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While non-invasive brain imaging has made substantial contributions to advance
human brain science, estimation of individual state is becoming important to realize
its applications in society. Brain activations were used to classify second-language
proficiencies. Participants in functional near-infrared spectroscopy (fNIRS) experiment
were 20/20 native Japanese speakers with high/low English abilities and 19/19 native
English speakers with high/low Japanese abilities. Their cortical activities were measured
by functional near-infrared spectroscopy while they were conducting Japanese/English
listening comprehension tests. The data-driven method achieved classification accuracy
of 77.5% in the case of Japanese speakers and 81.9% in the case of English
speakers. The informative features predominantly originated from regions associated
with language function. These results bring an insight of fNIRS neuroscience and its
applications in society.

Keywords: machine learning, language proficiency, brain activation, feature selection, native Japanese speakers,
native English speakers

INTRODUCTION

Language, which differentiates human beings from other living species, plays an important role
in our daily lives. The neural basis of language has been investigated with various techniques
for functional neuroimaging (Price, 2012; Quaresima et al., 2012). Functional near-infrared
spectroscopy (fNIRS) is an optical neuroimaging technique that measures brain activity by
monitoring the hemodynamic changes in cerebral cortex response of brain activation. Its main
advantages are relatively low cost, portability, safety, low acoustic noise (compared to functional
magnetic resonance imaging), and easiness to operate (Scholkmann et al., 2014; Hong and
Yaqub, 2019). In the context of fNIRS community, hemodynamic changes (which represent brain
activation) have been used as a useful indicator to demonstrate speech perception in infants
(Pena et al., 2003; Bortfeld et al., 2009; Sato et al., 2012) and language comprehension in adults
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(Sato et al., 1999; Schecklmann et al., 2008; Lei et al., 2018).
Since conventional analysis of fNIRS data has focused on
human brain activity at the group level, these studies have
traditionally drawn a population-level conclusion about general
patterns across a large number of participants. Knowledge from
these studies has important implications for advancing our
understanding of how the human brain processes language.
To further translate this knowledge into practical applications
in society, individual estimation or classification of language
ability (e.g., speech-comprehension level and second-language
proficiency) on the basis of neuroimaging data across participants
is a topic of interest.

Research interest in estimating the state of an individual
by applying machine learning using fNIRS data has been
increasing. fNIRS data with corresponding labels/classes are
used to train a machine-learning classifier/model. The trained
classifier is applied to the unknown data to estimate the labels.
For example, in previous studies, mental arithmetic and music
imagery (Power et al., 2010) motor imagery (Naseer and Hong,
2013), and subjective preference (Luu and Chau, 2008) were
estimated. These studies showed the feasibility of establishing
a predictive machine-learning model based on the state of
individuals and their underlying brain activity. However, they
focused on categorical discrimination to estimate the state of a
participant using data of the participant. It is still a challenge to
estimate the state of individuals on the basis of neuroimaging data
of others, namely, estimation of state across participants. Clinical
studies focusing on classification of diseases or disorders have
made progresses in such estimation across participants (Hosseini
et al., 2018; Sutoko et al., 2019) however, estimation of, for
example, language ability, which may subtly differ across groups,
remains unstudied.

The major difficulty concerning estimation across participants
based on neuroimaging data is the relatively small data sample
with individual differences. Individual differences refer to the
variations across participants even though they have the same
label in the same population group, for example, patients who
have the same disease. It has been recognized that the brain
structure and its corresponding function show high individual
variability even among a healthy population group (Raz et al.,
2005; Qin et al., 2014; Finn et al., 2015). From the viewpoint
of machine learning, if input patterns have high individual
differences, data in the feature space will be almost impossible
to separate according to the label. It is thus difficult to construct
a machine-learning classifier and model for the estimation, that
is, separating feature vectors based on the information of the
label. On the other hand, estimation with a small number of data
samples is also a challenge; that is, the data dimensionality is
usually much higher than the number of samples available for
classifier training (Fan et al., 2007; An et al., 2017). This typical
problem is known in machine-learning literature as the “curse of
dimensionality” (Bellman, 2015). It may make the model unstable
or cause the problem of overfitting (Guyon and Elisseeff, 2003),
which is the condition that model fits accurately to the training
data (including inherent noise) but fits poorly to unknown test
data. In addition, in a practical situation, increasing the number
of data samples is not always possible, for example, when the

