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Coronary heart disease (CHD) is a type of cardiovascular disease with the highest

mortality rate worldwide. Percutaneous transluminal coronary intervention (PCI) is

the most effective method for treating CHD. However, in-stent restenosis (ISR), a

long-term complication after PCI, affects the prognosis of patients with CHD.

Previous studies have suggested that hypersensitivity reactions induced bymetallic

components may be one of the reasons of this complication. With the emergence

of first- and second-generation drug-eluting stents (DES), the efficacy and

prognosis of patients with CHD have greatly improved, and the incidence of ISR

has gradually decreased to less than 10%. Nevertheless, DES components have

been reported to induce hypersensitivity reactions, either individually or

synergistically, and cause local inflammation and neointima formation, leading

to long-term adverse cardiovascular events. In this article, we described the

relationship between ISR and hypersensitivity from different perspectives,

including its possible pathogenesis, and discussed their potential influencing

factors and clinical significance.

KEYWORDS

in-stent restenosis, hypersensitivity, drug-eluting stent, eosinophils, stainless steel

Introduction

Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide.

Globally, an estimated 18.6 million people died of CVDs in 2019. Since the 1970s, when

the world’s first percutaneous transluminal coronary angioplasty (PTCA) was performed

clinically, percutaneous coronary intervention (PCI) has become an important method of

treating coronary heart disease (CHD). However, postoperative in-stent restenosis (ISR)

and thrombosis are the main factors affecting its efficacy. ISR is defined as the presence of

a stenosis greater than 50% of the diameter of the stent segment found on angiography

that can clinically manifest as recurrent unstable angina pectoris, and in rare cases, acute

myocardial infarction (Dangas et al., 2010). The incidence of ISR can be as high as

20–40%, and is caused by damage to the arterial wall due to various reasons, subsequently

resulting in fibroproliferation, inflammatory response, and eventually neointimal

hyperplasia (NIH) (Hoffmann et al., 1996). Few studies have shown that local

inflammation caused by hypersensitivity to alloy components in metal stents may be

one of the reasons for this complication (Table 1). Metal stents, which are foreign bodies,
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cause vascular remodeling, persistent endothelial dysfunction,

and fibrin deposition via local inflammation (Torrado et al.,

2018).

Over the past few decades, great strides have beenmade to reduce

the incidence of ISR with the advent of drug-eluting stents (DES).

Restenosis rates can be reduced by up to 10–20% in patients treated

TABLE 1 Human studies and case reports implicating hypersensitivity in the process of restenosis.

Study Model Stent Follow up Results

Takashima et al Human ISR specimens PES in EES 4 months after PESs were employed
n = 1

There are macrophages, foam cells, eosinophils,
and persistent fibrin deposition surrounded the
stent

Otsuka et al ISR specimens CYPHER stents 2 years after PCI n = 1 There are lymphocyte infiltration and
hypersensitivity reaction with eosinophilia and
proliferation of smooth muscle cells

Cihangir et al Patch test Cobalt chromium
coronary stents

n = 61 (30 patients for ISR group;
31 as the control group)

7 of 31 patients (23%)

In ISR group had nickel contact allergy (P <
0.006)

Koster et al Patch test and angiography 316L stainless-steel
stents

6 months after PCI n = 131 All ten patients with positive patch Test results
had restenosis (p = 0.03)

Kawano et al ISR specimens and patch test 316L stainless-steel
stent

Repeated ISR occurred 3 months
after PCI n = 1

Histologically found the tissue is infiltrated with
eosinophils, and patch test showed an allergic
reaction to the stent

material, including nickel and molybdenum

Rittersma et al ISR specimens 316L stainless steel
stents

n = 32 (16 patients had restenosis
after balloon angioplasty, 16

In-stent restenotic tissue contained more smooth
muscle cells (p < 0.001), anti-CD3 positive T cells
(p < 0.001) and eosinophils (p = 0.012)

patients had ISR)

Saito et al Patch test 316L stainless steel
stents

n = 128 Nickel-positive was a significant predictor for
CR-ISR(p = 0.0033)

60 patients with the second ISR
(study group) and 68 patients
without the second ISR

(Control group)

Granata et al Patch test and OCT ZES 6 months after PCI n = 1 In-stent restenosis was associated with nickel
hypersensitivity

Niccoli et al Basal ECP levels BMS 24 months follow-up ECP was associated with MACEs after BMS
implantation

n = 110

HAJIZADEH
et al

Peripheral blood eosinophil count and its
percentage measured 6 weeks after DES
implantation

DES 6 months follow-up n = 204 Eosinophil count of the peripheral blood was an
independent predictor of ISR.

