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Abstract
Drug resistance has become a threat to global health, and new interventions are needed to control major infectious diseases. 
The composition of gut microbiota has been linked to human health and has been associated with severity of malaria. Fer-
mented foods contribute to the community of healthy gut bacteria. Despite the studies connecting gut microbiota to the 
prevention of malaria transmission and severity, research on developing functional foods for the purpose of manipulating 
the gut microbiota for malaria control is limited. This review summarizes recent knowledge on the role of the gut microbiota 
in malaria prevention and treatment. This information should encourage the search for lactic acid bacteria expressing α-Gal 
and those that exhibit the desired immune stimulating properties for the development of functional food and probiotics for 
malaria control.
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Beneficial Microbes: an Alternative 
for the Control of Infectious Diseases

Infectious diseases pose a challenge to human health and 
modern society. In particular insects such as mosquitoes 
and sand, flies are considered the most important vectors 
of human diseases, while ticks are second to mosquitoes 

in humans and are the most important vectors of animal 
diseases. Mosquitoes and ticks are responsible for the trans-
mission of pathogens that cause diseases such as malaria and 
dengue [1], Lyme disease, and babesiosis [2], respectively. 
Cholera and tuberculosis that are non-vector borne jointly 
contribute to the huge burden of death from infectious dis-
eases [3]. In order to mitigate this effect, prevention and 
control have focused on vector control [4], antimicrobial 
drugs, and development of vaccines [4, 5]. More recently, 
the role of gut microbiota for the control of infectious dis-
eases, including viral diseases such as Covid-19, is being 
elucidated [6–11]. In consequence, the interest in probiotics 
as an alternative to antibiotics and other antimicrobial drugs 
is timely due also to increase in antibiotics resistance [12]. 
Especially, antimalarial resistance [4, 13] has become one 
of the major twenty-first century medical problems which 
are affecting the efforts to reduce mortality by infectious 
diseases [3, 8, 14, 15].

The United Nations sustainable development goal 
included on their second agenda the provision of safe, nutri-
tious, and sufficient food while the third agenda focuses on 
promoting good health and well-being for all at all ages 
[16]. In the process of providing more food, functional food 
should also be considered. Such food, while being included 
to tackle hunger, will at the same time function as a means 
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to deliver prophylaxis [8, 17, 18]. Traditionally fermented 
food contains beneficial microbe and may serve as a source 
of lactic acid bacteria [17, 19–22] with properties useful for 
immune improvement and potentially the prevention and/or 
treatment of malaria [6, 7, 23–25].

Fermented Food as a Source of Probiotic 
Lactic Acid Bacteria

Lactobacilli are the groups of bacteria widely used for pro-
biotics [26–28] due to their functional properties [15, 29, 
30]. The preference for lactobacilli from fermented food is 
associated with their ability to multiply at low pH [28, 31], 
survive the intestinal bile [27, 32, 33], compete for adhesion 
site [34–36], out-compete and limit the growth of pathogenic 
bacteria [32, 37, 38], and also regulate the immune system 
[8, 15, 29, 39, 40].

The ability to modulate both innate and adaptive immune 
responses is one of the major reasons lactobacilli are applied 
in the field of probiotics [15]. It has been documented that 
lactobacilli produces antimicrobial substances [37] and can 
interact with intestinal epithelial cells (IECs) and dendritic 
cells (DCs) preventing the spread of pathogens [41–43], thus 
providing chemical and physical barriers to enhance innate 
immunity [15]. More so, they have been found to activate 
antigen-specific response, thereby improving both innate and 
adaptive immune responses [29, 41, 44].

Interestingly, different strains of the same species may 
express different functional properties, for example, lacto-
bacillus alone having over 255 species is a specific exam-
ple [42, 45, 46]. This suggests that probiotic bacteria are 
an unlimited source for desirable therapeutic or beneficial 
properties. Therefore, for their documented probiotic prop-
erty and particularly their ability to stimulate immunologi-
cal response, there should be a renewed search for specific 
strains for functional food development [44, 47, 48] applica-
ble for the prevention and treatment of malaria.