number of patients with a particular disease is limited. To solve
this unbalance between number of features and sample size with
the aim of increasing classification accuracy, various methods of
feature selection (to extract a subset of most-informative features)
have been proposed (Saeys et al., 2007; Pereira et al., 2009; Hu
et al., 2013; Mwangi et al., 2014; Hong et al., 2018). Common
methods of feature selection include using t-test (De Martino
et al., 2008) ANOVA (analysis of variance) (Akama et al., 2014;
Lei et al., 2014) Pearson correlation coefficient (Fan et al., 2007)
and prior knowledge (Chu et al., 2012). Recently, sparse-feature
selection has become one of the choices for data-driven feature
selection (Tibshirani, 1996). Sparse techniques combine both
machine learning and feature-reduction steps by enlisting a L1-
norm regularization, resulting in a reduced subset of relevant
features (Zou and Hastie, 2005).

In our previous study, we reported significant differences
between brain-activity patterns in regard to correct responses
and incorrect responses of a second language at group level (Lei
et al., 2018). A reliable quantitative tool for evaluating second-
language proficiency based on brain-activation patterns may
help people to learn a second language more efficiently. In the
present study, we aimed to estimate second-language proficiency
using functional brain activity provided by fNIRS data applying
machine learning methods. fNIRS data were collected from native
Japanese speakers with high/low second-language (English)
proficiency and native English speakers with high/low second-
language (Japanese) proficiency. Brain activities were recorded
by fNIRS when the subjects (speakers) were doing listening-
comprehension tasks in English, Japanese, and an unknown
language (Chinese). High second-language proficiency and low
second-language proficiency is estimated cross participants. To
overcome difficulties with estimation across participants and
further improve classification performance, the informative
features were extracted by using a method of sparse-feature
selection. The generalization capability of the machine-learning
methods was confirmed by analyzing two independent-validation
population groups of native Japanese speakers and native
English speakers. In addition, using the label of second-
language proficiency classification of the first language and an
incomprehensible unknown language was also conducted.

MATERIALS AND METHODS

Participants
All participants in the present study, categorized as native
Japanese speakers and native English speakers, were right-
handed. The native Japanese speakers were 65 healthy adults
(mean age ± SD: 28.5 ± 2.8; range: 24–33; 35 males and 30
females). Based on their TOEIC R© Listening & Reading scores,
two groups with different English proficiency were recruited.
The high-proficiency group contained 32 participants (mean
age ± SD: 27.8 ± 2.6; range: 24–32; 18 males and 14 females)
with TOEIC R© Listening & Reading scores above 700. The low-
proficiency group contained 33 participants (mean age ± SD:
29.2 ± 2.8; range: 24–33; 17 males and 16 females) with TOEIC R©

Listening & Reading scores under 500.
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FIGURE 1 | Example of one run of the experiment. Questions in English, Japanese, and Chinese are denoted as E, J, and C, respectively. It takes about 9 min for
one run. Questions were selected from the TOEIC R© Test New Official Preparation Guide.

The native English speakers were 66 healthy adults (mean
age ± SD: 28.7 ± 2.9; range: 24–33; 34 males and 32
females). They included nationals from Australia, Canada,
New Zealand, the United Kingdom, and the United States,
who were temporarily staying in Japan for periods ranging
from 0.2 to 12 years (mean years ± SD: 3.4 ± 2.6). On the
basis of their self-assessments of Japanese proficiency, namely,
whether they can speak Japanese or not, the participants
were categorized into the high-proficiency group or the low-
proficiency group. The high-proficiency group was composed of
31 people (mean age ± SD: 29.3 ± 3.1; range: 24–33; 15 males
and 16 females), and low-proficiency group was composed of 35
people (mean age ± SD: 28.1 ± 2.7; range: 24–33; 19 males and
16 females). In addition, all participants did not have experience
of learning Chinese.

Data were obtained according to the standards of the internal
review board of Research & Development Group, Hitachi, Ltd.
Data from volunteers were obtained according to the standards
of internal review board on Research & Development Group,
Hitachi, Ltd., following receipt of written informed consent.

