [43] Humans Prefrontal cortex (BA44) Increase MAPK/Wnt signaling pathway
Maffioletti et al. [112] Humans Whole-blood Increase
Belzeaux et al. [29] Humans Peripheral blood mononuclear cells Increase

Moderate evidence
miR-132 Li et al. [56] Humans Serum Increase Target MeCP2 (directly) and BDNF

(indirectly) genes; activation of the
actin depolymerizing protein n-
cofilin via Rac1-PAK signaling; reg-
ulating spine density and size.

Liu et al. [114] Humans Whole-blood Increase
Fang et al. [55] Humans Plasma Increase
Su et al. [115] Humans

Rodents
Whole-blood

Hippocampus
Increase
Increase

Pan et al. [32] Rodents Hippocampus Decrease and increase with duloxe-
tine intervention

miR-9 Zhang et al. [69] Humans Whole-blood Increase Target HECTD1 gene; microglial
activationHe et al. [116] Humans Whole-blood Increase

Buran et al. [117] Rodents Prefrontal cortex Increase
miR-451a Wan et al. [36] Humans Cerebrospinal fluid

Serum
Decrease
Decrease

Action of ketamine

Kuang et al. [103] Humans Serum Decrease and increase with paroxe-
tine intervention

Camkurt et al. [108] Humans Plasma Increase
miR-34a Azevedo et al. [47] Humans Anterior cingulate cortex Decrease Target NCOA1 and PDE4B genes

Wan et al. [36] Humans Cerebrospinal fluid
Serum

Increase
Increase

Kuang et al. [103] Humans Serum Increase

(continued)
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Table 1 (Continued)

microRNAs Study Species Sample type Change Possible targets in depression

miR-16 Song et al. [118] Humans Cerebrospinal fluid
Whole-blood

Decrease
No difference

Target SERT (serotonergic transmit-
ter system), BDNF (neurogenesis),
and BCL-2 (neuron survival and
apoptosis) genes

Gheysarzadeh et al. [109] Humans Serum Decrease
Baudry et al. [119] Rodents Raphe nuclei Decrease and increase with fluoxe-

tine intervention
Bai et al. [58] Rodents Hippocampus Increase

BDNF, brain-derived neurotrophic factor; TrkB, tropomysin-related kinase B; SAT1, spermidine/spermine N1-acetyltransferase 1; SMOX, spermine oxidase; IRF2/IFN-a,
Interferon regulatory factor 2/Interferon alpha; DCC, deleted in colorectal cancer; CREB1, cAMP responsive element binding protein 1; CHRM2, cholinergic receptor musca-
rinic 2; NTRK3; neurotrophic receptor tyrosine kinase 3; SLC17A7, solute carrier family 17 member 7; GRM4, glutamate receptor, metabotropic 4; SOX4, SRY-box transcrip-
tion factor 4; PTPRN2, protein tyrosine phosphatase receptor type N2; MERTK, MER proto-oncogene, tyrosine kinase; NCOR2, nuclear receptor corepressor 2; PDE4B,
phosphodiesterase 4B; NOTCH1, notch receptor 1; TLR4, Toll-like Receptor 4; MeCP2, methyl‑CpG‑binding protein 2; HECTD1, HECT domain E3 ubiquitin protein ligase 1;
NCOA1, nuclear receptor coactivator 1; SERT, serotonin transporter; BCL-2, BCL2 apoptosis regulator.
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evidence and 5 by moderate evidence (Table 1), which should be con-
sidered as promising diagnostic biomarkers of depression.

Additionally, relevant function studies further demonstrated
these miRNAs may be involved in the pathogenesis of depression,
including serotonergic transmission, neuroinflammation, and synap-
tic plasticity (Table 1). In addition, certain miRNAs act on the same
target gene and exert synergetic functions in depression. For exam-
ple, (1) miR-124, miR-139-5p and miR-34c-5p, targeting the spermi-
dine/spermine N1-acetyltransferase 1 and spermine oxidase gene,
regulate neuronal differentiation and proliferation [45] (2) miR-335
and miR-1202, targeting the glutamate receptor metabotropic 4
Fig. 1. The division of strength of evidence for the microRNA diagnostic biomarkers in dep
stronger evidence; I+II+III+IV+V: strongest evidence PET, positron emission tomography.
gene, regulate glutamate metabolism [44,54]; (3) miR-124, miR-221,
miR-132, and miR-16, targeting brain-derived neurotrophic factor
gene, regulate synaptic plasticity [55-58]; (4) miR-24-3p and miR-
425-3p, targeting MAPK/Wnt-system genes, regulate MAPK and Wnt
signalling pathways [43]. In sum, the above candidate miRNAs have
been proved to involve in the physiopathology of depression.
2.2.3. miRNAs with specificity for diagnosing depression
Considering the high overlap between the pathobiology of