Humoral Immunity to Malaria

Malaria, caused by a protozoan parasite of the genus Plas-
modium, is a vector-borne disease transmitted by female 
Anopheles mosquitoes during blood feeding. Malaria 
infected over 218 million people and killed 405,000 in 2018 
[49]. This disease is highly prevalent in poor tropical and 
subtropical areas of the world and is considered the leading 
cause of illness and death in endemic countries [50, 51]. The 
clinical presentations resulting from Plasmodium infections 
range from asymptomatic to severe malaria, which is asso-
ciated with cerebral malaria, severe anemia and respiratory 
distress [52, 53]. However, the factors that determine malaria 

severity remain poorly understood, even though the levels of 
parasitemia are the most regarded determinant [24, 53, 99].

After several exposures to mosquito bites, adult indi-
viduals tend to remain asymptomatic which might be due 
to antibodies developed against the sporozoite, liver-stage, 
blood-stage, and the sexual-stage Plasmodium antigens over 
time resulting in naturally acquired immunity [52, 54, 55] 
as evident in asymptomatic infected person [56]. The anti-
body developed might not affect the malaria parasite directly 
but can interfere with the Plasmodium life cycle at differ-
ent stages such as blocking the entrance of sporozoite into 
liver cells, preventing erythrocyte invasion and even limit-
ing transmission in cases of those directed at sexual stage. 
Further, the immune system plays a vital role in the host 
by removing parasite at the early stage of infection through 
cytokines generated and the immune response also regulates 
the adaptive immunity to prevent excessive production of 
inflammatory cytokines that are harmful [57–60]. Hence, 
considering how vital immune response is in the fight 
against malaria [57, 61], with the increasing rate of drug 
resistance [62, 63] coupled with low efficacy of pre-existing 
drugs [64] and vaccine [5], it is important to have a multifac-
eted approach to stimulating the body natural defense against 
Plasmodium infection and a case for microbiota control can 
be made (Table 1) [7, 53].

Microbiota‑induced Protection Against 
Plasmodium

To curtail the spread of malaria, aside from vector control, 
transmission-blocking interventions [65–67] are also an area 
of considerable importance. This has led to the study of the 
interactions between microbes in the midgut of mosquito 
revealing the anti-Plasmodium effect of mosquito micro-
biota that reduces the establishment of Plasmodium in the 
mosquito gut, thereby limiting the ability of the vector to 
transmit the pathogen [68, 69]. Further studies on the gut 
microbiome of mosquito using different DNA sequencing 
technologies have identified several midgut-associated bac-
teria such as Enterobacter, Pseudomonas, Chromobacte-
rium, and Serratia that were implicated in preventing Plas-
modium colonization in vector mosquito [1, 69, 70].

Emphasis had been on mosquito gut because both the 
parasite and the natural microbiota share this body compart-
ment [71]. Thus, it has been established that bacteria in the 
midgut do have an inhibitory effect on Plasmodium, using 
mechanisms such as the production of reactive oxygen inter-
mediates with anti-parasitic properties, triggering the innate 
immune system to produce antimicrobial molecules and also 
physically preventing the Plasmodium from having contact 
with the mosquito epithelium [70, 71].
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Consequently, the inhibitory property exhibited by the 
midgut commensal bacteria points to the transmission-
blocking potential mosquito gut microbiota has on parasitic 
infection [71]. However, these studies focused on the mos-
quito midgut microbiota and are limited to the vector and 
their ability to transmit the parasite to human host [70]. In 
human, the gut microbiota can regulate the immune system 
either in blocking transmission (from skin to liver stage) 
by limiting incidences [65, 72–74] or by upregulating the 
immune system (Table 2) to reduce the severity of malaria 
in case of disease establishment (Fig. 1) [24, 25, 75].

