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Abstract: Carbon-based materials have attracted research interest worldwide due to their physical and
chemical properties and wide surface area, rendering them excellent carrier molecules. They are widely
used in biological applications like antimicrobial activity, cancer diagnosis, bio-imaging, targeting,
drug delivery, biosensors, tissue engineering, dental care, and skin care. Carbon-based nanomaterials
like carbon nanotubes and graphene have drawn more attention in the field of phototherapy due
to their unique properties such as thermal conductivity, large surface area, and electrical properties.
Phototherapy is a promising next-generation therapeutic modality for many modern medical
conditions that include cancer diagnosis, targeting, and treatment. Phototherapy involves the major
administration of photosensitizers (PSs), which absorb light sources and emit reactive oxygen species
under cellular environments. Several types of nontoxic PSs are functionalized on carbon-based
nanomaterials and have numerous advantages in cancer therapy. In this review, we discuss the
potential role and combined effect of phototherapy and carbon nanomaterials, the mechanism and
functionalization of PSs on nanomaterials, and their promising advantages in cancer therapy.
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1. Introduction

Cancer is a deadly disease, where cells grow in an enormous amount and kill a huge population
worldwide. Both developed and developing countries are largely affected and the death rate is high
due to food habits, lack of exercise, genetic reasons, etc. Every year, the death rate increases in breast,
lung, stomach, and liver cancers [1]. The exact cause of cancer is difficult to understand, and continuous
research is underway to find cancer growths due to genetic disorders or external chemical compounds
altering the gene by either addition or deletion, or overexpression of a gene, leading to the uncontrolled
growth of cells [2]. Human papillomavirus, Helicobacter pylori, and hepatitis infections also lead to
cancer incidence and progression [3]. Commercially available chemotherapy to treat cancer cells has
numerous side effects such as high cost, low bioavailability, and poor targeting.

The ancient medical technique to cure diseases with the help of sunlight was followed in various
countries like Egypt, China, and India, and this treatment was slowly forgotten over time due to
modern medicine. In the 15th to mid-19th century, people used to cure skin diseases following sunlight
therapy named heliotherapy [4]. The Atharvaveda Indians used plant extract and different Ayurvedic
oil or seed extracts on the affected area for various diseases and then treated them with sunlight [5].
Nowadays, modern phototherapy is emerging faster in the medical field due to its efficient curing
rate. The father of ultraviolet therapy, Niels Ryberg Finsen, designed a chemical ray lamp to treat
Lupus vulgaris and succeeded [6]. Then, treatments like ultra vitalux lamps, fluorescent tubes [7],
photochemotherapy, and psoralen and ultraviolet A (PUVA) slowly evolved in the 19th century [8].
During the 1980s, the term phototherapy was first named as extra corporeal photochemotherapy
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(extracorporeal photopheresis, ECP), and this was introduced to treat palliation of erythrodermic
cutaneous T-cell lymphoma (CTCL) and was approved by the FDA in 1988 [9]. Thus, phototherapy
attracted the research field and many treating methods were invented for various diseases like skin
disease, cancer, dental care, and eye treatment.

2. Types of Phototherapy

2.1. Photobiomodulation (PBM)

Photobiomodulation (PBM) is an alternative medicine to treat various diseases by applying
a low-level laser or low-power or light-emitting diodes with a limited wavelength level on the
affected area of the body [10]. In the late 1960s, this technique was first introduced by Mester for
hair growth in mice and potential medical applications [11]. PBM has been used to treat acute and
chronic pain, wound healing [12], inflammatory disorders, dentistry [13], neurological disorders,
head and neck cancer [14], Parkinson’s disease [15], colorectal cancer, carpel tunnel syndrome [16],
and musculoskeletal syndrome [17]. PBM has both inhibitory and simulating effects when the light
source is introduced into the cells [18,19]. The great opportunities of using blue and green light on
stem cells in regenerative medicine [20], red light in spermatozoa motility [21], and visible light are
being developed to visualize neuronal cells therapy [22].