L.Pfoch et al Skin prick and epi cutaneous testing with
non-toxic paclitaxel dilutions

Taxus 2 weeks after PCI n = 1 There was a relation of the ISR and
hypersensitivity reaction with a central role of
paclitaxel

Jiasheng et al ECP DP-DES n = 202 Serum ECP levels were higher in patients with
ISR, is related to the reaction with coating drugs

BP-DES

Gabbasov et al Blood plasma lev els of eosinophil
cationic protein (ECP) and total
immunoglobulin E (IgE)

Sirolimus-eluting
stents

Follow-up angiography at
6–12 months n = 32

ECP was higher in patients with restenosis
compared with that in patients without restenosis
[17.7 ng/ml (11.2 -- 24.0) vs9.0 ng/ml (6.4 --
12.9), p = 0.017]

SVEDMAN
et al

Patch test Au-stents and Ni-
stents

n = 484 There is a correlation between contact allergy to
gold, gold-stent, and restenosis (OR2.3, CI
1.0–5.1, p = 0.04)

Nakajima et al Patch test CoCr-EES and
cobalt-
chromium BMS

First time:6 months after PCI;
Second time:2 weeks after PCI
of ISR

Hypersensitivity to cobalt-chromium BMS led to
acute progression of ISR.

ISR:in-stent restenosis; PCI: percutaneous intervention; ECP: eosinophil cationic protein; MACE: major adverse cardiac events.

CR-ISR: chronic refractory (CR) in-stent restenosis; OCT: optical coherence tomography.
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with first-generation DES. Nevertheless, according to incomplete

statistics, the incidence of ISR still requires revascularization is 5

%–10%. The underlying mechanisms of DES restenosis can be

considered to result from four factors: mechanical, biological,

genetic, and technical factors (Aoki and Tanabe, 2021). In terms

of biological factors, in addition to drug resistance, allergic

inflammatory responses to polymer and metal scaffold platforms

cannot be ignored (Figure 1) (Giustino et al., 2022).

In this review, we explored the relationship between

hypersensitivity and the different components of different stents,

including their potential mechanisms for promoting restenosis and

their impact on prognosis. In addition, we summarized the evidence

that ISR is associated with allergic reactions and discussed its current

diagnosis, treatment strategies, and future prospects.

Inflammatory mechanism of
restenosis

Inflammatory response is one of the pathogenic

mechanisms leading to adverse events after stent

implantation, and its role in the occurrence and

development of ISR after PCI has been confirmed in several

studies (Welt and Rogers, 2002). Balloon expansion and stent

implantation can cause vascular endothelial injury to varying

degrees, and pro-inflammatory factors, such as tumor necrosis

factor (TNF), interleukin-1, and interleukin-6 released at the

injury site, mediate the adhesion and aggregation of

inflammatory cells. The inflammatory process can stimulate

proliferation, differentiation, and extracellular matrix

synthesis of vascular smooth muscle, eventually leading to

the proliferation of local neointima (Kornowski et al., 1998).

In addition, damaged vascular endothelium is prone to

platelet and fibrin deposition, which is associated with the

formation of mural thrombi (Byrne et al., 2015).

Classical and allergic inflammation are the two main

inflammatory response mechanisms. The activation

pathway of the former involves monocytes, macrophages,

neutrophils, and T lymphocytes, whereas, the latter is

mainly caused by eosinophils and mast cells (Montone

et al., 2013).

In the classical inflammatory response, C-reactive protein

(CRP) is a common inflammatory marker. Few studies have

found that plasma CRP levels are significantly increased in

patients with restenosis. Clinically, it can be used as an

independent predictor of major adverse cardiac events

(MACE) and restenosis after stent implantation (Buffon et al.,

1999). Other inflammatory markers, such as plasminogen

activator inhibitor (PAI-1) and matrix metalloproteinases

(MMPs), are also considered to be associated with first-

generation DES restenosis (Katsaros et al., 2008; Katsaros

et al., 2010).

Eosinophils and mast cells are effector cells involved in

allergic inflammatory responses (Costa et al., 1997).

Eosinophils can secrete growth factors, chemokines, and

interleukin-1 (Fulkerson and Rothenberg, 2013). Mast cells

are involved in the release of histamine, tryptase, chymase, a

series of cytokines and chemokines, platelet activating

factors, and arachidonic acid products (Shi et al., 2015).

Cellular mediators of allergic inflammation also play roles

in the formation and development of coronary plaques.

Among them, histamine and leukotrienes are effective

vasoactive inflammatory molecules that can increase the

vascular permeability and activate endothelial cells

(Kunder et al., 2011). Tryptase and chymase may be

involved in the degradation of high-density lipoprotein

(HDL) (Lee et al., 2002), which may be related to plaque

rupture in patients with acute coronary syndrome (Lee-

Rueckert and Kovanen, 2006). Additionally, mast cells

promote the activation of T cells and macrophages, leading

to endothelial cell proliferation and fibrosis. In fact, both the

types of cells are functionally capable of regulating each

other, forming the so-called “allergic effector units”

(Gangwar et al., 2016).