Auditory Stimuli and Task Design
Listening comprehension questions from “TOEIC R© Listening
Test Part 1: Photographs”1 were used (ETS, 2005, 2007, 2008,
2012). Each question relates to a photograph with four short
explanations. The explanation that most accurately describes
the photograph is to be chosen. These listening-comprehension

1Written pledge was submitted to copyright owner IIBC (The Institute for
International Business Communication) and permission was obtained from the
copyright owner. Questions were selected from the TOEIC R© Test New Official
Preparation Guide vol. 1 (2005), vol. 2 (2007), vol. 3 (2008), and vol. 5 (2012)
published by IIBC, and copyrighted by Educational Testing Service (ETS).
TOEIC is a registered trademark of ETS. This publication is not endorsed or
approved by ETS.

questions were respectively translated into Japanese and Chinese
by the native speakers. Sound stimuli were created from the
recorded voice of a professional female announcer who is
bilingual in Japanese and English, and has learned Chinese as
a third language.

All participants were given two runs, each of which contained
15 different questions. During each run, questions in Japanese,
English and Chinese were presented five times, respectively, in a
pseudo-randomized order (Figure 1). Note that questions in the
same language were not given continuously. For each question, a
period of 18 s was for presenting the question (question period),
a period of less than or equal to 3 s was for answering the
question (reaction period) and an arbitrary period between 15
to 18 s was for resting (rest period). The experimental session
was conducted in a quiet, dimly lit room. Participants were
instructed to look at the photograph on the screen and listen
to the four explanations in the question period, answer the
question in the reaction period and look at a fixation cross on
the screen in the rest period. Specifically, after listening the four
explanations of the question, participants were asked to press
the button as quick as possible during the reaction period. After
pressing the button, the photograph will disappear, and a fixation
cross will be shown. Finally, the participants were instructed to
silently fix their eyes on the cross and no response was required
during the rest period, when they were also asked to think
nothing as possible as they can. To ensure that each participant
clearly understood the experiment procedure during the on-line
tasks, the participants did practice tasks similar to experimental
tasks in advance.

fNIRS Measurement
An optical-topography system (ETG-4000; Hitachi Medical,
Japan) was used to measure change in concentration of cerebral
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cortical hemoglobin. Absorption of near-infrared light at two
wavelengths (695 and 830 nm) was measured with a sampling
rate of 10 Hz. Two 3 × 5 optode probe sets were placed
over the bilateral frontal and temporal areas by referring to
the international 10–20 system of electrode placement. Each
optode-probe set consists of eight emitters and seven detectors,
resulting in 22 measurement channels. The source-detector
distance was fixed at 3 cm. For spatial registration, virtual
registration (Tsuzuki et al., 2007) was used to register the channel
positions in relation to the Montreal Neurological Institute
(MNI) standard brain space (Collins et al., 1994; Brett et al.,
2002). The anatomical estimation is based on LBPA40 (Shattuck
et al., 2008) and Brodmann’s atlas (Rorden and Brett, 2000). The
channel positions include regions related to auditory language
processing (Friederici et al., 2000; Obrig et al., 2010; Price, 2012;
Hall et al., 2013).

fNIRS Data Preprocessing
For analyzing the fNIRS data, Mathematica (Version 10.0,
Wolfram Research, Inc., IL, United States) and Matlab (Version
2017a, Mathworks Inc., Natick, MA, United States) were
used. Based on the modified Lambert–Beer law, concentration
changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated
hemoglobin (deoxy-Hb) on each measurement channel were
obtained (Maki et al., 1995). A band-pass filter (0.01–0.8 Hz)
was then applied for noise reduction as in a previous study
(Sasai et al., 2012; Santosa et al., 2013; Tak and Ye, 2014). The
time-continuous data were divided into 33-s language blocks,
which consisted of the 18-s question period, the reaction period
(less than or equal to 3 s) and the rest period (between 15
and 18 s). After all language blocks were extracted, the baseline
was corrected by using linear fitting to a mean signal over 5 s
before the task and over the last 5 s of the task. Since optical
measurements correspond to the hemodynamic signals, which
are an indirect measure of neuronal activity. The hemodynamic
signals (representing blood flow) are delayed in relation to
the actual neuronal activity (Dehaene-Lambertz et al., 2002).
Therefore, in consideration of the delay, the most-informative
part of the comprehension during the task period (that is, the
amplitude between 5 and 18 s averaged over each extracted
language block on each measurement channel) was used to
calculate brain activation.