The photobiomodulation effects on cell proliferation on most of the cells like fibroblasts, endothelial
cells, keratinocytes, and lymphocytes are based on photo-stimulation of the mitochondrial signalling
pathways, and increased production of growth factors by the regulation of transcription process [23–25].
Recent studies have focused on head and neck cancer therapy using PBM. The common side-effect of
head and neck cancer was oral mucositis, and it was treated using PBM, achieving a positive response,
which controlled the radiotherapy-induced oral mucositis [26].

2.2. Photodynamic Therapy (PDT)

Photodynamic therapy is an emerging medical treatment, and research is still ongoing in
this century. PDT is a treatment modality that utilizes light of a specific wavelength to activate
photosensitizers (PS) to destroy tumours. This works through a PS molecule or drug upon activation by
a specific light to produce reactive oxygen species and that specifically kills the targeted tumours [27,28].
PDT has a higher therapeutic efficacy and improves outcomes for cancer treatment in comparison to
commercially available chemo and radiotherapy [29]. The first clinical PDT was tested by Dougherty
and co-workers (1978), successfully treating cancer in preclinical models at Rosewell park cancer
institute [30]. The PS drug has toxic effects on cancer cells when activated by the light source, but the
drawback is that most of the PS molecule is water-insoluble in nature [31]. Therefore, to overcome
the drawback, PS molecules have recently been coupled with different nanomaterials for significantly
enhanced efficacy and tumour selectivity in cells using PDT [32,33]. The different mechanisms of
phototherapy using carbon-based nanomaterials are shown in Figure 1.
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Figure 1. Mechanism action of phototherapy. CNT—carbon nanotubes, PS—photosensitizers, PBM—
photobiomodulation mechanism of light source on cells leads to cell proliferation. PDT—
photodynamic therapy mechanism of incorporation of PS into the cells with light source emission 
leading to PS molecule activation induces singlet oxygen production and cell death. PTT—
photothermal therapy mechanism of addition of nanomaterials, which has thermal properties after 
the introduction of a light source, produces heat energy, leading to cell death. 

2.3. Photothermal Therapy (PTT) 

At present, photothermal therapy has attracted increasing attention in research due to the 
targeted ablation of cells using heat energy mainly on cancer. In PTT, the photosensitizer is subjected 
to a light source, and the PS molecule is activated for heat energy that leads to cell death [34]. When 
there is a rise in body temperature during the recovery of certain diseases, the elevated heat energy 
will slow down the multiplication of bacteria, viruses and pathogens, and cancer cells, which also 
lead to death in the heat environment. Recent research on PTT has been focusing on introducing 
nanoparticles into the cells, which would have the thermal effect and be activated by laser irradiation, 
mainly to treat cancer cells using particles like gold, silver, fullerene, carbon nanotubes, and graphene 
[35]. Photothermal therapy and commercially available chemotherapy combine to improve the 
therapeutic effects on the treatment of cancer, hence the attracting of researchers in recent years [36]. 
The types of phototherapy with commonly used wavelengths, lamps, mechanisms of action, and its 
applications are presented in Table 1. 

Table 1. Types of phototherapy. 

 Wavelengths Lamps Mechanism of Action Applications Reference 
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(Nd:YAG) laser, helium-
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melanoma skin 

cancer, Alzheimer’s 
disease. 

[47–49] 

PBM—photobiomodulation, PDT—photodynamic therapy, PTT—photothermal therapy, NIR—near-
infrared, PS—photosensitizers, UV—ultraviolet. 

Figure 1. Mechanism action of phototherapy. CNT—carbon nanotubes, PS—photosensitizers,
PBM—photobiomodulation mechanism of light source on cells leads to cell proliferation.
PDT—photodynamic therapy mechanism of incorporation of PS into the cells with light source emission
leading to PS molecule activation induces singlet oxygen production and cell death. PTT—photothermal
therapy mechanism of addition of nanomaterials, which has thermal properties after the introduction
of a light source, produces heat energy, leading to cell death.

