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Abstract: It is impossible to effectively use light-emitting diodes (LEDs) in medicine and telecom-
munication systems without knowing their main characteristics, the most important of them being
efficiency. Reliable measurement of LED efficiency holds particular significance for mass production
automation. The method for measuring LED efficiency consists in comparing two cooling curves of
the LED crystal obtained after exposure to short current pulses of positive and negative polarities.
The measurement results are adversely affected by noise in the electrical measuring circuit. The
widely used instrumental noise suppression filters, as well as classical digital infinite impulse re-
sponse (IIR), finite impulse response (FIR) filters, and adaptive filters fail to yield satisfactory results.
Unlike adaptive filters, blind methods do not require a special reference signal, which makes them
more promising for removing noise and reconstructing the waveform when measuring the efficiency
of LEDs. The article suggests a method for sequential blind signal extraction based on a cascading
neural network. Statistical analysis of signal and noise values has revealed that the signal and the
noise have different forms of the probability density function (PDF). Therefore, it is preferable to use
high-order statistical moments characterizing the shape of the PDF for signal extraction. Generalized
statistical moments were used as an objective function for optimization of neural network parameters,
namely, generalized skewness and generalized kurtosis. The order of the generalized moments was
chosen according to the criterion of the maximum Mahalanobis distance. The proposed method
has made it possible to implement a multi-temporal comparison of the crystal cooling curves for
measuring LED efficiency.

Keywords: efficiency; LED; multi-temporal comparison; cascade neural network; generalized statis-
tical moments

1. Introduction

As digital transformation in the industry associated with the Fourth Industrial Revo-
lution is underway, new information technologies need to be developed, such as computer
networks, the internal cloud infrastructure for enterprises, systems of interrelated com-
puting devices, sensors, mechanical and digital machines. One of the directions of these
transformations is the implementation of cyber-physical systems connecting physical ob-
jects and industrial equipment with computing systems. The revolution in the industry
is also associated with the development of a new measuring base, new, more advanced
sensors, and technologies. The rapid development of light-emitting diodes (LEDs) in recent
years has led to their use in new production systems, workplace lighting systems, alarm
systems, high-quality displays, antibacterial optical sensor systems, etc.

The widespread adoption of LED is facilitated by the development of physical founda-
tions for new types of sensors. The publications have described the possibility of a signifi-
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cant increase in the efficiency of light output using UV LEDs based on InGaN/AlGaN [1].
In publication [2], a numerical and experimental study of LEDs with a high reflectivity,
which, apparently, is associated with improved current spreading, was carried out. In
article [3], a study was made of the influence of GaN/AlGaN layers on the characteristics
of ultraviolet LEDs based on GaN, emitting at a wavelength of 375 nm. Publication [4] was
devoted to the study of green LEDs InGaN/GaN and their implementation by growing
several quantum wells to improve the quality of the crystal.

LED lighting is used in industry for complex manufacturing operations. LED adaptive
systems are making a breakthrough in lighting technology in the industry and are quickly
becoming one of the most important innovative technologies endorsed by the lighting
community [5]. Optical exploration methods in geophysics serve to change traditional
geographic approaches [6]. Maintaining the required quality of incident light is critical in
plant and microalgae growing processes. Depending on the wavelength of the radiation
spectrum and its intensity, the required characteristics of plant growth and their biochemical
composition can be provided [7]. LED technology is evolving as a non-thermal food
processing technology that uses light energy. LEDs have an antibacterial effect due to
photodynamic inactivation of bacteria [8]. The use of LEDs as light sources with the
required efficiency is one of the strategies used in the chemical industry [9]. LEDs have a
wide range of applications in biomedicine [10]. LED technology is a new technology for
non-thermal food processing [11].

These applications lead to rather stringent requirements for the optical characteristics
and efficiency of LEDs [12]. High quality is required when creating LED-based calibration
lamps [13]. The studies presented in publication [14] proposed a method based on Zernike
polynomials for characterizing the photometric values of LEDs and measuring the angular
distribution of luminous intensity, total luminous flux, inhomogeneity, anisotropy and
direction of the optical axis.

For effective use of LEDs in industrial, medical and telecommunication systems,
their effectiveness must be considered. The efficiency of LEDs is an important factor that
reflects the ability of these devices to convert electrical energy into optical energy. The
publication [15] presented a method for measuring the efficiency of a white LED, based on
measuring the power losses arising from the transition to heat. The direct method measures
the temperature of a heatsink attached to an LED, and the differential method measures
the temperature of two identical heatsinks. The studies were described in [16].