The activation indicator used as an input feature is based
on the significant differences between the oxy-Hb and deoxy-
Hb signals (Cui et al., 2010). Since fNIRS simultaneously
measures the concentration changes of oxy-Hb and deoxy-Hb,
this indicator reflects activation strength. For each measurement
channel of each participant, the activation indicator is defined as

Activation indicator =
oxy− deoxy√
Soxy2

n +
Sdeoxy2

m

(1)

where oxy and deoxy are sample means, Soxy and Sdeoxy are sample
standard deviations, and n and m are sample sizes.

Since there are 44 measurement channels, the number of
activation indicators for one participant is 44, and the input

TABLE 1 | Details of participants after participant selection.

Native Japanese speakers Native English speakers

High-
proficiency

group

Low-
proficiency

group

High-
proficiency

group

Low-
proficiency

group

N 20 20 19 19

Female/male 8/12 10/10 6/13 8/11

Age (mean ± SD) 28.1 ± 2.6 29.4 ± 2.9 29.2 ± 2.9 28.5 ± 2.4

feature can be represented as a vector, A = (a1,...,a44). The
number of dimensions of the original input feature is 44.

The label of the participants was re-examined. As a matter
of fact, the participants in the high-proficiency group showed
a low rate of correct answers, and the participants in the low-
proficiency group showed a high rate of correct answers; that
is, label proficiency group and label rate of correct answers
contradict. To remove ambiguous data, participants whose
measurement data did not contradict were further selected from
both the native Japanese speakers and native English speakers.
After those participants were selected, as for the native Japanese
speakers, 20 participants were left in the high-proficiency group,
and 20 participants were left in the low-proficiency group; and
as for native English speakers, 19 participants were left in the
high-proficiency group, and 19 participants were left in the low-
proficiency group. The details about number, sex and age are
shown in Table 1. As for both the native Japanese speakers and
native English speakers, the high- and low-language proficiency
groups were age-gender matching groups.

Algorithm Evaluation
The following conventional methods, which were shown to be
promising by various classification studies, were used to classify
the language proficiency into the high or low group.

• Support Vector Machine (SVM)
• Sparse Logistic Regression (Yamashita, 2009) (SLR)
• K-Nearest-Neighbors based on Euclidean distance of

original input features (KNN, K = 5).

Using brain-activation vectors [for example, A = (a1,...,a44)]
for classifying each participant into the high or low groups
was evaluated. Concretely, a support-vector machine (SVM) is
considered to be a promising and popular algorithm among those
used in classification studies, and it has been used in a variety of
fNIRS studies (Li et al., 2016; Hosseini et al., 2018). Moreover, a
SVM has already been used to examine the diagnostic potential of
neuroimaging for a range of psychiatric disorders (Nieuwenhuis
et al., 2012; Orrù et al., 2012). A SVM with a linear kernel
was adopted for the binary-classification problem. The algorithm
known as sparse logistic regression (SLR) (Yamashita, 2009) is an
extension of logistic regression to automatically select features
related to a label. Logistic regression is extended to a Bayesian
framework by using a technique known as automatic relevance
determination (ARD) from the neural-network literature. By
combining logistic regression with ARD, SLR is obtained. SLR
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is effective for removing irrelevant features, such that their
associated weights are automatically set to zero, leading to a
sparse weight vector for classification. In the implementation of
this study, default values in the SLR toolbox were used to do
the classification. K-nearest neighbor(s) (KNN) using majority
voting (Duda et al., 2012) was used for classification. In this study,
K was fixed to 5. K-nearest neighbors defines the label of test data
by looking at the K-closest training data in the feature space. And
it is sensitive to the local structure of the data.

Leave-one-out cross validation (LOOCV) was applied for
cross validation. In detail, the data are divided into N folds
(N = 40 for the native Japanese speakers; N = 38 for the native
English speakers). In each leave-one-out cross-validation fold,
all except one participant (N-1) were used as training data; the
one participant left out was used as test data to determine which
group the participant came from. This process is repeated once
for each participant.