2.3. Photothermal Therapy (PTT)

At present, photothermal therapy has attracted increasing attention in research due to the targeted
ablation of cells using heat energy mainly on cancer. In PTT, the photosensitizer is subjected to a light
source, and the PS molecule is activated for heat energy that leads to cell death [34]. When there is a rise
in body temperature during the recovery of certain diseases, the elevated heat energy will slow down
the multiplication of bacteria, viruses and pathogens, and cancer cells, which also lead to death in the
heat environment. Recent research on PTT has been focusing on introducing nanoparticles into the
cells, which would have the thermal effect and be activated by laser irradiation, mainly to treat cancer
cells using particles like gold, silver, fullerene, carbon nanotubes, and graphene [35]. Photothermal
therapy and commercially available chemotherapy combine to improve the therapeutic effects on the
treatment of cancer, hence the attracting of researchers in recent years [36]. The types of phototherapy
with commonly used wavelengths, lamps, mechanisms of action, and its applications are presented in
Table 1.

Table 1. Types of phototherapy.

Wavelengths Lamps Mechanism of Action Applications Reference

PBM 500–1100 nm

Neodymium:yttrium-
aluminium-garnet

(Nd:YAG) laser,
helium-neon laser

(He-Ne), Diode laser.

The low-level light source at a
particular wavelength applied
into the cells will stimulate or

enhance the cells.

Rheumatoid arthritis,
osteoarthritis, wound

healing, low back pain.
[37–40]

PDT 400–800 nm NIR lasers, diode
lasers, UV lights.

The PS molecule in the ground
state; when the molecule activated

by the light source reaches the
excited the state, it converts to the
triplet state by electron spinning.

The triplet state interacts with the
surrounding oxygen molecule

and produces ROS through type I
and type II reaction

Antimicrobial, fungal,
viral activity, acne

vulgaris, malignant
tumour (lung, skin,

head and neck,
prostate cancer),
wound healing.

[41–46]

PTT 800–980 nm NIR lasers, UV lights.
The particle (PS or nanoparticles)

will be activated by the light
source and produce heat energy.

Prostate cancer,
melanoma skin cancer,
Alzheimer’s disease.

[47–49]

PBM—photobiomodulation, PDT—photodynamic therapy, PTT—photothermal therapy, NIR—near-infrared,
PS—photosensitizers, UV—ultraviolet.
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3. Photosensitizers (PS)

Photosensitizers are light-sensitive molecules, which are available in natural and synthetic
compounds. PSs are molecules widely used in PDT, and when the light source emitted at a particular
wavelength transfers into the PS molecule, it reaches an excited state, and electron transfer will occur
in the chemical reaction and produce cytotoxicity [50]. The photosensitizers are well-soluble in body
tissues, and when coupled with the targeted nanomaterial, they easily reach the cells.

Photosensitizers are sensitive at a specific wavelength, where the minimum wavelength range
between 400 and 600 nm prevents excessive sensitivity from sunlight, and the maximum absorption
wavelength is between 600 and 800 nm; those above 800 nm will not provide excess oxygen production.
It has minimal cytotoxicity in the dark, so when the nanoparticle carries the PS molecule, it will affect
the normal cells until activating it [51–53]. In cancer therapy commonly, the used PS molecule is from
tetrapyrrole compounds, which have a similar structure as protoporphyrin prosthetic group has in
haemoglobin for their ease of efficacy to navigate inside living cells [54]. The photosensitizers are
classified based on the evolution such as first, second, and third generation. The first-generation
PS molecule was introduced by Oscar Raab in 1904, who explained to his professor Von Tappeiner
that acridine dyes kill protozoa when irradiated [55]. A commercially available PS molecule was
introduced in the 1970s by Dr. Thomas Dougherty and colleagues [56]. In the 1980s, second-generation
PS molecule studies began and a few PS molecules were used in clinical trials for anticancer activity.
The molecules were hematoporphyrin derivatives and synthetic photosensitizers [57]. These molecules
deeply penetrate into the tissues, have a high yield for oxygen molecules in pure form, and get activated
at wavelengths between 650 and 800 nm [58]. The third-generation PS molecules have a high affinity
to the tumour cells; it will not affect the normal cells and can target the specific area in the body during
PDT. More molecules are derived and synthesized to treat cancer cells combined with nanoparticles
to improve the targeting of specific cells and to increase the bioavailability of PS [59]. Ormond et al.,
2013 discussed the structures and activation energy of different PS molecules and the properties of
photosensitizers, and its application in cancer is given in Table 2 [60]. In the use of cancer treatment,
most of the PS molecules have porphyrinoid and nonporphyrin dyes, and the modified form of this
group is used in cancer cells. Some examples of porphyrinoid and nonporphyrin PS are shown in
Figures 2 and 3.