Modern hardware components are used in the system for measuring LED efficiency,
which allows reducing the influence of noise to a minimum. However, the measured
signals are in the microvolt range and the impact of even the smallest noise is crucial. The
comparison results are influenced by intrinsic noise of the measuring channels and external
interference. To ensure the reduced error at a level of 1–3%, the value of the signal-to-noise
ratio (SNR) in the exponential parts of the signal should be at least 14–20 dB. Reducing the
SNR by 3 dB leads to an increase in the reduced error by 1%. Therefore, the most urgent
problem is to suppress noise and restore the signal shape, especially in informative areas.

Common noise suppression techniques such as low-pass filtering are known to pro-
duce significant waveform distortions. The method of averaging over a sequence of
identical pulses leads to heating of the crystal and subsequent distortions of the signal
shape. Nonlinear filtering methods are recommended for eliminating noise in the channels
of the information-measuring system, because it is necessary to preserve the shape of
the signal under study to ensure SNR, as well as to remove noise in the entire frequency
range [17].

The peculiarity of adaptive filtering methods is having to search for a reference
signal. Adaptive filtering cannot be used if it is impossible to find the reference signal.
In view of this, the problem of reconstructing the signal shape can be solved by blind
methods for extracting a signal from a mixture of signal and noise. While a whole group
of methods and algorithms for blind signal extraction have been developed by now, their
direct application does not allow obtaining the highest efficiency of LED [18,19] signal
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reconstruction. A special algorithm accounting for the statistical properties of signals and
noises has to be developed to deal with this issue.

The goal of the study is to develop methods for reconstructing waveforms that help
eliminate noise and allow to measure the LED efficiency.

2. LED Efficiency Measurement Problem

Currently, there are several approaches to determining the efficiency of LEDs. The
analytical calculation approach is the most common. This approach does not consider the
entire set of changing parameters [13], which reduces its accuracy. The approach based
on the direct measurement of the LED luminous flux [20] also has insufficient accuracy,
since it does not consider the conversion of the luminous flux by the LED lens and does
not investigate the effect of changing the temperature of the semiconductor crystal. This
parameter is the main contributor to the loss of LED efficiency. Evaluating LED performance
is important for many industrial and medical applications [21,22].

The efficiency measurement system allows us to explore LEDs regardless of their
spectrum. For this, a wide range of settings is provided in the device. Thus, the change in
the amplitude of the positive pulse current is provided in the range from 0 to 20 mA. The
bias current is adjustable from 0 to 2 mA. Change in the amplitude of the negative pulse
current in the range from 0 to 10 mA with a discreteness of 0.1 µA is provided. To ensure
the possibility of changing the heating duration of the LED crystal, the device provides the
ability to change the pulse duration in the range from 100 µs to 10 s. The system makes
it possible to measure not only different types of LEDs, but also to analyze the process of
heat transfer from the crystal to the LED bulb and into the environment.

Measurements of efficiency are carried out by the method of multi-time compari-
son [23,24]. Heat-related losses are the dominant cause of LED power loss. To estimate
these losses, we suggest exposing the LED to constant current pulses in the forward positive
(Iforv) direction and in the opposite (reverse, Irev) direction. Direct Current (DC) pulses act
against a small forward bias current and heat the LED.

When a pulse is applied to the LED in the positive direction, the crystal simultaneously
emits light and heats up. Following heating, the LED cools down. When the pulse is
applied in the opposite direction, the crystal only heats up. The difference between the
power spent on heating the crystal by pulses in the forward and reverse directions allows
calculating the power spent on radiation. The normalized power difference characterizes
the LED efficiency.

The method consists in the cooling curves of the LED with a positive and negative
pulse. Constant current pulses are applied to the LED under investigation. The LED voltage
amplifier forms a diagram of the voltage variation across the LEDs. For further signal
processing, various gains of the amplifiers of the measuring channel are provided. The
gain was 1/10 for the positive signal and 1/100 for the negative signal. The converted LED
voltage measurement signal is shown in Figure 1. The time on the abscissa axis is shown
in relative units, since the diagram shows the general principle, it does not delve into the
details of a particular experiment. The cooling curves for the positive and negative impulses
did not match in the first and second periods. It was possible to achieve equal cooling
curves in the third test period. The first curve was formed upon exposure to a current pulse
of positive polarity, at the moment t1. In this case, heating of the semiconductor crystal
and radiation were observed. At time t2, the action of the current pulse stopped and the
LED crystal cooled down, as shown by the curve Upos(t). A current pulse of negative
polarity acted at time t3, and only heating of the semiconductor crystal was observed. The
action of the pulse ceased at time t4, and the LED crystal cooled down, as shown by the
curve Uneg(t).
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Figure 1. Diagram of voltage variation across an LED, having three heating and cooling periods of
the crystal during the LED test. (a) The positive signal and the negative signal are presented in the
different scales. (b) The different gains for positive and negative signals are provided in measuring
channels. The gain 1/10 was established for the positive signal and 1/100 for the negative signal.