depression and that of other psychiatric disorders, highly-specific
miRNA diagnostic biomarkers for depression are more valuable in
ression I: basic evidence; I+II: moderate evidence; I+II+III: strong evidence; I+II+III+IV:
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clinic. Based on post-mortem brain studies, significantly decreased
expression of miR-184 (vs. bipolar disorder) [47] and miR-152-3p (vs.
schizophrenia or bipolar disorder) [39] was solely detected in
patients with depression. Furthermore, plasma miR-134 was signifi-
cantly reduced in depressed patients when compared with healthy,
schizophrenic, and bipolar disorder subjects, resulting in a remark-
able classification performance (accuracy � 80%) to differentiate
depressed patients from other cohorts [50]. Because these findings
were only reported by one research group, multiple-centre data is
critical to corroborate the potential of these miRNAs.

2.3. MiRNAs as therapeutic biomarkers for depression

In addition to helping diagnose depression, could miRNAs be influ-
ential in the clinical treatment of depression? Bocchio-Chiavetto et al. ini-
tially performed a direct study to assess the effects of antidepressant
therapies on miRNAs in depressed patients and identified 30 miRNAs in
peripheral blood whose expression changed after treatment, as well as
regulated long-term potentiation and long-term depression and axon
guidance [59]. Published studies suggested that the expression of sev-
eral miRNAs in depressed patients can be altered by antidepressant
therapies (Table 2). Among them, miR-1202 [44,60,61], miR-16 [61,62],
and miR-135a [41,61] display consistent changes after treatment across
different studies, making them promising candidates as therapeutic bio-
markers for depression. In addition, Fiori et al. [61] found that, as a regu-
lator of the glutamate metabotropic receptor 4, the baseline expression
of miR-1202 in whole-blood significantly differed between responders
and nonresponders, which suggested that miR-1202 could predict
response to treatment in depressed patients. Furthermore, in a previous
study [62], serum levels of miR-16 significantly increased in depressed
patients after treatment with selective serotonin norepinephrine reup-
take inhibitors, however, when selective serotonin reuptake inhibitors
were administered, no significant difference in serum miR-16 expres-
sion were detected, thus suggesting that different kinds of antidepres-
sants impact miRNA expression in a particular way and may lead to a
different treatment outcome.

2.4. Brief summary

By reviewing previous studies, main findings are as follows: (1)
abnormally expressed brain-derived miRNAs can play direct roles in the
pathophysiology of depression and result in relevant clinical manifesta-
tions, especially suicidal behavior, however, these miRNAs can only pro-
vide valuable neuropathological clue but not be used as clinical
biomarkers due to brain samples of human are difficult to obtain; (2)
with the outstanding convenience, 13 peripheral miRNAs regulate tar-
get genes to affect the physiopathology of depression and exhibit con-
sistent changes between CNS and peripheral circulation by repeatable
verifications in different cohorts, therefore, these peripheral miRNAs are
promising diagnostic biomarkers of depression if further evidence can
clarify the original CNS source of them; (3) except for miR-184, miR-
152-3p, and miR-134, more studies should be conducted to evaluate
the specificity of miRNAs for depression, which are more important for
the diagnosis of depression; (4) the effective antidepressant treatment
can alter the pathophysiologic changes of depression and restore the
aberrant expression of many miRNAs, however, only miR-1202 and
miR-16 have proved to have prominent value for assessing the clinical
response to antidepressant treatments, which contribute to guiding an
individualized therapy to improve treatment response.

3. CircRNA

3.1. CircRNA biogenesis and function

CircRNAs are closed circular molecules generated from precursor
mRNA back-splicing, which were first documented in higher plants
as single-stranded circular RNA viroids. [63] CircRNAs have a unique
covalently-closed loop structure formed via the joining of an
upstream 30 splice site to a downstream 50 splice site [64]. The bio-
genesis of circRNAs remains unclear, although there are three main
formation pathways—the RNA-binding proteins (RBP)-associated,
intron pairing, and lariat-driven pathways— which can generate
three types of circRNAs—exonic, intronic, and exon-intron circRNAs
[65].