Table 2. Properties of photosensitizers and its application in cancer.

PSs Structure Λ(nm) and (Emax) Application

HpD
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3000 
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Bladder, Lung, 
Oesophagus 

cancer 
[62,63] 

5-Aminole-vulinic acid 

 

632 nm 
and 5000 

(M−1 
cm−1) 

Cancer diagnosis 
[64–66] 

Methyl aminolevulinate 

 

632 nm 
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(M−1 
cm−1) 

Nonmelanoma 
cancer, Basal cell 

carcinoma 
[67–69] 
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Breast cancer, 

Cervical cancer 
[73–75] 

Meta-tetra(hy-droxyphe-
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and neck cancer 
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[76–78] 
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Bladder, Lung,
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4. Carbon Nanomaterials

The carbon nanomaterials are classified as zero-dimensional (0D)-structure fullerene,
one-dimensional (1D) carbon nanotubes (CNT) and two-dimensional (2D) graphene nano-sized
molecules. They are widely used in electronic and electrical fields, biosensors, medical treatments,
environmental, etc. [78]. This nanomaterial has unique structures and physiochemical characteristics in
the biomedical field to avoid current chemotherapeutic toxicity and to provide new effective therapies.
In the drug delivery system, CNTs and graphene play significant roles compared to other nanomaterials
due to the large surface area, so their loading efficiency of drugs or biomolecules or PS are high [96].

4.1. One Dimensional Carbon Nanotubes (CNT)

Carbon nanotubes are like rolled-up graphene sheets in a hollow cylindrical shape where both
the ends are opened, and carbon atoms are exclusively arranged like benzene rings. The structural
representation of CNT is armchair, zigzag, and chiral, with allotropic forms of both sp2 planar and sp3

cubic [97]. When the single sheet is rolled up and forms a tube, it is named a single-walled carbon
nanotube (SWCNT) sized between 1 and 3 nm in diameter, with a length of several micrometres.
Multiple sheets that roll up and form a tube are named multi-walled carbon nanotubes (MWCNTs)
sized between 1 and 3 nm inner diameter, 2 and 100 nm outer diameter, and a length varying from
0.2 to several micrometres [98]. Synthesis of CNTs is mainly in three processes, namely the discharge,
chemical vapor deposition (CVD), and laser ablation techniques. Some natural techniques are available
but have no proper yield or standardized method [99]. The purity of the CNT is achieved by the acid
reflux method, air oxidation, and surfactant-based sonication to remove the extra metals, for when
it goes to biological applications as purity is very important [100]. Carbon nanotubes play a unique
role as nanocarriers to deliver drugs, polymers, photosensitizers, and specific ligands to target siRNA
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and DNA. In cancer therapy, conventional treatment like surgery, chemotherapy or radiotherapy
has numerous side effects and does not completely get rid of the disease, due to poor targeting,
bioavailability, and damaging organs [101]. Now, scientists are focusing on combination therapy like
nanomaterials with phototherapy for effective and target cancer treatment. The photosensitizers are
coupled with CNTs to increase the solubility, PS bioavailability, and targeting only the cancer cells [102].
The photothermal activity of the CNTs activated at the wavelength of 808 nm and PSs-coupled CNTs
are used to treat cancer cells by photodynamic effects [103].