Vertebrate Host Microbiota Protects Against 
Plasmodium Infection

Most recent research that delved into the role of probiot-
ics and gut microbiota for the control of parasites has tried 
to answer the question of how the gut microbiota can be 

effective in parasite control; however, the exact mechanisms 
of protection are far from being completely understood [23, 
76]. One of the earliest investigations studied the protective 
role of probiotic lactobacilli (i.e., Lactobacillus casei ATCC 
7469) in mice infected with Plasmodium chabaudi strain AS 
in which it was observed that parasitemia of infected mice 
was lower when the mice were treated with the probiotic 
[77]. It was suggested that the increase in nitric oxide (NO) 
concentration in the serum of experimentally infected mice 
fed with L. casei was the factor responsible for the increased 
protection [77]. This submission was based on previous 
reports on the protective role of NO in severe falciparum 
malaria using S-nitroso-acetyl-penicillamine (SNAP), a 
NO producer that has an antimalarial effect on Plasmodium 
falciparum by preventing cytoadherence [109], as well as 
a cytotoxic and cytostatic effect observed in P. falciparum 
asexual stage with a significant effect on the later asexual 
stage than the trophozoites (ring) stage. The same effect was 
also observed in P. chabaudi AS and Plasmodium berghei 

Table 2  Immune factors regulated by gut microbiota and their function

NK natural killer, NKT natural killer T cells, IFN-γ interferon-gamma, TNF tumor necrosis factor, IL interleukins, TGF transforming growth fac-
tor, DC dendritic cells

S/N Immunological factors Function Plasmodium life cycle References

1. Anti α-gal IgM and IgG (IgG2b, 
IgG3)

Binds to Plasmodium sporozoite and 
initiate classical complement path-
way thereby inhibiting hepatocyte 
invasion resulting in the blocking of 
sporozoite transmission

Skin [24, 72–74, 80, 85]

2. CD8+
,  CD4+

, T cells Initiate sterilizing immunity that is 
not naturally acquired but relies 
solely on this adaptive immune 
factor. They are also antigen specific 
and target the intracellular stages of 
infection

Skin and liver [5, 7, 24, 52, 55, 56, 58, 60, 66, 
75]

3. IFN-γ, TNF, IL-2 Protection against sporozoite and 
blood-stage antigen. Also, involved 
in the early stage by inhibiting 
parasite replication

Liver [52, 55, 58, 60, 66, 75, 111]

4. NK, NKT, γδT cells, Macrophages Stimulate the production of nitric 
oxide, and nitric oxide synthase that 
prevent cytoadherence and resetting 
of infected red blood cells (RBCs) 
to uninfected RBCs thereby prevent-
ing parasite replication

Blood [52, 56, 60, 106, 108–111]

5. IL-1β, IL-6, IL-8, IL-12 Pro-inflammatory cytokines that 
cause fever and severe form of 
malaria that can be downregulated 
by gut microbiota

Blood [17, 52, 58, 60, 90]

6. TGF-β, IL-10 Anti-inflammatory cytokines 
(regulatory cytokines) that reduce 
parasitaemia

Blood [52, 55, 58, 60, 106, 111]

7. Treg, DCs Balancing of the immune system and 
presents sporozoite to the T cells 
that help in the activation of B cells 
for parasite clearance

Blood [24, 52, 106, 111]
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KSP11 in an animal model, showing an inhibitory effect to 
the asexual erythrocytic stage [110]. Most importantly is 
that the effect of NO is more significant in human malaria 
than rodent malaria. Hence, a probiotic organism that can 
increase the amount of NO produced in the blood will be a 
good candidate for modulating the human gut microbiota for 
malaria treatment (Fig. 2) [77, 108–110]. Furthermore, when 
C57BL/6 and BALB/c mice were infected with P. berghei 
strain ANKA, it was observed that the degree of malaria 
severity in terms of cerebral malaria and intestinal pathology 
varied with the composition of the host gut microbiota [78].

Likewise, Fan et al. [23] reported that lactobacilli were 
the dominant microbes in healthy C57BL/6 mice infected 
with P. berghei ANKA while in a separate study where 
C57BL/6 mice were infected with P. yoelii, the abundant 
presence of lactobacilli reduced the severity of malaria 
observed by the lower parasite burden as compared to naïve 
mice [24]. Remarkably, in another investigation in which 

C57BL/6 mice were purchased from a different vendor and 
infected with P. yoelii, the difference in the gut microbiota 
determined their resistance or susceptibility to malaria [76], 
thus adding credence to the role of the gut microbiota in 
malaria severity.