CircRNAs are key regulators of various biological processes of the
body due to their unique structure. (1) CircRNAs acts as miRNA
sponges to directly modulate miRNA functions, which in turn affects
mRNA translation, this being the most common function of circRNAs.
Indeed, this function was first proposed by Hansen et al., who found
that ciRs-7 circRNA in mouse brain can competitively suppress miR-7
activity, thereby modulating the expression of miR-7 target mRNAs
[66]. (2) Other functions of circRNAs have been successively eluci-
dated in recent years, such as interacting with RBPs to affect the
translation of downstream mRNAs, directly binding ribosome for
encoding functional peptides [67].

Therefore, circRNAs may play an important pathophysiological
role in some psychiatric disorders (e.g., depression [68-73], schizo-
phrenia [74-77]) via certain underlying functions, including neuro-
genesis, neuro-inflammation, and autophagy [65]. Additionally,
circRNAs may be used as valuable biomarkers for diagnosis and ther-
apy due to their high stability and resistance to RNase R digestion,
high evolutionary conservation, abundance in various eukaryotic
cells, and cell-/tissue-specificity [78-80].

3.2. CircRNAs as diagnostic biomarkers for depression

Being an emerging field, limited number of studies provide valu-
able information on the role of circRNAs in regulating the pathologi-
cal changes of depression. In 2016, Cui et al. published the first study
to identify circRNA biomarkers of depression [68]. In PBMCs, four
circRNAs significantly changed between five depressed patients and
five healthy subjects, verified in an independent cohort (100
depressed patients and 103 healthy subjects) with consistent findings
[68]. Additionally, in whole-blood samples, researchers found signifi-
cantly reduced circFKBP8 and significantly increased circMBNL1
expression in depressed patients, which was verified in two indepen-
dent cohorts [73]. The expression of these circRNAs also significantly
correlated with the assessment scores of depressive symptomatology
as well as with the levels of serum brain-derived neurotrophic factor
protein and a neuroimaging-related indicator [73].

Further studies using cell culture and animal models have been
also conducted to explore the underlying mechanisms of circRNA
biomarkers in depression. In 2018, Zhang et al. found that plasma
circDYM expression was significantly decreased both in depressed
patients and in two depressive-like mouse models when compared
with healthy subjects and normal mice, respectively [69]. Consis-
tently, in vivo and in vitro research further demonstrated that circ-
DYM expression can alter microglial activation by affecting miR-9
activity (targeting HECTD1 gene) [69]. In addition, in an independent
cohort, including 60 depressed patients and 32 healthy subjects, sig-
nificantly reduced expression of plasma circDYM was found in
depressed patients [72]. Furthermore, a recent study revealed that
the expression of circSTAG1 was significantly lower both in periph-
eral blood of depressed patients and in hippocampus tissues and
peripheral blood of CUMS mouse [70]. This circRNA regulated m6A
methylation of fatty acid amide hydrolase mRNA to induce astrocyte
dysfunction and subsequent depressive-like behaviours [70].

3.3. CircRNAs as therapeutic biomarkers for depression

Importantly, the circRNAs also showed therapeutic value in
depression. In the ventral medial prefrontal cortex and hippocampus



Table 2
The association of microRNAs expression with effect of antidepressant therapy by human peripheral blood studies.

Study Sample type MiRNAs expression changes (after treatment vs. before treatment) Treatment type Length of treatment

Significant upregulation Significant downregulation

Bocchio-Chiavetto et al.
[59]

Whole-blood miR-130b, miR-505, miR-29b-2,
miR-26b, miR-22, miR-26a,
miR-664, miR-494, let-7d, let-
7g, let-7f, miR-629, miR-
106b, miR-103, miR-191,
miR-128, miR-502-3p, miR-
374b, miR-132, miR-30d,
miR-500, miR-589, miR-183,
miR-574-3p, miR-140-3p,
miR-335, miR-361-5p

miR-34c-5p, miR-770-5p Escitalopram 12 weeks

He et al. [100] Peripheral blood mono-
nuclear cells

- miR-124 Antidepressant treat-
ment (not report)