The classification accuracy of second language proficiency
was computed to verify the estimation performance of the
algorithm. A confusion matrix contains information about actual
and predicted classifications done by a classification system.
Performance of such a system is commonly evaluated using the
data in the matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.

Informative-Feature Selection
Given the small number of data sets and the high dimensions
of the data, to further improve classification accuracy, feature
selection or feature extraction is necessary (Guyon and Elisseeff,
2003; Akama et al., 2014). By selecting informative features,
the machine-learning algorithm can give stable results and the
physical interpretations of selected features are also important
and worth discussing by means of neuroscience.

In this study, sparse canonical correlation analysis (SCCA) is
applied to select the informative features. SCCA identifies sparse
linear combinations of two sets of highly correlated variables
(Witten et al., 2009). It has been shown to be useful in the
analysis of high-dimensional neuroimaging data, namely, when
two sets of variables are available for the same set of samples
(Yahata et al., 2016).

Specifically, N observations (participants) of paired variables
X∈Rd1 and Y∈Rd2 are given, X is an N × d1 matrix comprising
the first set of variables, and Y is an N × d2 matrix comprising
the second set of variables. L1-norm SCCA can be formulated as

max
vX,vY

vT
XXTYvY subject to ||vX||

2
1 ≤ λX, ||vY ||

2
1 ≤ λY ,

||vX||
2
2 ≤ 1, ||vY ||

2
2 ≤ 1, (3)

where hyperparameters λX and λY indicate the sparseness
of projection vectors vX and vY , respectively. The projection
matrices are vX ∈ Rd1×m and vY ∈ Rd2×m, where m = min

(d1, d2). In this study, X is the input feature, and Y is the label
for language proficiency. Before input to SCCA, the training set
is centered to have zero mean and scaled to have unit variance.

To select the common informative feature, the data sets for
the second language were applied, and the LOOCV described
above was used for cross validation. A feature selected from more
than 95% of participants during the leave-one-out procedure
was defined as a common informative feature. That is, a feature
was selected when it was shown more than 38 times by the
Japanese speakers (N = 40) and more than 36 times by the
English speakers (N = 38). After the common informative
features were selected, machine-learning methods were used
to classify language proficiency to confirm that classification
accuracy has been improved.

RESULTS

Classification Performance
Classification performance for the native Japanese speakers and
the native English speakers is shown in Figure 2. Classification
accuracies of the SVM for the native Japanese speakers were
55.0%, 52.5%, and 55.0% in terms of first language (L1), second
language (L2) and third (unknown) language (L3), respectively,
which show low classification accuracy. When SLR was used,
classification accuracies were 66.0%, 65.0%, and 42.5% for the
three languages, respectively; namely, classification of L1 and
L2 showed higher accuracy than that for L3. When KNN was
used, classification accuracies were 52.5%, 60.0%, and 37.5%;
that is, only classification of L2 showed higher accuracy. For
the native English speakers, classification accuracies of SVM
were 68.4%, 76.3%, and 44.7% for L1, L2, and L3, respectively;
that is, classification of L2 showed higher accuracy. When
SLR was used, classification accuracies were 71.1%, 68.4%, and
47.4% for the three languages, respectively. When KNN was
used, classification accuracies were 50.0%, 63.2%, and 36.8%,
respectively. SLR showed the highest classification accuracy for
the second language in the case of the Japanese speakers, and
SVM showed the highest classification accuracy for the second
language in the case of the English speakers.

The SVM showed unstable classification results: it cannot
classify language proficiency in the case of the native Japanese
speakers. SLR showed unexpected high classification accuracy
when classifying L1. Using the label of second-language
proficiency, SLR showed the highest classification accuracy for L1
in the case of both the native Japanese speakers and native English
speakers. K-nearest neighbor showed reasonable classification
results; namely, classification accuracy for L2 is higher, and that
for L1 and L3 is near to chance level.