Another microbiota induced protection was observed 
by Yilmaz et  al. [72] in the mouse GalKO model with 
the knocked-out gene coding for the galactosyltransferase 
involved in the synthesis of the glycan Gala1-3Galb1-
4GlcNAc-R (α-Gal). Mice GalKO were fed with a patho-
biont Escherichia coli O86:B7 that expresses a high level 
of α-Gal, a glycan found on the surface of Plasmodium 
sporozoites. The glycan stimulated B cells to produce anti-
α-Gal IgM and IgG antibodies that block the transmission 
of sporozoites from the skin to the liver stage and produces 
sterilizing immunity in mice. The same effect was derived 
through immunization with α-Gal antigen [72]. A similar 
protective effect of anti-α-Gal IgM and IgG was found in 

Fig. 1  Disruption of homeostatic gut microbiota-immune system 
interactions by Plasmodium infection. In a healthy status, several 
immune effectors function together to regulate bacteria-epithelial 
contacts and maintain gut homeostasis. This includes the mucus 
layer, epithelial antibacterial proteins (e.g., defensins and RegIIIγ), 
and IgA secreted by the lamina propria plasma cells. Dendritic cells 
(DC) recognize bacterial antigens, activate and migrate to lymph 
nodes where antigen presentation to  CD4+ cells occur. Activate 
 CD4+ cells stimulate IgA+ and IgM+ B cells, which in turn differenti-
ate to plasma cells that produce IgA (secreted to the intestinal lumen) 
and IgM (that enters the blood circulation). Specific members of the 

microbiota such as Clostridia and Bacteroides stimulate the develop-
ment and proliferation of Treg and Th1 cells. Malaria promotes the 
activation and degranulation of mast cells which increases epithe-
lial permeability and bacteria invasion. Plasmodium infection of red 
blood cells (iRBC) also produces hemolysis that by decreasing reac-
tive oxygen species (ROS) production by neutrophils increase the 
growth of invading bacteria within these polymorphonuclear leuko-
cytes. These changes modulate human microbiota by increasing some 
taxa such as Proteobacteria and Verrucomicrobia and decreasing 
other taxa such as Bacteroides and Firmicutes. Figure created with 
BioRender.com
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human exposed to Plasmodium-infected mosquito [72, 79]. 
Humans have evolutionarily lost the ability to synthesize 
α-Gal resulting in the immune system releasing antibodies 
specific to this carbohydrate [80–82]. It has been reported 
that all non-immunocompromised persons have the ability 
to produce antibodies against α-Gal [83], which makes up 
approximately 1% of IgG and 5% of IgM circulating immu-
noglobulins [84]. Thus, the amounts of anti-α-Gal IgM/IgG 
observed in non-infected individuals and those living in 
malaria-endemic areas such as Mali and Senegal are protect-
ing them from malaria parasite [72, 79, 81]. Hence, populat-
ing the gut with probiotics that expresses α-Gal on their cell 
surface might be effective in stifling the transmission rate 
by boosting the anti-α-Gal immune response mediating the 
lower incidences of malaria (Fig. 2) [7, 71, 74, 85]. At the 
same time, α-Gal has been proposed for vaccine develop-
ment to target Plasmodium parasites at different stages [56, 
65, 74, 85, 86].

However, the most compelling argument for the role of 
microbiota in malaria parasite infection in humans is from 
the study of Yooseph et al. [87] that investigated the relation-
ship between the gut microbiota composition and P. falci-
parum infection in malaria-endemic areas. It was observed 
from the analysis of stool microbiota that the presence of a 
higher number of Streptococcus and Bifidobacterium cor-
relates with a lower risk of P. falciparum infection although 
without a relationship with febrile malaria [87].

Consequently, the use of probiotics for functional food 
development as a dietary supplement would be a good strat-
egy for more investigation in order to find ways to prevent 
malaria incidence and also reduce the severity in case of 
infection [73, 74].