FIGURE 1
The underlying mechanisms of DES restenosis.
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Hypersensitivity of coronary stent
materials

Hypersensitivity to metal components

Most coronary stents, especially bare metal stents (BMS) and

first-generation DES, are made of 316 L stainless steel, which

contains metal elements such as nickel, chromium, and

molybdenum. These metal ions are eluted from the stent by

the blood, saline, proteins, and mechanical stress. It is estimated

that up to 17% of the population is allergic to nickel and another

1–2% of the population is allergic to other elements, such as

cobalt and chromium, to varying degrees (Basko-Plluska et al.,

2011). Allergies related to metal implants are well documented in

orthopedics, dentistry, and other fields (Honari et al., 2008).

Metal ions eluted from the device may bind to endogenous

proteins in complexes or directly activate T cell receptors in a

super-antigen fashion. Additionally, they may lead to

macrophage activation and cause delayed allergic reactions.

The allergic reactions may be localized as local dermatitis,

systemic as eczema, or may induce a syndrome similar to

systemic lupus erythematosus. Hypersensitivity to related

metal components has been found in patients with late

adverse cardiovascular events (Granata et al., 2015) such as

ISR and late stent thrombosis (LST) (Kataoka et al., 2012).

Köster et al. were the first to demonstrate that patients with

delayed hypersensitivity reactions to metals, especially nickel,

have a higher incidence of ISR(Köster et al., 2000). However, due

to the limitations of retrospective studies, only 8% of patients in

the study had positive results. Compared with the high incidence

in the population, this finding is not surprising. In addition,

investigators have pointed out that patients without suspected

restenosis were not investigated in this study; hence, it is difficult

to rule out possible metal allergy, which is an important missing

control group (Keane et al., 2001). Some follow-up studies of ISR

in patients treated with stainless steel stents did not confirm

Köster’s original observations. Furthermore, Saito et al. found

that tissue response to nickel is a major factor in chronic

refractory ISR (Saito et al., 2009). New-generation DES use

metal alloys, such as cobalt-chromium (CoCr) or platinum-

chromium (PTCR), which, in contrast, have thinner struts

and lower nickel content than stainless steel stents (Gori

et al., 2019). However, nickel allergy remained significantly

associated with ISR in CoCr stent-treated patients (Aliagaoglu

et al., 2012). Additionally, a study reported local hypersensitivity

and restenosis at the site of stent fracture after CoCr stent

implantation, suggesting a potential role of the accelerated

release of metal ions (Mori et al., 2017).

Previous case reports have demonstrated repeated incidence

of ISR after receiving CoCr stents in patients with proven nickel

allergy. After switching to bio-absorbable vascular stents (Jurado-

Roman et al., 2017) and prednisolone anti-allergic treatment

(Nakajima et al., 2016) after PCI, the patients’ prognosis

significantly improved. In 2016, Nakajima also reported a case

of recurrent ISR and overt metal allergy after implantation of

CoCr everolimus-eluting stents (CoCr—EES), in which recurrent

restenosis was terminated with prednisolone and tranilast

treatment (Nakajima et al., 2016).

Studies have shown that nickel salts such as nickel chloride

can directly activate vascular endothelial cells and upregulate

the expression of intercellular adhesion molecule 1 (ICAM-1)

(Messer et al., 2005). As a cell surface glycoprotein and

adhesion receptor (Hubbard and Rothlein, 2000), ICAM-1

plays a role in leukocyte transendothelial migration (TEM). In

response to inflammatory stimuli, ICAM-1 is involved in the

regulation of leukocyte rolling and adhesion interactions with

the vessel wall in the vascular endothelium and guides

leukocytes across the endothelial layer (Yang et al., 2005),

thereby promoting the occurrence of local in-stent restenosis.

Additionally, ICAM-1 is involved in many other physiological

processes, including immune cell effector functions, clearance

of pathogens and dead cells, and activation of T cells. Related

studies have also been conducted on the development,

metastasis, and prognosis of tumors. Furthermore, studies

have demonstrated that ICAM-1 expression can be induced in

conjunctival epithelial cells (ECs) of allergic patients,

revealing its role as a marker of allergic inflammation (Bui

et al., 2020).

However, there have always been a controversy regarding the

allergy and restenosis associated with stainless steel stents. Few

studies do not report a link between these factors (Thyssen et al.,

2011; Slodownik et al., 2018). In a prospective study, Norgaz et al.

did not find an association between nickel allergy and the

development of ISR in patients with stainless steel stents

(Norgaz et al., 2005). Similarly, Iijima et al. prospectively

assessed the differential relationship between metal allergy in

initial ISR and after restenosis treatment and found that metal

allergy was not associated with restenosis after the initial stent

implantation but was associated with recurrent restenosis (Iijima

et al., 2005). It is worth noting that unlike the patch test method

in previous studies, Santiago et al. only included patients with a

history of metal allergy before coronary stent placement by

querying personal history. The possibility of sensitization

directly caused by the stent placement was ruled out. The

findings showed that a history of metal allergy was not

associated with adverse outcomes in patients undergoing PCI

(Romero-Brufau et al., 2012). Furthermore, in a retrospective

study, Svedman et al. found that gold-plated stents were

significantly associated with gold allergy and restenosis.