To determine the efficiency, the reverse current Iinv should be adjusted so that the
norm of the difference between the curves Uneg(t) and Upos(t) does not exceed the given

mismatch error ε ≤
∫ T

0

(
Upos(t)−Uneg(t)

)2dt, where T = t3 − t2 = t5 − t4.
Provided that compensation has been achieved, the LED efficiency value η can be

calculated using the following formula:

η =

∫ t2
t1 Ipos(t)Upos(t)dt−

∫ t4
t3 Ineg(t)Uneg(t)dt∫ t2

t1 Ipos(t)Upos(t)dt
(1)

where Ipos(t), Upos(t), Ineg(t), Uneg(t) are the electric current and voltage at which the LED
is exposed to positive or negative pulses.

The mismatch of cooling curves Upos(t) and Uneg(t) corrupted by noise is represented
by formula

e =
∫ T

0

((
upos(t) + n1(t)

)
−
(
uneg(t) + n2(t)

))2dt
=
∫ T

0

((
upos(t + t1) + n1(t + t1)

)
−
(
uneg(t + t3) + n2(t + t3)

))2dt
(2)

where n1(t), n2(t) correspond to the noise acting on the cooling curves.
Ensemble averaging over a sequence of positive and negative pulses allows obtaining

the average value of mismatch:

ε = E
{∫ T

0

((
upos(t + t1) + n1(t + t1)

)
−
(
uneg(t + t3) + n2(t + t3)

))2dt
}

= E
{∫ T

0

((
upos(t + t1)− uneg(t + t1)

)
+ (n1(t + t1)− n2(t + t3))

)2dt
}

.
(3)

It consists of three terms:

ε =
∫ T

0

(
upos(t + t1)− uneg(t + t1)

)2dt + E
{∫ T

0 (n1(t + t3)− n2(t + t3))
2dt
}

−2 · E
{∫ T

0

(
upos(t + t1)− uneg(t + t1)

)
· (n1(t + t1)− n2(t + t3))dt

}
.

(4)

Supposing that the signal and the noise are uncorrelated,

E
{∫ T

0

(
upos(t + t1)− uneg(t + t1)

)
· (n1(t + t1)− n2(t + t3))dt

}
= 0, (5)
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We obtain the following equation of mismatch average value:

ε =
∫ T

0

(
upos(t + t1)− uneg(t + t1)

)2dt + E
{∫ T

0 (n1(t + t1))
2dt
}

+E
{∫ T

0 (n2(t + t3))
2dt
}
+ 2

·E
{∫ T

0 (n1(t + t1) · n2(t + t3))dt
} (6)

where r(t3 − t1) = E
{∫ T

0 (n1(t + t1) · n2(t + t3))dt
}

is the autocorrelation of noise. The
following equation is true for the previous two terms:

E
{∫ T

0
(n1(t + t1))

2dt
}

= E
{∫ T

0
(n2(t + t3))

2dt
}

= Tσ2
n (7)

where σn is the standard deviation of noise.
The average value of mismatch for an analog signal can be written as an integral:

ε =
∫ T

0

(
upos(t + t1)− uneg(t + t3)

)2dt + 2Tσ2
n . (8)

The average value of mismatch for a discrete signal is given in decimal notation:

ε =
N−1

∑
τ=0

(
upos(τ + τ1)− uneg(τ + τ3)

)2
+ 2Nσ2

III + 2Nr(∆τ) (9)

where ∆T is the sampling period, t = τ∆T, N = T
∆T , ∆τ = τ3 − τ1.

The average value of mismatch depends on N and increases proportionally to the
duration of the cooling interval. The normalized average value of mismatch may be
estimated by the formula:

ε

N ∑N−1
τ=0 upos(k+k1)

2 = 1
N

∑N−1
τ=0 (upos(k+k1)−uneg(k+k3))

2

∑N−1
τ=0 upos(k+k1)

2

+2 σ2
n

∑N−1
τ=0 upos(k+k1)

2 + 2 rn

∑N−1
τ=0 upos(k+k1)

2 .
(10)

The first term after reaching a match is zero. Assuming an acceptable mismatch error
of 10−2, the corresponding SNR can be calculated by using the equations:

10 · lg
(

u2

2σ2
n
+

u2

2rn

)
+ 10 ln

1
2
= 10 · lg 1

10−2 (11)

where u2 = ∑N−1
τ=0 upos(k + k1)