Developing Functional Foods to Stimulate 
Anti‑α‑gal Immune Response, the Search 
Continues

Ellie Metchnikoff, a Russian scientist, came up with the 
hypothesis that some microorganisms are beneficial and 
improve human health by observing the Bulgarians that con-
sume fermented milk in large quantities, which he assumed 
as the sole factor for their long life and good health [17, 88, 
89]. This hypothesis was termed as “theory of longevity” as 
he observed the effect that these bacteria in the human intes-
tine have on general well-being, thus serving as an upshot 
for further study that investigated the preventive role of the 
gut microbiota in diseases [90, 91]. Later on, Lilly and Still-
well used the term probiotics signifying “prolife” [31, 42], 
a term that has undergone several definitions but currently 
is defined as viable, non-pathogenic microorganisms that, 
when ingested in adequate amounts, are able to reach and 
establish in the gut to confer health benefits to the host [44].

Fig. 2  Elucidating the specific 
stage of the Plasmodium cycle 
that a probiotic can exert 
an inhibitory effect. (1) The 
α-Gal-expressing microbes 
cause the stimulation of B cells 
to produce anti-α-gal IgM and 
IgG. The α-gal glycan sequence 
is similar to the one present on 
Plasmodium sporozoite surface; 
thus, anti-α-gal antibody 
generated has been reported to 
bring about sterile immunity 
by blocking the transmission 
of Plasmodium sporozoite 
from skin to liver stage through 
complement-mediated lysis 
of sporozoites in the skin. (2) 
Lactobacillus casei ATCC 
7469, a probiotic, has been 
studied to bring about reduced 
level of parasitaemia and lowers 
the viability of Plasmodium by 
increasing the serum concentra-
tion of nitric oxide affecting the 
erythrocytic stage. Abbrevia-
tion: α-Gal, galactose-α-1,3-
galactose. Figure created with 
BioRender.com
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Furthermore, in the works of Maegraith et al. [92] in 
which different groups of rats and mice were infected with 
P. berghei to induce blood-stage malaria and were fed with 
a normal diet, cow milk, reconstituted Oster milk, and 
reconstituted Australian dried milk, it was observed that as 
opposed to the normal diet, the milk diet contains some die-
tary factors that suppressed the development of Plasmodium 
as prevention of death was observed in some of the treated 
animals. It was concluded that some attention should be paid 
to the effect of milk in human malaria as breastfed children 
rarely have severe malaria while acknowledging that at the 
same period, another researcher opined that there is a factor 
in milk that has a protective role against some viral infec-
tions [92, 93].

Subsequently, in the last decade, there is a renewed inter-
est in what this factor could be. At first, Lokki et al. [94] sug-
gested that lactase persistence gene could be responsible for 
the increasing resistance to malaria among the Fulani tribe 
of West Africa but could not establish a statistical signifi-
cance with it. Nevertheless, from the study, they considered 
that since the Fulani feed a lot on milk product, there must 
be a factor in milk that is responsible for the observed resist-
ance. Hence, the study maintained that the nutrient element 
in milk, immunomodulating components, and milk-induced 
para-aminobenzoic acid (PABA) deficiency might be the 
reason for the protection against malaria [94].

However, Maegraith et al. [92] and Lokki et al. [94] did 
not consider the role of microbes in their study [93], a fac-
tor that Yilmaz et al. [72] considered when E. coli O86:B7 
effect on malaria severity was studied. The bacteria enabled 
immune protection against malaria infections in the experi-
mental mice, establishing a possible human gut microbi-
ota-driven immunity against malaria by limiting infection 
incidence [71]. Considering that E. coli O86:B7 is not nat-
urally associated with foods and the pathogenic strains of 
the specie exist, it is not overtly suitable as a candidate for 
probiotics [73].