Informative Features Shared Between
High- and Low-Language-Proficiency
Groups
To extract informative features that can improve classification
accuracy, sparse canonical correlation analysis was used. The
same leave-one-out cross validation (LOOCV) procedure was
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FIGURE 2 | Performance of classification by using machine learning methods of participants with high or low second-language proficiency in the case of native
Japanese speakers and native English speakers. Based on the same second-language-proficiency label, classification results of the first language and third
(unknown) language are also shown. L1: first language; L2: second language; L3: third (unknown) language.

adopted to select the features. Common informative features
were defined as features selected from more than 95% of the
participants. Spatial distribution of informative features is shown
in Figure 3, and anatomical information about the features is
listed in Table 2. As for the native Japanese speakers, the selected
common informative features correspond to channel 1, channel
6, and channel 22 on the left hemisphere and channel 16 on
the right hemisphere. The anatomical information about these
features indicate the pars opercularis, part of Broca’s area, left
precentral gyrus, left inferior temporal gyrus and right superior
temporal gyrus. As for the native English speakers, the selected
common informative features correspond to channel 2, channel
9, channel 15, and channel 17 on the left hemisphere and channel
19 on the right hemisphere. The anatomical information about
these features indicate the left postcentral gyrus, left angular
gyrus, part of Wernickes’s area, left superior and middle temporal
gyrus and right middle temporal gyrus.

After feature selection, the informative features were used to
classify each participant into the high-proficiency group or the
low-proficiency group. Classification accuracy for L1, L2, and L3
in the case of the native Japanese speakers and the native English
speakers is shown in Figure 4. As for the native Japanese speakers,
when SVM was used, classification accuracy for L2 was the
highest, i.e., 75%. When SLR was used, classification accuracies
were 70.0%, 75.0%, and 55.0% for L1, L2, and L3, respectively;
similarly, the accuracy was highest for L2. When KNN was used,
classification accuracies were 55.0%, 77.5%, and 65.0%. As for
the native English speakers, when SVM was used, classification
accuracies for L1, L2, and L3 were 76.3%, 81.9%, and 57.9%,
respectively. When SLR was used, classification accuracies were
68.4%, 79.0%, and 63.2% for L1, L2, and L3, respectively. When
KNN was used, classification accuracies were 63.2%, 73.7%, and
63.2%; namely, classification accuracy was highest for L2.

After feature selection, as expected, classification accuracy
for the second language was improved; meanwhile, classification
accuracies for the first and unknown languages tend to be at

the chance level. On the other hand, the SVM showed higher
accuracy for L3 in the case of the native Japanese speakers and
for L1 in the case of the native English speakers. SLR also showed
higher accuracies for L1 in both cases. When K-nearest neighbor
was used, classification accuracy tended to be reasonable; that
is, it showed higher classification accuracy for L2. After feature
selection, all the algorithms showed higher classification accuracy
for L2. These results suggest that the informative features, which
are related to second-language proficiency, are important for
improving classification accuracy.

DISCUSSION

In this study, machine-learning methods—using activation
patterns in fNIRS data— were used to classify individuals
with high second-language proficiency or low second-language
proficiency, in the case of both native Japanese speakers and
native English speakers. After feature selection, all methods
showed higher classification accuracy for the second language,
suggesting that the validity of feature selection. Also, the
activation patterns of frontal-temporal region are important
indicators to estimate individual language proficiency.

In the field of neuroimaging studies applying machine
learning, it is believed that to achieve better classification
accuracy, informative features must be extracted (Norman et al.,
2006; De Martino et al., 2008; Pereira et al., 2009; An et al.,
2017). The higher classification performance demonstrated in
this study indicates the validity of feature selection. Optimal
feature extraction avoids over-fitting and eliminates the effects
of noisy variables that are irrelevant to the classification
problem. How to extract intrinsic features is an important
research focus. SCCA was used as one of the methods for
extracting informative features for individual estimation (Yahata
et al., 2016). CCA can derive projection vectors that have
maximum correlation with desired labels (e.g., a label for
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FIGURE 3 | Distribution of selected features. Colors indicate the number of times the channel was selected as the feature. The number on the channel indicates the
channel number. (A,B) Show the results for native Japanese speakers and native English speakers, respectively.
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TABLE 2 | Spatial and anatomical information of selected features.