2,

SNR = 10 · lg u2

σ2
III

= 10− 10lg
1
2
− 10lg

ρ

ρ + 1
(12)

where ρ = rn
σ2

n
. The allowable values are SNR = 23 db, given that ρ = 0, and SNR = 28 db,

given that ρ = 0.5.
Noises in the measuring channels do not allow to determine a moment when com-

pensation appears. Let us introduce the admissible mismatch error, which, for example,
is equal to δ = 10−2; then the corresponding admissible SNR value is determined using
the equation:

10 · lg
(

u2

2σ2
n
+

u2

2rn

)
+ 10 ln

1
2
= 10 · lg1

δ
= 10 · lg 1

10−2 (13)
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where u2 = ∑N−1
τ=0 upos(t + t1)

2, σn is the standard deviation of noise, rn = rn(t3 − t1) is the
autocorrelation function of noise

SNR = 10 · lg u2

σ2
III

= 10− 10lg
1
2
− 10lg

ρ + 1
ρ

(14)

where ρ = rn
σ2

n
.

Evaluation of efficiency is most sensitive to the accuracy of determining the cooling
curve Uneg (t) and to noise in the flat sections of pulses. Noise in these areas must be
carefully suppressed for automatic testing of any type of LED. It is possible to estimate the
effect of noise on the error in determining the coincidence of the cooling curves of crystals.

If we assume that the average relative error in the mismatch of cooling curves is 1%,
and ρ = 0–0.5, then the SNR should be at a level of 19–23 dB. If the requirement for the
average relative error of mismatch is tightened to 0.1%, then an SNR of 29–33 dB should be
provided. Thus, we determined a condition under which it makes sense to measure the
LED efficiency, namely, that it is necessary to provide an SNR of at least 30 dB.

The modern electronic components that are used to design the system for measuring
LED efficiency allow to reduce noise to a minimum. However, the value of the SNR is still
unacceptable for measuring the LED efficiency. The rest of noise in the signal frequency
domain results in distortion of signal.

Noise-suppressing methods such as low-pass filtering lead to distortion of the signal
waveform. The method of averaging identical pulses (Figure 1) from a sequence of pulses
results in overheating the crystal and, therefore, distorting the signal waveform. The
method of linear adaptive filtering cannot be applied because of the lack of a reference
signal. Thus, the method of sequential blind extraction of signal from a mixture of signal
and noise is best-suited for the problem of noise suppression during LED testing. This
method is implemented by organizing at least two channels containing a mixture of signal
and noise. In practice, there is often uncorrelated Gaussian noise in the two channels
organized. This problem can also be solved by adding a measuring channel, which
complicates the electronic measurement circuit.

There are various approaches to extracting signal from a mixture of signal and noise.
This includes independent component analysis, blind signal separation and blind signal
extraction methods [25–28]. The blind signal extraction method has an advantage over
other known methods for reducing noise in the LED certification system. This method is
implemented by a cascade neural network. Because the curve of heating and cooling is
extracted and there is no need to extract noise, a single-layer neural network may be used.
Thus, the goal is to develop such a combined scenario for processing the LED heating and
cooling signals that provide the SNR of at least 30 dB on the cooling curve.

3. Reconstruction of Signal from a Mixture of Signal and Noise
3.1. Blind Signal Extraction Problem

Mixing models of signal and noise components s(t) = [s1(t), s2(t), . . . , sm(t)]
T using

a nonsingular matrix H [29,30] affects the signal x(t) = H s(t). The resulting mixture model
is fed to the system input. If the signal components are correlated, it is advisable to apply a
decorrelated transform. As a result of mixing, the signal x(t) = [x1(t), x2(t), . . . , xm(t)]

T .
The separating matrix W should be constructed to obtain a vector signal y(t), which is an
estimate of the unknown signal vector s(t) for a mixture of signals y(t) = Wx(t) observed.
Therefore, reconstruction of the correct waveform in the cooling sections during LED
testing can be formulated as a problem of estimating the vector y(t) of the original signal
by searching for the operator W to back-mix the signal and the noise.

Since only one component of the mixture is of interest, i.e., the useful signal in cooling
sections, we suggest to apply the method of the sequential extraction of useful signal.
This method can be implemented by a neural network whose weight matrix W is selected



Sensors 2021, 21, 2891 7 of 18

during the adaptation process. In this case, W consists of m vectors W = [w1, w2, ..., wm],
each vector is adapted in one cascade of a neural network.

3.2. Estimation of Statistical Characteristics of Signal and Noise

It is possible to extract the signal from a mixture of signal and noise if the signal and
the noise have well-differentiated statistical characteristics that are high-order statistical
moments. For proof, we examined the statistical characteristics of signal and noise. The
study indicated that the probability density function PDF of the signal is characterized by
high skewness and high kurtosis. On the other hand, the PDF of noise is close to Gaussian,
while the noise skewness is close to zero. A more detailed study of the PDF of noise
was performed using a generalized Gaussian PDF. Generalized Gaussian PDF is a family
of PDFs of various shapes that are characterized by three parameters: the mathematical
expectation (mx), the standard deviation (σx), and the shape parameter (α) [31].