Conversely, this behavior was not observed for nickel in this

study. These findings suggest that gold is a stronger sensitizer

than nickel and may elicit a stronger immune response leading to

endothelial cell proliferation (Svedman et al., 2009).

Nevertheless, larger prospective studies and randomized

controlled trials are needed to confirm the association

between this metal allergy and ISR.
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Hypersensitivity to antiproliferative drugs
in DES

The allergic reaction resulting from the use of DES is not

solely from the non-drug components of the stent. Compared

with BMS, DES incorporate antiproliferative agents to prevent

restenosis. There are two main classes of impregnated drugs in

first-generation DES: inhibitors of the mammalian target of

rapamycin (mTOR) (e.g., sirolimus and its analogs) and

paclitaxel and its derivatives. The first drug used in the

Cypher stents was sirolimus. Sirolimus (rapamycin) is a

macrolide antibiotic extracted from S. hygroscopicus

(Aminian et al., 2009). It is a multifunctional serine-threonine

kinase that acts on IL-2-mediated signal transduction pathways,

and is a central regulator of cell growth, proliferation, and

apoptosis. Therefore, it is used in immunosuppressive therapy

for cancer and as an anti-rejection agent after transplantation.

Moreover, it is used in coronary stents to reduce the neointimal

formation and restenosis (Kawano et al., 2004; Steffel and

Tanner, 2007). Although sirolimus is mostly considered to be

an unlikely cause of allergy as it generally reduces eosinophil

infiltration and histamine release, clinical adverse reactions to

sirolimus such as bone marrow suppression, hyperlipidemia, and

hypercholesterolemia, are still visible (Brara et al., 2003). In

addition, life-threatening coronary spasms have been reported,

which may be related to severe endothelial dysfunction

(Wheatcroft et al., 2006). This is similar to the clinical

complications of the type I variant of Kounis syndrome. At

the same time, rapamycin was also found to increase the

expression and activity of thrombin and tumor necrosis

factor-α-induced endothelial tissue factor (Steffel et al., 2005).

In an animal study, histopathological examination of the

heart of laboratory rats administered with sirolimus revealed a

focal myocardial infarction (Walpoth and Hess, 2004). The

incidence was positively correlated with the drug dose. In

addition, animal experiments have shown that a rat model of

synthetic vascular grafts treated with systemic or topical

rapamycin has a propensity for thrombosis (Walpoth et al.,

2001). Previous human studies have also reported that allergic

vasculitis after DES implantation may be associated with late and

very late stent thrombosis, and occurs almost exclusively with

first-generation sirolimus-eluting stents (SES, Cypher) (Cook

et al., 2009). In addition, Nakazawa et al. evaluated patients’

coronary stent histomorphology and found that although SES

can better inhibit NIH, the allergic inflammation mediated by

cells including eosinophils and lymphocytes is more serious and

is the main cause of LST compared with paclitaxel-eluting stents

(PES) (Nakazawa et al., 2008). In contrast, LST in PES is mostly

secondary to the malpositioning caused by excessive fibrin

deposition.

Paclitaxel was isolated from the bark of Taxus japonica and

was later used as an anti-restenosis drug for the TAXUS stent.

Unlike mTOR inhibitors, paclitaxel is a cytotoxic agent that binds

to β-tubulin and causes cell cycle arrest in the second growth

phase by inhibiting the microtubule assembly (M phase of the cell

cycle), leading to the dissolution of mitotic spindle structures

(G2) and mitosis (M) (Blagosklonny et al., 2004)and inhibiting

the proliferation of human endothelial cells. Allergic reactions

such as neutropenia, thrombocytopenia, gastrointestinal

symptoms, and peripheral neuropathy are common in patients

with various cancers treated with paclitaxel (Picard, 2017).

Although it is an effective antirestenosis drug, its safety has

been questioned. A previous study found that paclitaxel may be

an important cause of the excessive deposition of intravascular

fibrin, which is related to LST (Nakazawa et al., 2011). Pfoch also

reported a case of anaphylaxis 2 weeks after PES stent placement

in a patient who was desensitized after antihistamine therapy

(Pfoch et al., 2009). Owing to the timely detection and treatment,

the patient did not develop ISR during the follow-up period of

more than 1 year. However, it is worth noting that it is often easy

to ignore the follow-up data in patients whose early allergic

reactions are not obvious in the whole body and could possibly

turn fatal. Although DES have been shown to reduce restenosis

rates, allergic reactions to stent components have the opposite

effect.