8 week

Lin et al. [62] Serum miR-16 (only in selective sero-
tonin reuptake inhibitors),
miR-183, miR-212

- Selective serotonin
reuptake inhibitors or
selective serotonin
norepinephrine reup-
take inhibitors

4 weeks

Feng et al. [55] Plasma miR-124 - citalopram 8 weeks
Enatescu et al. [120] Plasma miR-1193, miR-4263, miR-

3173-3p, miR-382, miR-3154,
miR-129-5p, miR-3661, miR-
1287, miR-532-3p, miR-608,
miR-3691-5p, miR-2278,
miR-3150a-3p, miR-375,
miR-3909, miR-433, miR-937,
miR-676, miR-1298, miR-489,
miR-1909, miR-637, miR-
1471

miR-744, miR-301b, miR-27a,
miR-24, miR-146a, miR-126,
miR-151-5p, miR-99b, miR-
151-3p, let-7d, miR-221, miR-
223, miR-181b, miR-146b-5p,
miR-125a-5p, miR-26a, miR-
652

Antidepressant treat-
ment (not report)

12 week

Yrondi et al. [121] Whole-blood miR-103a-3p, miR-103b, miR-
106a-5p, miR-106b-3p, miR-
140-3p, miR-145-5p, miR-
148b-3p, miR-151a-5p, miR-
15a.5p, miR-15b-5p, miR-17-
5p, miR-182-5p, miR-185-3p,
miR-185-5p, miR-186-5p,
miR-191-3p, miR-20a-5p,
miR-20b-5p, miR-210-3p,
miR-25-3p, miR-30a-5p, miR-
30b-5p, miR-3158-3p, miR-
3158-5p, miR-324-5p, miR-
331-5p, miR-500a-3p, miR-
502-3p, miR-532-5p, miR-
550a-3p, miR-584-5p, miR-
589-5p, miR-660-5p, miR-93-
5p

miR-1301-3p, miR-200b-3p,
miR-222-3p, miR-30c-1-3p,
miR-3168, miR-328-3p, miR-
505-5p, miR-744-5p, miR-
92a-1-5p

Escitalopram 2 weeks

Lopez et al. [60] Whole-blood miR-1202 - Desvenlafaxine 8 weeks
Fiori et al. [61] Whole-blood miR-135a and miR-16 (in one

cohort), miR-1202 (in two
cohorts)

- Escitalopram or
desvenlafaxine

8 weeks

Issler et al. [41] Whole-blood miR-135a - Cognitive behavioral
therapy

12 weeks

Kuang et al. [103] Serum miR-451a miR-34a-5p, miR-221-3p Paroxetine 8 weeks
Lopez et al. [43] Whole-blood - miR-146a-5p, miR-146b-5p,

miR-425-3p, miR-24-3p
Duloxetine or escitalo-
pram or nortriptyline
or

8 weeks

Gururajan et al. [122] Whole-blood - let-7b Electroconvulsive
therapy

Not report

Wang et al. [123] Serum - miR-155 Citalopram 4 weeks
Li et al. [54] Whole-blood miR-335 - Citalopram 4 weeks
Lopez et al. [44] Whole-blood miR-1202 - Citalopram 8 weeks
Kolshus et al. [124] Whole-blood - miR-126-3p, miR-106a-5p Electroconvulsive

therapy
Not report

Belzeaux et al. [29] Peripheral blood mono-
nuclear cells

miR-20b-3p, miR-433, miR-
409-3p, miR-410, miR-485-
3p, miR-133a, miR-145

miR-331-5p Duloxetine, aripiprazole,
mirtazapine, olanza-
pine, paroxetine, ven-
lafaxine, escitalopram,
fluoxetine, or lithium

8 weeks

Hung et al. [113] Peripheral blood mono-
nuclear cells

let-7e, miR-223, miR-146a,
miR-155

- Escitalopram, fluoxetine,
paroxetine, sertraline,
duloxetine, venlafax-
ine, bupropion, mirta-
zapine, or
agomelatine

4 weeks
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tissues of CUMS mice, Zhang et al. found that mmu_circ_0001223
expression was significantly increased after administration of total
saponins from the leaves of Panax notoginseng, which showed an
antidepressant role [81]. In addition, strong evidence indicated that
restoring circDYM or circSTAG1 expression can significantly attenu-
ate depressive-like behaviours in mice and improve microglial cell or
astrocyte dysfunction, respectively [69,70], thus suggesting that these
circRNAs may be potential therapeutic targets for depression.