The following formula defines a generalized Gaussian PDF:

f (x) =
α

2λσΓ
(

1
α

)
x

exp
(
−
∣∣∣∣ x−mx

λσx

∣∣∣∣α), (15)

Γ(α) =
∞∫

0

xα−1 exp(−x)dx (16)

where Γ(α) is the gamma function.
The generalized Gaussian distribution has such properties as the simplicity of mathe-

matical description, the possibility of wide variation of shape from a peaked to rectangular
uniform distribution, the convenience of statistical estimation of parameters, making this
family a favorable choice for describing the PDF of signal and noise.

The results of evaluating the four statistical moments of noise confirmed that the PDF
of noise is close to Gaussian, since the parameter α = 2.08 was close to the parameter α of
the Gaussian distribution (α = 2). Signal and noise PDFs differed significantly, suggesting
that reconstruction of the waveform using the statistical moments of the PDF skewness or
kurtosis as an objective function was effective.

The statistical moments of signal and noise were estimated using an electronic mea-
suring circuit and the process of comparing the crystal cooling curves. The calculated
values of the mathematical expectation, variance, skewness and kurtosis of the signal are
presented in Table 1.

Table 1. Statistical moments of signal.

Statistical Moments Value

Mathematical expectation m1, (mA) 0.0175
Variance m2, (mA2) 0.0009

Skewness A3 4.0429
Kurtosis k4 17.3038

Statistical moments indicated that the empirical PDF of the signal could not be repre-
sented by a Gaussian distribution, since the PDF was asymmetric and peaked.

The statistical moments of noise were estimated using the electronic circuit. Four
realizations of noise are given in Table 2. The generalized Gaussian distribution allowed
for variation of shape in a wide range from peaked to squared.
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Table 2. Statistical moments of noise.

Realization Mathematical
Expectation m1, (mA) Std σx, (mA) Shape Parameter α Kurtosis k4

1 3.9× 10−5 5.55× 10−4 1.25 6.77
2 3.6× 10−5 4.90× 10−4 1.51 4.02
3 3.4× 10−5 2.55× 10−4 1.80 3.81
4 3.1× 10−5 2.32× 10−4 2.08 2.42

The statistical moments given in Table 3 show that the PDF of noise approximated to
the generalized Gaussian form for four PDF realization ranges within α = 1.25 (Laplacian)
and α = 2.08 (Gaussian).

Table 3. Statistical moments for signal and noise.

Statistical Moment Order Statistical Moments for Noise Statistical Moments for Signal

1 4.3× 10−4 −5.7
2 7.9× 10−4 147
3 6.9× 10−5 2.07× 103

4 1.1× 10−4 5.1× 104

5 2.2× 10−6 1.02× 106

6 1.9× 10−6 2.2× 107

7 5.6× 10−8 4.6× 108

8 3.4× 10−8 9.8× 109

9 1.35× 10−9 2.1× 1011

10 6.6× 10−10 4.4× 1012

11 3.15× 10−11 9.3× 1013

12 1.32× 10−11 1.98× 1015

As shown in Tables 4 and 5, the noise was characterized by a symmetrical distribution
close to an exponential with the kurtosis of 2.42–6.77. The signal had a significant skewness
of 4.04 and kurtosis of 17.3. This fact made it possible to use a method based on normalized
statistical moments to extract a useful test signal from a mixture of signal and noise.

Table 4. Mahalanobis distance between the estimates of moments Ap1q1 and Ap2q2 characterizing the
skewness of signal and noise.

Order of
Skewness

Skewness
Signal

Skewness
Noise

Std of Skewness
Signal

Std of Skewness
Noise

Mahalanobis
Distance

p = 2, q = 1 −0.15 0.0013 0.043 0.016 108
p = 3, q = 2 −0.31 0.0022 0.090 0.055 43
p = 4, q = 2 −0.49 0.0035 0.143 0.16 17
p = 5, q = 2 −0.64 0.0059 0.193 0.53 15

Table 5. Mahalanobis distance between the estimates of moments kp1q1 and kp2q2 characterizing the
kurtosis of signal and noise.