4.2. Two-Dimensional Graphene

Graphene nanomaterials have attracted more attention in several fields due to the presence of
more functional groups, wide surface area, and biocompatibility. Geim and Nosovelov were the first
to separate a single graphene sheet layer from graphite material in 2004, where they followed the
mechanical cleaving technique for isolation from the graphite crystal [41]. It has an sp2-hybridized
honeycomb structure with a two-dimensional carbon lattice, which has unique electronic properties.
It has a relatively high Young’s modulus, faster electron mobility, and high electric and thermal
conductivity. Graphene is widely used in the form of graphene oxide (GO), carboxyl graphene
(GCOOH), and reduced graphene oxide (rGO) [104]. Graphene oxide synthesis from graphite gives
a high yield of production and cost-effectiveness. Graphene has a wide range of applications in the
electronic and electrical, biomedical, environmental, and nanotechnology fields. Graphene is a good
nanovehicle to carry more drugs or PS molecules due to the wide surface area. Graphene produces
photothermal activity when introduced at a wavelength of 808 nm [105]. The functionalized graphene
nanomaterial surface bonds will be broken due to high-temperature vibration and the carrier molecules
released inside the cells, which helps to target the cells and act as a good nanocarrier in biological
applications [106].

5. Mechanism and Loading of PS on Nanomaterials

5.1. Physical Loading of PS

In the drug delivery system, nanoparticles will be loaded with chemotherapeutic drugs,
biomolecules, PS, etc. and the loading of the molecule will be based on the physical and chemical
characteristics. Physical loading, also called noncovalent bonding, is a process that has a different
mechanism like hydrophobic interaction, van der Waal’s force, and π–π stacking. 1D and 2D particles
without any functional groups are hydrophobic in nature, and when interacting with a nonpolar
PS molecule, both adsorb on the surface, but it is not strong enough to enter into the body to treat
cancer cells [107]. The van der Waal’s force involves dipole interaction between the nanoparticle and
PS molecule by the intermolecular force, as if the PS aggregated on the surface of the nanoparticle.
Both mechanisms are not well preferred in the drug delivery system, due to poor stability, loading
efficiency and release moiety [108]. π–π stacking is another physical adsorption method to load PS on
the nanoparticle. Both 1D and 2D have an aromatic ring carbon particle, and when the PS molecule
has a similar structure, both stack on the surface, and noncovalent bonding interaction takes place by π
bonds. Hence, this mechanism is named π–π stacking. The long-chain polymers or peptides will fold
on the nanoparticles by π–π stacking to load drugs [109]. The advantages of noncovalent bonding
is that there is no structural damage of the drugs; the properties of the nanoparticle will remain the
same. Examples of π–π-stacked molecules are proteins and DNA [110], si-RNA [111], polyacrylic
acid, and pyrene [112]. Most of the PS molecules like m-tetrahydroxyl phenylchlorin (mTHPC),
zinc phthalocyanine, zinc monoamino phthalocyanine, and Chlorin e6 are coupled noncovalently by
π–π stacking to treat various cancer cells using phototherapy, and PDT and PTT are commonly used in
cancer cells [113].

In recent research, the graphene oxide composite was prepared for phototheranostic application
purposes, and some of the composites were discussed. Photosensitizer chlorin e6 is coupled
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noncovalently by the ultrasonication technique for photodynamic and photothermal effects, and GO
is coupled with PEG-coupled gold nanostars. This composite has a combined effect of PDT, PTT,
and photoimaging both in vitro and in vivo to treat breast cancer with successful results [114].
Single-walled carbon nanotubes were coupled with an encapsulated albumin chlorin e6 PS molecule by
the ultra-homogenization technique for PTT, having an effect on squamous cell carcinoma (SCC 7) cell
lines for in vitro and in vivo studies on the BALB/c (Bagg and Albino laboratory-bred mouse strain)
nude female mice model [115]. The multiwalled carbon nanotubes were utilized for both the PDT
and PTT effect by coupling foscan® (mTHPC) π–π stacking using a continuous stirring technique for
3 days, and the cell death mechanism occurred when irradiated at 650 and 880 nm on human ovarian
cancer SKOV 3 cell lines [102]. The loading mechanism of PS on nanomaterials is depicted in Figure 4.Materials 2020, 13, 4830 11 of 22 
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5.2. Chemical Loading of PS