To determine whether circRNAs can direct the clinical treatment
of depression, direct evidence was provided firstly by Cui et al., who
detected that the PBMCs levels of hsa_circRNA_103636 significantly
increased in depressed patients after treatment with antidepressants
[68]. Furthermore, using physiotherapy or nerve regulation [i.e.,
repetitive transcranial magnetic stimulation (rTMS)], Song et al. found
a significant increase in plasma circDYM levels in depressed patients
at the end of treatment and that circDYM can predict the response to
rTMS treatment [72]. Recently, Shi et al. demonstrated that altered
blood circFKBP8 levels can be recovered in depressed patients follow-
ing effective rTMS treatment and that these were associated with the
efficacy of antidepressant treatment [73].

3.4. Brief summary

CircDYM acts as miR-9 sponges to mediate the neuro-inflamma-
tion of CNS in depression and reduced plasma circDYM may be the
most promising diagnostic biomarker of depression due to the ample
supporting evidence. Meanwhile, after antidepressant treatment,
plasma circDYM can predict the therapy response and be the poten-
tial indicator for the clinical treatment of depression. Furthermore,
peripheral hsa_circRNA_103636, circFKBP8, circMBNL1, and circ-
STAG1 also display abnormal changes in depression and among
them, circFKBP8 expression can be recovered after treatment, how-
ever, independent verification and/or comprehensive functional
exploration is essential to further assess the clinical value of these
circRNAs.

4. LncRNA

4.1. LncRNA biogenesis and function

LncRNAs are richly expressed transcripts with a length of over 200
nucleotides, which were initially reported in the developing mouse
embryo by Bartolomei et al. [82] LncRNAs can be transcribed by RNA
polymerase II from genomic loci, which is similar to mRNAs’ genera-
tion and, in terms of molecular structure, most lncRNAs lack trans-
lated open reading frames, except for specific lncRNAs that contain
cryptic open reading frames [83,84]. Based on their genomic location
and structure, lncRNAs can be divided into five categories (intergenic,
anti-sense, sense, intronic, and bi-directional), among which inter-
genic and anti-sense lncRNAs are the most common in humans [85].

LncRNAs can bind to DNA, RNA, and protein to exert many func-
tions [86,87]. In the nucleus, lncRNAs can restrain and/or activate
downstream gene expression by mediating chromatin modification
and recruiting transcription factors. Additionally, lncRNAs can act as
molecular decoys to remove proteins from a specific DNA location or
as enhancers of gene activation. In the cytoplasm, lncRNAs can regu-
late multiple post-transcriptional processes, such as mRNA stability,
miRNA sponge, and translation. Moreover, lncRNAs can also serve as
scaffolds to combine different proteins for a higher-order complex.

Large and diverse amounts of lncRNAs have been found in the
brain, which are involved in the regulation of important biological
processes of the CNS [88]. Besides, lncRNAs also show abnormal
expression levels in various tissues and cells in psychiatric diseases
and have potential as diagnostic and therapeutic biomarkers due to
their tissue-specific expression patterns, widespread expression, and
high-efficiency of detection [89,90].
4.2. LncRNAs as diagnostic biomarkers for depression

It is essential to investigate the diagnostic value of lncRNAs in
depression. In 2014, Liu et al. [91] investigated the genome-wide
lncRNA expression in peripheral blood from depressed patients and
reported four lncRNAs were upregulated in depression. They also
described potential co-expression networks of differentially
expressed lncRNAs and mRNAs, which provided direct evidence to
support that lncRNAs can regulate the molecular pathogenesis of
depression for the first time [91]. In addition, a well-designed study
by Cui et al. revealed that six significantly downregulated lncRNAs
(TCONS_00019174, ENST00000566208, NONHSAG045500,
ENST00000517573, NONHSAT034045, and NONHSAT142707) were
found in PBMCs from depressed patients compared with healthy sub-
jects [92,93]. These results were further corroborated in an indepen-
dent cohort, where significant correlations between the expression
of these lncRNA expression and suicide risk were found in depressed
patients [92,93]. Furthermore, Ye et al. observed a significantly
increased LINC01108 expression and significantly decreased
LINC00998 expression in peripheral blood leukocytes of depressed
patients, compared with those of healthy subjects [94].