Order of
Kurtosis

Kurtosis
Signal

Kurtosis
Noise

Std of Kurtosis
Signal

Std of Kurtosis
Noise

Mahalanobis
Distance

p = 1, q = 1/2 1.00 1.18 0.003 0.0065 3.7 × 103

p = 3, q = 2 1.06 2.16 0.031 0.042 1.78 × 103

p = 4, q = 2 1.12 3.00 0.051 0.11 1.37 × 103

p = 5, q = 2 1.20 4.17 0.084 0.25 1.33 × 103

p = 6, q = 2 1.26 5.91 0.12 0.65 1.39 × 103

Comparing the statistical moments of signal and noise given in Tables 1 and 2, we
can see that the difference between the statistical moments of the first and second order
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was less than the difference between excesses, the statistical moments of a higher order.
Therefore, higher-order moments were better suited to solving the problem. However, it
was also necessary to compare the errors of estimating the statistical moments, which were
larger for higher-order moments [32–36].

3.3. Combining Skewness and Kurtosis

Let us consider the case when the objective function for signal extraction uses skew-
ness, the normalized third central statistical moment given by the formula:

J(w) = −1
3
|k3(y)| = −

β

3
k3(y) (17)

where y is the signal of interest, k3(y) =
E{y3}

E2{y3/2} is the normalized statistical moment

of skewness, β is the parameter accounting for the sign of skewness. A computational
experiment showed that using the objective function (17) allows to reconstruct the signal
shape, provided that SNR = 16 dB is obtained.

Further, we considered using an objective function based on the fourth central statisti-
cal moment, which is determined by the formula:

J(w) = −1
4
|k4(y)| = −

β

4
k4(y) (18)

where k4(y) =
E{y4}
E2{y2} is the normalized kurtosis.

If we combine two statistical moments of the kurtosis and the skewness into one
objective function with weight coefficients λ1 and λ2, J(w) = −λ1

β1
3 k3(y)− λ2

β2
4 k4(y),

then choosing the appropriate λ1 and λ2, λ1 ≥ 0, λ1 ≥ 0, λ1 + λ2 = 1, the better results
are obtained. The optimization of the objective function with λ1 = λ2 = 0.5 was carried
out using the gradient descent method according to the following formula:

dw
dt = µβ1λ1

(
m

3
2
2

m3
2

E
{

y2x
}
− m3m

1
2
2

m3
2

E{yx}
)

+µβ2λ2

(
1

m2
2
E
{

y3x
}
− m4

m3
2

E{yx}
) (19)

where mp, p = 1, 2, 3, 4, are the statistical moments of order p.
The proposed approach to signal extraction from LED testing has a simple explanation.

It is known from the theory of probability that the sum of independent random variables
with approximately the same scales has a distribution close to Gaussian. Therefore, the sum
of several random signals and noises has a distribution that is closer to Gaussian than any
of the original random signals. Consequently, the problem of extracting a signal from the
mixture is reduced to find the vector wi which maximizes the difference between the PDF
of the output signal and the Gaussian. The absolute value of the normalized kurtosis and
the normalized skewness is the simplest measure of the non-Gaussianity of the extracted
signal. This follows from Equation (19), which minimizes the objective function based on
the normalized kurtosis and skewness.

Solving the optimization problem can be considered as the process of adapting the
coefficients w11, w12 of a single-layer neural network using the gradient descent method.
An attractive feature is training the neural network without a supervisor. A diagram of
neural network training is shown in Figure 2 .
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The activation function in the neuron considered is implicit. The neural network
activation function for the combined method is:

ϕ(y) =

β1

m
3
2
2

m3
2

E
{

y2
}
−

m3 ·m
1
2
2

m3
2

E{y}

+ β2

(
1

m2
2

E
{

y3
}
− m4

m3
2

E{y}
). (20)

For this reason, the activation function does not appear in Figure 3. The activation
function changes during the process of adaptation of neuron weights. The activation
function of the combined signal extraction method and the objective function surface are
shown in Figure 3.

Figure 3. Activation function (a) and objective function surface (b).

Adaptation of the neural network for sequential signal extraction is

w(k + 1) = w(k) + µ(k) ϕ(y(k)) x(k) (21)

where µ(k) is the learning rate. This value provides a trade-off between the signal extraction
accuracy and the adaptation time. In the simulation experiment, we took µ(k) = 0.01.

We implemented online neural network training using the gradient descent algorithm
(21) and the adaptive activation function (20).

3.4. Determining the Order of Statistical Moments

The statistical moments of higher orders are more sensitive to the shape of the signal
and noise distribution; therefore, it seems promising to apply them. The error in estimating
statistical moments based on signal and noise samples is important.

To calculate the variance D of the estimate of the central statistical moment of order p,
for p = 1–6, according to the formula Dm(p) =

1
n µ2p − µ2

p + p2µ2µ′p−1 − 2pµp−1µp+1, it is
necessary to have statistical moments up to the 12th order inclusive. The resulting standard
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deviations determined for the estimates of statistical moments for signal and noise are
presented in Table 3.