Compared with first-generation DES, second-generation

DES use derivatives of sirolimus, such as Evorolimus and

Zotarolimus, as carrier drugs. Compared with sirolimus, they

can be used at lower drug concentrations and have reduced

toxicity compared. However, Otsuka et al. reported a case of

ZES and EES implantation. The patient had three ZES and

one EES implanted for severe LAD lesions and died 238 days

later. Histological examination of the scaffold revealed

persistent inflammation and fibrin deposition with marked

infiltration of eosinophils, T-lymphocytes, and

multinucleated giant cells (Otsuka et al., 2015). Moreover,

hypersensitivity pneumonitis has been previously reported in

kidney transplant patients treated with sirolimus (Shin et al.,

2013). Although ZES-related allergic events are rare, the

biological toxicity of zotarolimus cannot be ruled out

(Takashima et al., 2015).

Hypersensitivity to polymer in DES

Polymers, an important part of DES, can control the release

of anti-proliferative drugs to ensure the anti-restenosis

efficacy. As carriers for topical administration, polymers in

first-generation DES such as polystyrene-b-isobutylene-b-

styrene of the Taxus Express PES, Cipher sirolimus

polyethylene vinyl acetate (PEV-A), and polybutyl

methacrylate (PBMA) of SES-eluting stents can effectively

control drug release and significantly reduce the rate of

restenosis (Byrne et al., 2017). However, data suggest that

polymers used in first-generation DES have poor

biocompatibility and are associated with late clinical adverse
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events. Allergic reactions have been reported with the use of

polymers, such as those in latex and vinyl gloves. These allergic

reactions are usually type IV hypersensitivity reactions caused

by low-molecular-weight compounds called haptens. In 2004,

a case of a local allergic reaction to Cipher SES was reported,

possibly triggered by its polymers (Virmani et al., 2004b).

Notably, the local inflammatory response was found to be

more pronounced after 90 days, when the antiproliferative

drugs were released. In addition, an animal experiment

found localized extensive inflammation with abundant

eosinophils at 28 and 90 days in Cipher stents implanted in

porcine coronary arteries (Virmani et al., 2004a). However, in

polymer-free metal stents, the inflammation was less

pronounced at 90 days than at 28 days, and the

inflammatory response was found to be polymer-related at

longer durations. Similar reports have been reported in other

clinical trials. These results suggest that polymers are

associated with excessive inflammation and stent thrombosis

(ST). In addition, it has been reported that the polyethylene-

vinyl acetate compound of Cipher copolymer can cause an

inflammatory response in 25% of rabbits when used as an

antigen delivery matrix (Niemi et al., 1985). Both PES and SES

elicited distinct inflammatory responses in animal models for

over 90 days. The second-generation DES can reduce the

inflammatory or allergic reaction caused by polymers by

improving the biocompatibility of the stent polymer coating

or by applying a degradable polymer coating. Second-

generation DES use highly fluorinated polymers or

amphiphilic polymers (i.e., PVDF-HFP and BioLinx)

(Strohbach and Busch, 2015), which reduce the platelet

adhesion and activation compared to non-fluoropolymer-

coated metal stents and have better resistance than previous

polymers (Torii et al., 2020). However, a case report found

persistent fibrin deposition and extensive periarthritis in stent

segments at autopsy 8 months after implantation of the CoCr-

EES and Resolute zotarolimus-eluting stent (R-ZES), caused by

palisade macrophage cells, T lymphocytes, eosinophils, and

multinucleated giant cells, suggesting the occurrence of allergic

reactions (Otsuka et al., 2015). This can be attributed to either

of the two components of DES: the drug and the polymer. The

coexistence of PBMA as a component of the polymer in both

the scaffolds should be suspected. In addition, many new

durable and biodegradable polymers (Gong et al., 2010)

have been studied. Most biodegradable polymers are

synthetic polyesters of the polylactic acid-hydroxy acid

family. Studies have found that they decrease MACE within

24 months and show a certain advantage (Han et al., 2008).

However, more clinical studies are needed to determine their

long-term prognosis. Furthermore, it has been suggested that

neither the polymer nor the drug could be an allergen, since

allergic ISR still occurs 8 and 12 months after stent

implantation in the absence of both biodegradable polymer

and sirolimus (Jimba et al., 2020).

Kounis syndrome and allergic
inflammation

The prognosis of patients with acute coronary lesions

undergoing PCI is confirmed to be related to the activation of

various inflammatory cells and the production and release of

several mediators (Niccoli et al., 2010b).