The covalent functionalization is like a defect in the sidewalls of the nanomaterial, where there will
be an addition of different functional groups [116]. The main aim of the covalent functionalization is to
avoid the change in physical properties like solubility, purity, and sp2 and sp3 hybridization of carbon
molecules. Those properties of carbon have a wide range of applications in the field of medical science
and nanotechnology [117–120]. The functional groups are added to the CNTs like the carboxyl group,
hydroxyl, amine, fluoride, and disulphide bonds [121]. The carboxyl group of graphene oxide and the
amine group of polyethylene glycol (PEG) are coupled using the EDC-NHS method to act as a high
loading nanocarrier [122]. Due to the solubilizing nature and biocompatibility of the functionalized
carbon nanomaterials, it is opted to add different polymeric chains, proteins, DNA, and drugs. In a
recent study, polyethyleneimine-functionalized SWCNTs are tested on melanoma cells in vitro and
in vivo using PDT. The single-walled carbon nanotubes covalently functionalized composite showed
excellent photocytotoxic action against cancer cells, and the activity of the composite was based on the
functionalization method [123].

6. Application of Phototherapy Using CNT and Graphene on Cancer Therapy

Various research works are ongoing using the photo effect to treat new diseases to overcome
the side-effects of present chemotherapy mainly on cancer. Using CNT and graphene nanomaterials
for PDT, PTT, and photo imaging by coupling with different PS targets cancer cells and fluorescent
molecules. The different nanoparticles with photosensitizers and their applications are listed in Table 3.
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Table 3. Various applications of phototherapy using 1D and 2D carbon nanomaterials on cancer.

Nanoparticle Photosensitizer Bonding Photo
Therapy Applications Targeted References

SWCNTs - Covalent
(Carboxyl-amine cross-linking) PTT Glioblastoma cells Anti CD133 [124]

SWCNTs SWCNT-PEI
SWCNT-PVPk30

Covalent
(cationic polymerization)

and noncovalent (physical attachment)
PDT Mus musculus skin melanoma

cells (B16-F10 cells) - [102]

Metallic-SWCNT
Semiconducting-SWCNT - - PDT

PTT Lung cancer cells (NCI-H460) - [125]

MWCNT m-tetrahydroxylphenylcholrin Non-covalent
(physical attachment)

PDT
PTT Ovarian cancer cells (SKOV3) - [103]

SWCNT (Evans blue
and albumin) Chlorin e6 Non-covalent

(physical attachment) PDT/PTT
Mouse squamous cancer cells

(SCC-7) and
In vivo

- [116]

SWCNT Zinc phthalocyanine
Covalent

(carboxyl-amine cross-linking) and
non-covalent (physical attachment)

PDT Breast cancer cells (MCF 7) Spermine [126]

SWCNT (chitosan) Chlorin e6 Non-covalent
(π-π interaction) PDT HeLa cancer cells - [127]

SWCNT, GO,
Fullerene - Covalent

(Carboxyl-amine cross linking) PTT Breast cancer cells (MCF 7) and
In vivo Hyaluronic acid [128]

SWCNT Zinc monoamino
phthalocyanine

Covalent
(Carboxyl-amine cross linking)

and non- covalent
(π-π interaction)

PDT/PTT Melanoma cells (A375) Folic acid [129]

SWCNT (Docetaxel
NGR peptide) - Non-covalent

(physical attachment) PTT Human prostate cancer (PC3)
and in vivo - [130]

CNT Graphene sheet Hydroxyapatite Non-Covalent
(physical attachment) PTT - - [131]

Graphene
oxide-PEG-DOX - Covalent

(Carboxyl-amine cross-linking) PTT Murine mammary cancer cells
(EMT6) and in vivo - [123]

Graphene oxide-gold
nanorods-Doxorubicin - Noncovalent

(physical attachment) PTT Lung cancer cells (A549) - [132]
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Table 3. Cont.