As shown in Figure 4, high-order statistical moments have large estimation errors.
Large data samples have to be accumulated to estimate them. Thus, it is necessary to
determine the order of statistical characteristics that are better suited for constructing the
objective function [37–39]. We used the generalized kurtosis and the generalized skewness
based on the statistics of arbitrary order for the objective function. It is advisable to choose
their order based on analysis of two indicators: the sensitivity to the PDF shape and the
error of statistical estimation.
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Generalized skewness and generalized kurtosis of order p and q are determined by
the formulas:

Apq{y} =
E
{

sign(y)|y|p
}

Eq{yp/q
} , (22)

kpq{y} =
E
{
|y|p

}
Eq
{
|y|p/q

} . (23)

The objective function of the combined method based on generalized moments is
written as

Jp1q1p2q2(w) = λ1
1
p1

Ap1q1

(
wTx

)
+ λ2

1
p2

kp2q2

(
wTx

)
(24)

where p1, q1 are the indicators of the order of generalized skewness, p2, q2 are the indicators
of the order of generalized kurtosis.

Taking these indicators into account, the formula for adapting the neural network
using the gradient descent method is as follows:

dw
dt = λ1µE

{
sign(y) · |y|p1−1x1

}
1

mq1
p1
q1

(y)
+ λ2E

{
|y|p2−1x

}
· 1

mq2
p2
q2

(y)
− mp1(y)

mq1+1
p1
q1

(y)

·E
{

sign(y)|y|p1/q1−1x
}
− mp2(y)

mq2+1
p2/q2

{
|y|p2/q2

} · E{sign(y)|y|p2/q2−1x
}

.
(25)

Further study was aimed at selecting the appropriate order of statistical moments.
The error of generalized statistical moments estimation depends on the statistical sample
size and the orders p1, p2, q1, q2 of the statistical moments. Normalized statistical moments
Apq and kpq are stochastic variables with the PDF. To increase the speed and the quality of
adaptation of the neural network, the distance between the generalized skewness of the
signal and the noise as well as the distance between the generalized kurtosis of signal and
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noise should be large. To estimate the distance, we used the Mahalanobis measure between
the estimates of the statistical moments of signal and noise of orders p and q:

D =
1
2

(
σ2

S − σ2
N
)(

σ2
N − σ2

S
)

σ2
Nσ2

S
+

σ2
N + σ2

S
σ2

Sσ2
N

(mS −mN)
2 (26)

where σS, σN are the standard deviations of the statistical moments Apq and kpq of signal
and noise, respectively; mS, mN are the expectation of the statistical moments Apq and kpq
of signal and noise, respectively.

Dependences of the Mahalanobis distance for skewness DA and kurtosis Dk on the
order of statistical moments calculated by Equation (26) are shown in Figure 5.
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The obtained dependences of the Mahalanobis distance made it possible to choose
the order of kurtosis and skewness for implementation in the combined method of signal
extraction. Indeed, the choice of generalized kurtosis and generalized low-order skewness
is efficient, since the moments have not only a smaller estimation error but also a larger
Mahalanobis distance.

Based on the analysis performed, we suggest to construct an objective function using
generalized skewness with the parameters p1 = 2, q1 = 1 and generalized kurtosis with
the parameters p2 = 1, q2 = 1

2 .
The algorithm for reconstructing the signal waveform for LED certification includes

the following steps:

1. Obtain the measured voltage values during heating and cooling of the LED at two
outputs of the electronic circuit;

2. Calculate the skewness of order p1 = 2, q1 = 1 and the kurtosis of order p2 = 1, q2 = 1⁄2;
3. Calculate the activation function by Equation (20);
4. Implement the adaptation of the neural network cascade (25);
5. Fit the activation function and repeat Step 4;

6. Check the end condition for the adaptation ε ≤
∫ T

0 (U+(t)−U−(t))
2dt;

7. If the condition for ε is satisfied, then calculate the LED efficiency by Equation (2);
8. If the condition is false, then change the current magnitude and go to Step 1.

4. Modeling the Signal Waveform Reconstruction Process

A simulation model was used to study the proposed method. The signal is a deter-
ministic function that changes when cooling curves are fitted. Noise is represented by a
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model of decreasing power spectral density. Identifying the noise n(t), we found that it can
be described by the autoregressive process of order p [40,41]:

n(t) = a0 +
P

∑
i=0

ain(t− i) + e(t) (27)

where ai are the parameters of the autoregressive model, p = 18 is the order of the autore-
gressive model, e(t) is white noise. The autoregression coefficients and the ranges of its
estimation error are shown in Figure 6.
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A signal extraction procedure was simulated to compare the variants of the suggested
target functions based on skewness, kurtosis, and a combination of skewness and kurtosis.
The signal model was represented by a sequence of pulses shown in Figure 1, and the noise
model was represented by the autoregressive process (27).