Previously, researchers defined an allergy-related acute

coronary syndrome as “Kounis Syndrome” (KS). The

pathophysiology of KS is characterized by a localized allergic

response leading to mast cell activation and release of

inflammatory mediators. When this process exceeds a certain

threshold, coronary spasm and plaque erosion or rupture can

occur (Kounis et al., 2007). There are three variants of KS. The

type I variant is the most common, accounting for approximately

72.6% of the cases, with a clinical manifestation in the form of

coronary artery spasm with or without an increase in myocardial

enzyme and troponin levels. The type II variant (22.3%) is

accompanied by plaque erosion or rupture, manifesting as

acute myocardial infarction. Type III variant (5.1%) involves

coronary stent thrombosis due to allergic reactions (Kounis et al.,

2012; Abdelghany et al., 2017). KS, a possible manifestation of

hypersensitivity to stent components, may play a key role in the

development of acute or late thrombus formation in DES (Chen

et al., 2009).

ISR is a multifactorial and complex process, and studies have

suggested that inflammation and immune imbalance play

important roles. Eosinophils are important effector cells

associated with allergy and play an important role in

promoting allergic inflammation by releasing pro-

inflammatory mediators (histamine and leukotriene C4)

(Bochner, 2000). Eosinophils have been demonstrated to be

reliable predictors of ISR after DES implantation (Hajizadeh

et al., 2017). Histopathological studies have shown that

eosinophils are associated with ISR with BMS. Numerous

pathological studies have also shown inflammatory responses

such as macrophages, foam cells, eosinophils, and persistent

fibrin deposition around the scaffold in patients with ISR. In

particular, the infiltration of a large number of eosinophils

suggests hypersensitivity (Rittersma et al., 2006). Similarly,

some case reports have revealed histopathological findings of

lymphocytic and eosinophilic infiltration following Cipher stent

implantation. Eosinophils may accumulate late and secrete

inflammatory factors, initiate inflammatory and

hypersensitivity reactions, and exacerbate tissue damage,

thereby promoting smooth muscle cell migration and

proliferation, leading to lumen narrowing and the occurrence

and development of ISR (Gabbasov et al., 2009). Notably,

eosinophils are equally important in the promotion of

thrombosis (Sakai et al., 2009). Eosinophils also synthesize

and release many other pro-angiogenic cytokines such as IL-8,

IL-6, transforming growth factor-beta, and granulocyte-

macrophage colony-stimulating factor (GM-CSF), both of
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which play a role in promoting wound healing and maintaining

allergic inflammation (Munitz and Levi-Schaffer, 2004).

Nevertheless, most related studies are single case reports or

small sample clinical observations. There is a lack of clinical

studies with larger samples for verification.

The eosinophil cationic protein (ECP) is a sensitive marker of

eosinophil activation (Niccoli et al., 2010a; Niccoli et al., 2014a),

and a variety of biological activities that interact with other

immune cells and plasma proteins. Elevated eosinophil

activation plays an important role in the pathogenesis of

restenosis in DES (Gabbasov et al., 2011). ECP also

upregulates the ICAM-1 expression in endothelial cells,

allowing monocytes to adhere to endothelial cells, which is

thought to be an essential step in atherogenesis. In addition to

its pronounced cytotoxic activity, ECP has several regulatory

activities in vitro, including the inhibition of proliferating T

lymphocyte responses to antigens and inhibition of B

lymphocyte synthesis of immunoglobulins. In a prospective

study, baseline serum ECP levels were used to predict the risk

of MACEs after BMS and first-generation DES implantation

(Niccoli et al., 2009; Niccoli et al., 2011). In addition, Niccoli et al.

found that unlike CRP, ECP is associated with the severity of

coronary atherosclerosis (Niccoli et al., 2014b). Moreover, this

study found that serum ECP levels were significantly elevated in

patients with advanced ISR and were an independent risk factor

for ISR.

Diagnosis and evaluation

Coronary angiography remains the clinical standard for

diagnosing ISR and assessing its severity. Different

morphologies indicated by angiographic results are of great

significance for the classification, treatment, and prognostic

evaluation of ISR. However, coronary angiography has certain

limitations, especially in assessing the lumen size and plaque

characteristics. Intracoronary imaging techniques allow for a

detailed, objective assessment of the extent and morphology of

lesions by changing the imaging modality. Furthermore, it has

become an important tool for understanding the

pathophysiology associated with ST and ISR(Koskinas et al.,

2016; Mintz and Guagliumi, 2017).