Additionally, several lncRNAs were also found in post-mortem
brain tissue. In the anterior cingulate cortex tissue, nine lncRNAs
showed a significantly differential expression between depressed
and healthy subjects [95]. Among them, RP1-269M15.3 expression
proved to be affected by a depression-associated single nucleotide
polymorphism and was associated with depressive phenotypes [96].
Meanwhile, Issler et al. found a sex-specific lncRNA, LINC00473,
whose expression was significantly reduced in the prefrontal cortex
of depressed females but not of males, when compared with healthy
subjects. This suggested that LINC00473 may be associated with
female-specific stress resilience [97].

4.3. LncRNAs as therapeutic biomarkers for depression

To date, there is a paucity of knowledge regarding lncRNAs as
therapeutic biomarkers, with related studies providing scarce infor-
mation to assess the clinical value of lncRNAs for antidepressant
treatment. In a previous study, after six weeks of formal antidepres-
sant therapy, the levels of the above six lncRNAs in PBMCs of
depressed patients were significantly higher than baseline levels and
did not differ from those of healthy subjects [92]. Furthermore, Liu
et al. reported that overexpression of NONHSAG045500 can inhibit
transcription of serotonin transporter in SK-N-SH cells in vitro [98],
and Ni et al. also found that the hippocampal expression level of
TCONS_00019174 in CUMS mice can be recovered after imipramine
treatment and that TCONS_00019174 may activate Wnt/b-catenin
pathway to exert antidepressant-like effects [99].

4.4. Brief summary

Results on the above six peripheral lncRNAs are relatively consis-
tent across different cohorts and demonstrate their influence on
depressive symptoms (e.g., suicide) and great potential for the clinical
diagnosis of depression. Additionally, these lncRNAs can return to
normal levels after antidepressant treatment and exhibit potential to
be therapeutic biomarkers for depression. However, these findings
need to be treated with caution due to lacking further independent
verifications in other research groups, especially brain tissue-related
findings, and in-depth function exploration in animal and cell mod-
els.

5. Conclusion

Multiple ncRNAs display aberrant expression in brain tissues and/
or peripheral fluids of depressed patients, which may involve in the
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core pathogenesis of depression and show prominent potential for
the diagnosis of depression. (1) The 13 peripheral miRNAs with
strong evidence have the consistent expression between CNS and
peripheral circulation. (2) The peripheral circDYM exhibits consistent
changes in depressed patients in independent studies and the same
expression between depressed patients and depressive-like mouse
models. (3) However, there is insufficient evidence to evaluate the
most promising lncRNA biomarkers since they lack independent veri-
fication in other studies. (4) Furthermore, as important switches of
gene expression, some peripheral ncRNAs expression changes are
reported after antidepressant treatment and can serve as potential
biomarkers to guide antidepressant therapy. In particular, compared
with other ncRNAs, peripheral miR-1202, miR-16, and circDYM,
exhibited relevantly definite regulatory mechanisms in depression,
and their expression is associated with the clinical outcome of treat-
ment and may predict the response to antidepressant therapy.

Although abnormal brain tissue and cerebrospinal fluid-derived
ncRNAs may directly reflect pathological changes of CNS related to
depression, unavailable samples make the examination more difficult
than in peripheral blood samples (e.g., plasma, serum). Furthermore,
to date, despite the reviewed peripheral blood-derived ncRNAs have
displayed consistent central and peripheral changes, no one pub-
lished study measures ncRNAs levels in marked by specific nerve cell
subtype in exosome of peripheral blood. After verifying originated
in CNS, the ncRNAs of peripheral blood will be more convenient and
valuable biomarkers for translation of clinical application in depres-
sion.

Despite the growing evidence about miRNA, circRNA, and
lncRNAs in depression, many controversies and limitations still exist.
Firstly, poor homogeneity and a small sample size in some studies
may provide disputable findings, which affect the comprehensive
assessments of ncRNA biomarkers in depression and does not favor
clinical translation. Secondly, evaluation of the specificity of ncRNA
biomarkers between depression and other psychiatric disorders,
such as schizophrenia and bipolar disorder, is lacking in most studies,
whereas it is indispensable for the precise diagnose and treatment of
depression. Most importantly, although miRNAs, circRNAs and
lncRNAs are abundantly expressed in the brain and peripheral circu-
lation and play a pivotal role in regulating the pathogenesis of
depression, whether their expression in the CNS correlates with in
the peripheral circulation and whether peripheral ncRNAs are
derived from CNS in the context of depression remain to be deter-
mined, which is a crucial factor for the development of convenient
biological kits for the clinical practice. One more limitation but not
last is that, since certain studies only demonstrated the impact of
ncRNAs on depression in animal or cell models, translating these
basic research findings into clinical application poses a considerable
challenge.