Using the objective function (18) at λ1 ≥ λ1 = 1, λ2 = 0, we obtained the result of
extracting a signal with the SNR of 16 dB, at 15 test periods of the LED. The result of signal
extraction is shown in Figure 7.
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When using the objective function (18) with λ1 = 0, λ2 = 1, based on normalized
kurtosis, we obtained the result of extracting a signal with the SNR of 23 dB, with 5 LED
test periods. The result of signal extraction is shown in Figure 8.
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The combined method was based on normalized skewness and kurtosis with the
weights λ1 = 0.5, λ2 = 0.5, the signal can be reconstructed with SNR = 28 dB. Neural
network adaptation was performed over two periods. The result of signal extraction is
shown in Figure 9.
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extraction obtained using the combined criterion based on skewness and kurtosis.

The algorithm was further improved using the objective function (25) based on the
statistical moments of the order that was optimal for solving our problem. These moments
are p1 = 2, q1 = 1 for generalized skewness and p2 = 1, q2 = 1/2 for generalized kurtosis.

Applying a step-by-step learning algorithm of second order, for example, the Levenberg–
Marquardt (LM) or Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, yielded better re-
sults.

Figure 10 shows the results of signal extraction obtained by executing an algorithm
based on relation (18) and step-by-step training using the BFGS method. SNR = 16 dB was
consequently achieved in the local sections of the cooling curves of the LED crystal.
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Figure 10. Dependence of the extracted signal on discrete time n = t
∆t , ∆t = 1µs, implying an

extraction obtained using the combined criterion based on skewness and kurtosis.

Figure 11 shows the result of signal extraction by executing an algorithm based on
Equation (25) and the training algorithm based on the BFGS method. SNR = 41 dB was
consequently achieved in the local sections of the cooling curves of the LED crystal.
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Figure 11. Dependence of the extracted signal on discrete time n = t
∆t , ∆t = 1µs, implying an

extraction obtained using the combined criterion based on generalized skewness, generalized kurtosis
and second order adaptation algorithm.

5. Discussion

To suppress noise in the process of determining the LED efficiency, attempts were
made to apply filters in the power supply circuit, galvanic isolation of analog and digital
equipment, electromagnetic shielding of the signal cable and analog equipment, and
smoothing low-frequency filters. An SNR of −14 dB was obtained through using noise
suppression tools.

Digital low-pass filters with finite impulse response (FIR), and Butterworth, Cheby-
shev, Bessel [42,43] filters with infinite impulse response (IIR), were considered at the next
stage. The low-pass FIR filters produced some waveform distortion but did not suppress
noise in the LED cooling curves. Applying the low-pass FIR filter yielded an SNR = −6 dB,
while an SNR of −7 dB was obtained in the case of the IIR filter. The result of applying the
Butterworth filter is shown in Figure 12.
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Figure 12. Noise suppression using a 9th order Butterworth filter with a cutoff frequency of 330 kHz.

The Type I Chebyshev filter of the 9th order with the cutoff frequency of 330 kHz
allowed achieving SNR = −6 dB (see Figure 13).
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Figure 13. Noise suppression using a 9th order Type I Chebyshev filter with a cutoff frequency of
330 kHz.

Noise suppression by averaging the sequence of identical signal pulses [43] also
did not give good results. Calculations indicated that the number of identical pulses
required for the averaging operation must be at least 100. When such a number of pulses
accumulates, the crystal is heated, which did not allow to implement this method. The
result of noise suppression by averaging over five periods yielded an SNR = −4 dB (see
Figure 14).
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Figure 14. Noise suppression via averaging of corresponding pulses.

Thus, classical noise suppression methods did not provide the required SNR. Using
adaptive filters was complicated because a reference channel had to be organized Modeling
confirmed that the proposed adaptive method for signal extraction provided a result that
allowed testing the LED efficiency.

This method was complex to implement since uncorrelated noise appeared in two
measurement channels. The challenge presented by having to compensate for the channel’s
own noise could be overcome by creating a third measuring channel. We simulated the
signal extraction procedure in the case when the proportion of uncorrelated white noise
was 7%, making it possible to obtain satisfactory results.

6. Conclusions

The suggested method used a single-layer neural network to extract the signal in the
cooling sections of the LED upon exposure to pulses of positive and negative polarities.
This method performed simultaneous comparison of the cooling curves of the crystals and
calculation of the LED efficiency at the onset of compensation. Using an objective function
for training a neural network that combines the normalized statistical moments of signal
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and noise PDFs gives a pronounced effect during signal extraction, particularly if the order
of statistical moments is specially adapted to solving this problem.
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