MNI

coordinates Anatomical information

Channels x,y,z

Japanese Left Ch 1 −50, 22, 38 Left middle frontal gyrus (BA 44)

speakers Ch 6 −61, 7, 28 Left precentral gyrus (BA 6)

Ch 22 −61, −62, −8 Left inferior temporal gyrus (BA 37)

Right Ch 16 71, −25, 4 Right superior temporal gyrus (BA 21)

English Left Ch 2 −60, –7, 43 Left postcentral gyrus (BA 4)

speakers Ch 9 −52, −72, 35 Left angular gyrus (BA 39)

Ch 15 −62, 2, 1 Left superior temporal gyrus (BA 48)

Ch 17 −67, −50, 6 Left middle temporal gyrus (BA 21)

Right Ch 19 58, 10, −18 Right middle temporal gyrus (BA 21)

language proficiency). Using L1-norm regularization will lead
to sparse solutions. As a result, features only related to
desired labels can be extracted, so label-unrelated variables
can be eliminated. Conventional methods of feature selection
need careful engineering and considerable domain expertise
to design a feature extractor that transforms raw data into
an appropriate feature vector. SCCA allows an input to be
composited from raw data; thus, it makes it possible to
automatically extract the informative features required for the
classification task.

Analyzing the most-discriminative features shared between
high- and low-language-proficiency groups revealed that native
Japanese speakers and native English speakers utilize different
specific brain regions, but they show the same tendency, that
is, Broca’ s area, Wernicke’ s area and the temporal cortex.
The reason for activation of different specific brain regions
may be due to the differences between brain shapes of native
Japanese speakers and native English speakers; consequently,
specific brain regions may deviate during spatial registration

of measurement channels (Chee et al., 2011). Previous studies
have found evidence that the two languages extensively overlap
in regard to the classical language areas, namely Broca’s
area and Wernicke’s area. Specifically, a variety of regions,
including the left frontal region (Price et al., 1999; Lehtonen
et al., 2005; Abutalebi and Green, 2008) and the bilateral
supramarginal gyri (Price et al., 1999) have been observed
to be involved in bilingual language comprehension and
processing. Those studies also suggested that no single region
is responsible for language comprehension and processing.
Moreover, multiple studies have suggested that the bilateral
temporal-frontal network is involved in processing during
auditory language comprehension (Friederici, 2002; Price, 2012;
Fengler et al., 2016). Concretely, syntactic and semantic
information are processed predominately by the left hemisphere,
while processing of prosodic information occurs predominately
in the right hemisphere (Friederici et al., 2000; Friederici,
2002). Studies on sentence-comprehension tasks also reported
left laterality plays a primary and significant role in language
comprehension (Harrington et al., 2006; Sanjuán et al., 2010;
Niskanen et al., 2012). In the present study, the brain region
of selected features are consistent with the previous findings;
namely, multiple cortical regions in a temporal-frontal network
were observed to be related to language comprehension
irrespective of native language, and the informative features
in these brain regions play an important role in improving
classification accuracy.

Using the label of second-language proficiency, classification
of L1 and L3 results in a higher classification accuracy than
the chance level. One possible explanation of this result is the
relation between the second-language ability and the native-
language ability (Brevik et al., 2016; Guo, 2018). In addition,
during the fNIRS-measurement experiment, the psychological
stressors of the high-language-proficiency group and the low-
language-proficiency group may differ. Since all the languages

FIGURE 4 | Classification accuracy after feature selection in the case of native Japanese speakers and native English speakers using machine learning methods.
Based on the same second-language-proficiency label, classification results of the first language and third (unknown) language are also shown. L1: first language;
L2: second language; L3: third (unknown) language.
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were randomly presented, the tests for L1 and L3 may be affected
by the different psychological stressors.

CONCLUSION

Machine-learning methods were used for distinguishing
second-language proficiency individually for both native
Japanese speakers and native English speakers. By extracting
informative features, the machine-learning methods showed
higher classification accuracy for the second language. The
informative features showed the effectiveness of feature selection
in improving classification accuracy. Moreover, brain-activation
patterns measured by fNIRS have the potential to serve as
biomarkers for identifying language proficiency. Finally, the same
approach could potentially be used with other biological data
with similar characteristic to those of fNIRS data.
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