The gene-environment interaction determined by epigenetic
mechanisms, may be the main cause to induce the depression, and
ncRNAs, as the important member of epigenetics, play crucial physio-
logical and pathological roles in depression, such as regulation of
monoamine neurotransmitter transmission, inflammation response,
or neural plasticity. Additionally, ncRNAs can penetrate the blood-
brain barrier based on their small molecule properties or the micro-
vesicles transport, which make the detection of ncRNAs a potential
non-invasive means to obtain CNS information from the peripheral
blood. According to the principle of the multilevel verification
(human/animal model; CNS/peripheral circulation), the present
review found consistently aberrant expression of several ncRNAs
between CNS and peripheral blood or in different cohorts, suggesting
these ncRNAs may affect the target genes to result in depressive
symptoms, including depressive emotion and suicidality, and be use-
ful as diagnostic biomarkers for depression. Furthermore, the abnor-
mal expression of ncRNAs can be reverted after antidepressant
treatment and their changes are associated with the therapy
response, which suggests that these ncRNAs may also serve as poten-
tial targets of therapeutic interventions and/or as therapeutic bio-
markers for depression. Subsequently, these ncRNAs should be
prioritized to determine the definite function in depression through
more comprehensive researches, including depressive-like multi-
species (e.g., mouse, rat, and monkey) models, human-derived
induced pluripotent stem cell /brain organoids, for promoting their
clinical application. Meanwhile, by implementing interdisciplinary
cooperation, especially the application of computer science, individu-
alized diagnosis and treatment of depression based on the utilization
of these ncRNAs as important members of a depression biomarker
panel may become a reality.

Outstanding questions

To further investigate the potential values of ncRNAs and apply
them into clinical translation for depression, e.g., research and devel-
opment of biological diagnostic kits and targeted candidate ncRNAs
small interfering ribonudeoacid drugs, there is much to be optimized,
including:

1. Multiomic data included microcosmic and mesoscopic data (i.e.,
various genes / mRNAs / methylation / proteins / metabolites /
neuroimaging features) and macroscopical information (i.e., neu-
ropsychological assessments), can provide more abundant evi-
dence to reveal the underlying mechanism of ncRNAs in
depression and are important for the all-sided evaluation of clini-
cal value of ncRNAs as biomarkers.

2. More precise mechanism of ncRNAs in depression need to be
investigated in the future study, particularly the identification of
specific brain areas, neural circuits, and neuronal subtypes of
ncRNAs’ action.

3. As a highly heterogeneous psychiatric disorder, depression can be
divided into different subtypes based on differential clinical char-
acteristics (e.g., attempted suicide, suicidal ideation, and non-sui-
cidal thoughts) or neuroimaging features (e.g., significantly
increased or decreased amplitude of low-frequency fluctuations
levels in some specific brain regions). The performance of ncRNA
biomarkers for the diagnosis and treatment among these depres-
sion subtypes should be investigated.

4. As the important transporters of ncRNAs, circulating exosomes,
especially CNS-derived exosomes (e.g., neuron, astrocyte or micro-
glial cell-derived exosomes), may be valuable objects to investi-
gate the association of ncRNAs with depression.

5. Based on the findings of ncRNAs therapeutic biomarkers, RNA
interference drugs discovery is a promising direction for achieving
the precise or individualized medicine in depression. Meanwhile,
new technologies, e.g., adeno-associated viral (AAV) vector-medi-
ated gene delivery, nano-drug delivery, will contribute to solving
the predicament of blood brain barrier and achieve the antide-
pressive effectiveness by targeting ncRNA intervention in CNS.

Search strategy and selection criteria

Data for this review were identified by searches of PubMed, MED-
LINE, and references from relevant articles using the search terms
“non-coding RNA”, “miRNA”, “microRNA”, “circRNA”, “circular RNA”,
“lncRNA”, “long non-coding RNAs”, “major depressive disorder”, and
“depression”. Only articles published in English were included up to
April 2021.
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