Current commonly used intracoronary imaging tools include

intravascular ultrasound (IVUS) and optical coherence

tomography (OCT). IVUS has the ability to visualize the

coronary lumen and vessel wall and can help delineate the

outer elastic lamina behind stents, thereby revealing the actual

vessel size, assessing the post-stent under-expansion, and

distribution of NIH. A classification system for DES-ISR was

proposed based on the inspection findings under IVUS (Kang

et al., 2011). In contrast, OCT provides higher-resolution

imaging that can better characterize the tissue, delineate the

lumen-intima interface, and determine the distribution of stent

struts. Additionally, it can visualize the macrophage clumps and

vascular components and distinguish the white thrombi from the

red thrombi. It is important to measure the fibrous caps and

identify unstable plaques (Kashiwagi et al., 2013; Taruya et al.,

2015). The ISRs of BMS and DES exhibit different characteristics

in OCT. The BMS-ISR typically shows a homogeneous

hyperintense tissue band on OCT, reflecting its NIH richness

in smooth muscle cells. In contrast, DES-ISR is seen as unevenly

distributed on OCT, suggesting that the neointima contains more

proteoglycans or fibrin, and fewer cells. In addition, OCT is

helpful for the assessment of neoatherosclerosis. A new

classification scheme was recently proposed to describe the

mechanism of ISR by using OCT to guide the associated

treatment (Gonzalo et al., 2009). Near-infrared spectroscopy is

another less-used imaging technique capable of localizing and

quantifying lipid core load (Roleder et al., 2017); however, its

clinical benefit is currently limited to relevant case reports.

Intracoronary imaging can be helpful in the detection of NIH

in the context of allergic reactions; however, the clinical diagnosis

of allergic reactions is mostly derived from the histopathology of

restenotic stents or autopsy pathology. In addition, serum

eosinophil level is a sensitive marker of allergic reactions. The

detection of allergy to metal components mostly adopts a unified

patch test, and the standard of positive reaction is an

inflammatory reaction after 48 h or 72 h, accompanied by

erythema, edema, papules, or other infiltrative changes

(Johansen et al., 2015).

Drug therapies

Repeated DES implantation is the most effective treatment

for ISR (Giacoppo et al., 2015; Siontis et al., 2015); however,

interventional procedures are subject to complications such as

perioperative myocardial injury (PMI) (Nano et al., 2022). In

addition to the reopening of diseased blood vessels, drug therapy

for allergic inflammation is worthy of further study. Related

drugs mainly inhibit the activation and local recruitment of

allergic inflammatory effector cells and release of allergic

response mediators.

Statins are widely used in the treatment of CVDs and have

anti-inflammatory, antioxidant, and anti-atherosclerotic

functions. In addition, statins exhibit immunomodulatory

effects. Fluvastatin is a potent inhibitor of IgE-mediated

activation and degranulation of basophils and mast cells

(Kolawole et al., 2016).

Leukotrienes mediate various inflammatory and allergic

responses and are produced by the metabolism of arachidonic

acid via the 5-lipoxygenase pathway. Leukotriene B4, produced

by enzymatic hydrolysis, can induce chemotaxis and adhesion of

inflammatory cells such as neutrophils and macrophages to

vascular endothelial cells (De Caterina and Zampolli, 2004).

Leukotriene receptor antagonists are widely used as anti-
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inflammatory and anti-allergic drugs. In a study of the low-

density lipoprotein (LDL) receptor mouse model, it was found

that the degree of arterial injury in mice with 5-lipoxygenase gene

deficiency was significantly reduced, suggesting that 5-

lipoxygenase may play an important role in atherosclerosis

(De Caterina and Zampolli, 2004). Similarly, a clinical study

of patients with acute coronary syndromes found significant

reductions in the volume of noncalcified coronary plaques in

patients treated with inhibitors of 5-lipoxygenase activity (Tardif

et al., 2010).

Moreover, the traditional mast cell stabilizer, sodium

cromoglycate, has a good therapeutic effect on allergic

reactions as it inhibits the release of allergic response

mediators such as histamine and serotonin by stabilizing the

mast cell membranes and preventing degranulation. The mas-

related G protein-coupled receptor-X2 (MRGPRX2) receptor is

thought to be one of the possible links between cardiovascular

events and allergies (Azimi and Lerner, 2017). Novel mast cell

stabilizers such as QWF (Boc-Gln-D-Trp [Formyl]-Phe benzyl

ester tri-fluoroacetate) inhibit the substance P-induced mast cell

degranulation and inflammatory responses by antagonizing

MRGPRX2. The study also found that in LDL receptor-

deficient (Ldlr−/−) mice, mast cell stabilization may have

played an important role in delaying the progression of

coronary atherosclerosis, reducing inflammation, and

improving lipid metabolism (Wang et al., 2013).