Thereafter, lactobacilli with documented probiotics 
properties were used to formulate yoghurt that was fed to 
experimental mice infected with Plasmodium, resulting in an 
antecedent decrease in parasite burden [24]. Besides, when 
cecal content of malaria resistant mice was transplanted to 
susceptible mice, they developed resistance to severe malaria 
and the afterwards genomic analysis of the gut microbiota 
revealed the abundant presence of lactobacilli establishing 
the role of the microbiota in the severity of malaria [24, 
25, 76, 99]. Moreover, in comparison between the works 
of Maegraith et al. [92] and Villarino et al. [24] despite the 
difference in the research timeline, it can be concluded that 
the answer to the unknown factor in milk that suppresses the 
development of Plasmodium has to do with the milk micro-
biota [93]. Additionally, the transplantation of fecal micro-
biota that confers malaria resistance to pregnant mice that 

resulted in lower parasite burden prevented malaria anemia 
and enhanced the pregnancy outcome support the impor-
tance of gut microbiota composition in malaria severity [25].

Considering the established beneficial effect of the gut 
microbiota as it relates to human health (Table 1), particu-
larly to malaria prevention and treatment, there is need to bio 
prospect for lactobacilli with the needed property that can be 
developed as a functional food. A functional food containing 
probiotic organisms that can protect against parasite trans-
mission and/or reduce the severity by stimulating immune 
response (Table 2) will be desirable for modulating the gut 
microbiota [40, 53, 91, 95–98].

The understanding of how gut microbiota exerts a posi-
tive effect on Plasmodium infection is still not clear, and all 
shreds of evidence are mainly from an animal model using 
rodent-malaria studies. It is also worthy of note that the gut 
community of mice differ considerably from humans as well 
as between mice having different diets and breeding environ-
ment [23–25, 99]. Notwithstanding, the few human studies 
on the correlation between gut microbiota composition and 
malaria severity is a pointer to the fact that the modulation of 
the gut microbiota with probiotics or functional food could 
be an alternate means in malaria management (Table 1). As 
the case of resistance to antimalarial keeps growing coupled 
with the fact that vaccine development is still at the early 
stage, future research can focus on how modulation of the 
gut microbiota can aide vaccination for the stimulation of 
specific immune response against malaria.

Concluding Remarks and Future 
Perspectives

Gut microbiota has a great impact in modulating immune 
response [24, 76], implicated in parasite clearance [25, 
76, 77] and a potential tool for vaccine development [74, 
85, 105–107]. Considering all evidence from the role of 
gut microbiota in malaria severity, the time is ripe for an 
intensified study on probiotics for the control of malaria 
and prevention of its severe form in which development of 
functional food is vital. The findings that have supported 
the impact of gut microbiota with respect to their protective 
role in malaria pathogenesis need to be scaled up for its 
intended benefits. Development of functional food contain-
ing probiotics from fermented foods with desired properties 
or genetically modified bacterial strains for the purpose of 
manipulating the gut microbiota is important to advance the 
control of malaria and other infectious diseases.

Despite the advances and potential impact that vac-
cines represent for the prevention and control of infectious 
diseases, interventions boosting the immune response to 
α-Gal with a broader and not pathogen-specific immunity 
may contribute not only to the control of malaria but also 
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to other diseases. Probiotic-based formulations with abun-
dant commensal bacteria of the gut and lung microbiota 
with high α-Gal content may be developed for the pre-
vention and control of malaria and other major infectious 
diseases affecting humans worldwide (Fig. 2). One of the 
major challenges of vaccination campaigns in poor regions 
with a high prevalence of infectious diseases is the distri-
bution and administration of the vaccine. The possibility 
of developing probiotics that can be delivered in stable 
formulations such as a yoghurt or food supplements will 
make these interventions easier to distribute and admin-
ister. These formulations have a low production cost and 
are easy to administer with a major impact in regions with 
limited access to health services.

Future research should address the mechanisms medi-
ated by α-Gal immunization; the characterization of gut 
and lung microbiota including α-Gal content in infected, 
exposed, and healthy individuals; and the identification 
of commensal bacteria with α-Gal modifications for the 
development and evaluation of probiotic-based formula-
tions. Even though the mechanism of action is still a study 
in process, the usage of probiotics to stimulate immune 
system towards malaria disease holds a significant pros-
pect. Thus, there should also be increase interest in clinical 
study beyond field observation while more funding should 
be made available for meticulous study of fermented foods 
and formulation of functional foods for the same purpose.
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