Nanoparticle Photosensitizer Bonding Photo
Therapy Applications Targeted References

Reduced graphene
oxide - Noncovalent

(physical attachment) PTT Human breast cancer (MCF 7) Hyaluronic acid [133]

Graphene oxide
Palladium - Covalent

(Carboxyl-amine cross-linking)
PDT
PTT Human prostate cancer (PC3) - [134]

Graphene - - PDT
PTT Cervical cancer cells (HeLa) - [135]

Graphene oxide-PEG - Covalent
(Carboxyl-amine cross-linking)

PDT
PTT Melanoma cells (B16F0) Folate [106]

Graphene oxide
(Quantum dots) TRITC

Covalent
(Carboxyl-amine cross-linking)

Noncovalent
(physical attachments)

PDT Mouse mammary tumour cells
(4T1)

Upconversion
nanoparticle (UCNP) [136]

Graphene - Covalent
(Carboxyl-amine cross-linking) PTT Skin cancer (in vivo) Hyaluronic acid [137]

Graphene oxide Chlorin e6 Noncovalent
(π-π interaction)

PDT/
PTT

Mouse breast mammary
carcinoma cells (EMT6) - [115]

Graphene
oxide-PEG-Folic acid - Covalent

(Carboxyl-amine cross-linking) PTT Human breast cancer (MCF 7
and MDA-MB-231) Folate [138]

SWCNTs Chlorin e6 Non-covalent
(π-π interaction) PDT Human colon cancer cells

(Caco 2) Hyaluronic acid [139]
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7. Conclusions and Future Perspectives

Carbon-based nanomaterials graphene and carbon nanotubes play a vital role as nanocarriers
at present, and more research articles have been published as they are a good carrier to treat cancer
cells both in vivo and in vivo. The unique structure of CNT and graphene will increase the loading
efficiency of PS molecules, the biocompatibility, bioavailability, and thermal effect. The phototherapy
using carbon nanomaterials to treat cancer is a new approach and is effective with reduced side
effects. The loading mechanism of photosensitizers is clearly studied based on the structure and
functional group present in the PS molecule. Most of the PS molecules have a benzene ring in
their structure that will attach on the nanomaterials by π–π stacking noncovalent functionalization.
The chemical functionalization with the PS molecule has very few research works being done to treat
cancer cells. The surface functionalization will improve the targeting of the therapeutic efficiency
of the photosensitizers for the treatment of cancer in PDT. More research work is needed on this
perspective of surface modifications to develop novel targeted carbon nanomaterials for the treatment
of cancer. Furthermore, more in vitro, in vivo, and clinical trials are recommended to unlock the
medicinal applications of carbon-based nanomaterials for the treatment of cancer. The carbon nanotube
and graphene-based nanocomposite with the PS molecule are used to treat various cancer cells, and
the mechanism of loading with target molecules is detailed in this review. Emerging phototherapy
combined with carbon nanomaterials will be an alternative treatment for cancer with fewer side effects.
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Abbreviations

0D Zero dimensions
1D One dimension
2D Two dimensions
CD Compact disk
CNT Carbon nanotubes
COOH Carboxyl group
CTCL Cutaneous T-cell lymphoma
CVD Chemical vapor deposition
DVD Digital video disk
ECP Extracorporeal photopheresis
EDC Ethyl(dimethylaminopropyl) carbodiimide
FDA Food and drug administration
GCOOH Carboxylated graphene
GO Graphene oxide
He-Ne Helium and neon
HpD Haematoporphyrin Derivative
IEC International Engineering Consortium
LLLT Low-level laser therapy
M−1 cm−1 Per moles per centimetre
mTHPC m-tetra hydroxyl phenylchlorin
MWCNT Multi-walled carbon nanotubes
Nd:YAG Neodymium-doped yttrium aluminium garnet
NHS N -Hydroxysuccinimide
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NIR Near-infrared
Nm Nanometre
OH Hydroxyl group
PBM Photobiomodulation
PDT Photodynamic therapy
PEG Polyethylene glycol
PEI Polyetherimide
PS Photosensitizers
PTT Photothermal therapy
PUVA Psoralens and ultraviolet A
PVPk30 Polyvinylpyrrolidone
rGO Reduced graphene oxide
ROS Reactive oxygen species
siRNA Small interfering ribonucleic acid
DNA Double-stranded nucleic acid
SWCNT Single-walled carbon nanotubes
TRITC Tetramethylrhodamine
UCNP Upconverting nanoparticles
UVA Ultraviolet A
UVB Ultraviolet B
εmax Molar extinction coefficient
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