Future directions

The main mechanism for the occurrence of adverse reactions

after DES implantation is the activation of both the classical and

allergic inflammatory pathways. All DES components, including

metal and polymer coatings, can induce hypersensitivity reactions

individually or synergistically. In addition to acute or late ST, the IRS

due to hypersensitivity-induced NIH also significantly affects patient

prognosis. Regarding metal allergy, some researchers have proposed

the use of nickel-free stainless steel materials and degradable metal

stents. Recently, a study has considered the use of new titanium-alloy

stents. Titanium alloy as a drug storage layer can replace the original

polymer coating to overcome the possible existing polymer

sensitization by forming a nanotube-like oxide layer on the

anodized surface (Soliman et al., 2019). The study showed that in

patients with acute coronary syndromes, CoCr-titanium-coated stents

were non-inferior to the platinum-chromium biodegradable polymer,

EES, in inducing major cardiac events at 12 months (Tonino et al.,

2020). Despite the biocompatibility of the targetmoiety and improved

tissue specificity and cellular uptake (Yin et al., 2014), nanoparticles, as

a new generation of smart drug delivery materials, still require

extensive research to evaluate their safety issues (Cherian et al.,

2021). In addition, clinical evaluation of polymer-free DES is also

underway. In a clinical follow-up trial of up to 3 years, polymer-free

amphilimus-eluting stents were compared with the new-generation

permanent-polymer zotarolimus-eluting stents in 1–3 years of TLF

(in terms of target lesion failure) (van Hemert et al., 2021). No

significant differences were observed in studies with longer follow-up

periods (Kufner et al., 2020). Among themany factors that contribute

to ISR, implantation is usually the most important and relatively

controllable factor (Farooq et al., 2011).

With the gradual deepening of the concept of “intervention

without implantation,” fully bioabsorbable stents should have

gradually entered the clinic. The advantages of bioresorbable

coronary scaffolds (BRS) can be divided into the following

aspects: 1) The absence of permanent stent implants can

restore the response of blood vessels to normal physiological

stimuli, which is helpful for the dilatative remodeling of blood

vessels at the late stage; 2) Without metal stents, continuous

stimulation of the material can reduce the occurrence of local

chronic inflammatory reactions, thereby reducing intimal

hyperplasia and thrombotic events; 3) BRS will not affect

revascularization after complete absorption, nor will it affect

the noninvasive imaging. Related absorbable magnesium alloy

stents have been studied and have been shown to demonstrate

better antithrombotic properties in clinical trials (Sakamoto et al.,

2018). However, long-term follow-up data are required to verify

its safety and efficacy.

Stent coverings for nitric oxide donors and stents embedded

with anti-inflammatory and anti-allergic drugs are gradually

being developed (Kural et al., 2019). However, whether these

can address this worrying complication remains a question

worthy of further clinical research. Scientists are actively

seeking new interventions to reduce the inflammation after

stent implantation. Microribonucleic acids are a class of small

non-coding RNAs that play important roles in the initiation and

resolution of inflammation after vascular injury. The MiR-21

stem loop plays an important role in the activation of smooth

muscle cells (SMCs) and macrophages after vascular injury.

Animal studies have shown that the genetic ablation of the

miR-21 stem loop reduces neointimal formation following

stent implantation in mice (McDonald et al., 2015).

Summary

ISR remains a challenging problem in the cardiovascular field and

its occurrence is often multifactorial, where local inflammation

leading to aggressive neointimal proliferation and advanced

neoatherosclerosis is common. Stratification according to the

etiology and pathogenesis of ISR may be necessary to guide the

individualized treatment (Shlofmitz et al., 2019). Stent-related allergic

reactions are commonly reported with the use of BMS and first-

generation DES. Although the use of second-generation DES has

improved in-stent platform design and antiproliferative drugs,

polymer coatings and allergic reactions related to stent

components have been previously reported. In addition, DES-

related hypersensitivity is associated with ST (Yokouchi et al.,
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2010) and late-acquired stent dislocation. Hypersensitivity-related

mediators are involved in platelet activation, and endothelial

dysfunction caused by inflammatory responses that may induce

neoatherosclerosis, thereby promoting ST (Chioncel et al., 2021).

Compared with BMS, late lumen loss in DES occurred more than

9months later and increased gradually, a phenomenon known as late

catch-up. A meta-analysis showed that allergy to stent materials

significantly increased the risk of ISR (Gong et al., 2013).

However, the limitations of the meta-analysis are that the included

studies were case-control studies and not a single prospective study

was included.

Nevertheless, physicians should be aware of the occurrence of

allergic reactions associated with stent placement. Further

research is required to improve the biocompatibility of

coronary stents. Clinically, high-risk individuals with potential

allergic reactions to stent components after DES implantation

can be identified based on the evaluation of markers, such as

eosinophil count and ECP. In addition, there is a need to develop

new and reliable diagnostic methods for identifying the potential

allergens. The predictive value of related indicators for poor

prognosis, such as ISR, can also help optimize the clinical

management of patients. In patients with potential allergic

reactions, patch testing before and after stent placement and

subsequent risk stratification for allergic predisposition may be

necessary, while few patients may require combined anti-allergic

therapy. Furthermore, given the development of anaphylaxis and

poor prognosis of ISR, more research is needed to understand the

specific pathways involved in the recruitment and activation of

allergic inflammatory effector cells associated with coronary

artery disease, which may reveal new important therapeutic

targets (Niccoli et al., 2018) for de novo or refractory ISR,

thereby reducing the occurrence of this clinical event and the

associated risk of long-term cardiovascular events.
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