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Abstract: The photolyase family consists of flavoproteins with enzyme activity able to repair ultravi-
olet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane
pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple
affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The devel-
opment of integrated applications to prevent the negative effects of prolonged sunlight exposure,
usually during outdoor activities, is imperative. This study presents the functions, characteristics,
and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some
photolyase-producing microorganisms and drug delivery systems.

Keywords: UV radiation; UV damage; enzyme; photolyase immobilization; bioactive compounds

1. Introduction

In the late 1940s, Albert Kelner reported the phenomenon of enzymatic photoreac-
tivation for the first time, studying in situ the repair of major DNA lesions produced by
ultraviolet (UV) radiation by a light-induced enzymatic cleavage of a thymine dimer to
yield two thymine monomers. This enzyme is called photolyase, and it detects and binds to
dimers contained in single- and double-stranded DNA [1]. Photolyase is also active against
cytosine dimers and cytosine–thymine dimers, which are also formed by UV irradiation,
but with much less frequently.

Photolyases are evolutionary ancient flavoproteins found in archaea, bacteria, and
eukarya domains [2,3]. In vertebrates, photolyases are found in fish, amphibians, birds, and
reptiles. Interestingly, mammals have lost this mechanism of protection throughout evolu-
tion. Hence, most mammals, including humans, can only repair these DNA lesions through
a process called nucleotide excision repair. UV light is a known source of damage to our
DNA that can be repaired by this mechanism. However, the deficient repair of UV-induced
DNA damage which, for example, may occur after excessive unprotected sunbathing, can
cause damage to DNA by inducing the formation of a cyclobutane pyrimidine dimer (CPD)
and a pyrimidine-pyrimidone (6-4) photoproduct (6-4PP). Both CPD and 6-4PP can lead to
cellular apoptosis and mutagenesis, which can eventually lead to skin cancer.

According to the World Cancer Research Fund International [4], between
2 and 3 million non-melanoma skin cancers and 132,000 melanoma skin cancers are
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estimated to occur globally each year. Importantly, the main factors that promote the
development of melanoma are exposure to the sun and a history of sunburn. Commonly,
this chronic, long-term sun exposure causes lesions such as premature aging and actinic
keratosis, both associated with skin cancer [5].

The increasing incidence of skin cancer and the consequent burden to the healthcare
system poses great problems, since the primary topical product defense has been broad-
spectrum (UVA/UVB) sunscreen application. Nonetheless, it has been shown that some
sunscreen products contain chemicals that can enter the bloodstream [6], and some products
were found to contain cancer-causing substances. In addition to these deleterious effects on
health, the environmental impacts of sunscreen ingredients include increasing concerns
regarding coral reefs. Therefore, the use of repair DNA enzyme-based products represents
a feasible alternative to prevent and treat DNA damage and consequent skin lesions.

This review focuses on the characterization of photolyases and therapeutic and cos-
metic applications available.

2. Photolyase

Photolyase is a protein that has various functions, among which is the repair of DNA
damaged from exposure to UV rays from the sun [7].

Additionally, the presence of photolyases has been observed in fish, amphibians,
birds, and a few marsupials [8]; nevertheless, in higher plants and animals, the ability to
repair DNA was lost during evolution (Figure 1). Therefore, their function is limited to
regulating growth and acting as blue-light photoreceptors; these enzymes are known as
cryptochromes [9].
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Figure 1. Presence of photolyase in different organisms. Due to evolution, some species lost the
ability to repair DNA. Created with BioRender.com.

The first precedent of enzymes with photolyase-like activity was discovered in 1993
in a plant of the Brassicaceae family native to Europe, Arabidopsis thaliana [10]. In other
plants such as white mustard (Sinapis alba), the same photolyase cofactors are present;
however, these plants lack DNA repair activity [11]. However, the photoreactivation
process and DNA repair with photolyase are available and have been demonstrated in
Streptomyces griseus [12] and bacteriophages [13].

In cyanobacteria, the existence of photolyase is reported in Anacystis nidulans [14].
The activity of photolyase enzymes has been reported mainly in environments with high
exposure to UV rays, such as the case of twelve species of diatoms from Antarctica that
demonstrated a DNA repair response to UV radiation damage [15].



Molecules 2022, 27, 5998 3 of 17

In eukaryotic organisms, the Antarctic alga Chlamydomonas sp. ICE-L, which is de-
veloped in high-irradiation environments, can use mechanisms that reduce UV radiation
damage [16].

Figure 2 shows the evolutionary relationship of several members of the photolyase
superfamily. From the members analyzed, the phylogenetic tree highlights two main
groups: one dominated by photolyases from microalgae and plants, and the other with
more diversified evolutionary relationships. Interestingly, some microalgae species express
photolyase at a relatively near distance to human photolyases.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 18 
 

 

In cyanobacteria, the existence of photolyase is reported in Anacystis nidulans [14]. 
The activity of photolyase enzymes has been reported mainly in environments with high 
exposure to UV rays, such as the case of twelve species of diatoms from Antarctica that 
demonstrated a DNA repair response to UV radiation damage [15].  

In eukaryotic organisms, the Antarctic alga Chlamydomonas sp. ICE-L, which is devel-
oped in high-irradiation environments, can use mechanisms that reduce UV radiation 
damage [16]. 

Figure 2 shows the evolutionary relationship of several members of the photolyase 
superfamily. From the members analyzed, the phylogenetic tree highlights two main 
groups: one dominated by photolyases from microalgae and plants, and the other with 
more diversified evolutionary relationships. Interestingly, some microalgae species ex-
press photolyase at a relatively near distance to human photolyases. 

 
Figure 2. Phylogenetic tree of photolyase. An evolutionary relationship among several members of 
the photolyase family is shown. This relationship was inferred using the neighbor-joining method 
[17] with the Poisson correction method [18] in MEGA11 [19]. Amino acid sequences from different 
species were obtained from the NCBI protein database (*) and CyanoBase database (#), and ID num-
ber is between square brackets. Colors are used as group identifiers: black for animals, green for 
plants, blue for microalgae (eukaryotic and cyanobacteria), red for fungi, orange for bacteria (except 
for cyanobacteria), and purple for arquea. 

  

Figure 2. Phylogenetic tree of photolyase. An evolutionary relationship among several members of
the photolyase family is shown. This relationship was inferred using the neighbor-joining method [17]
with the Poisson correction method [18] in MEGA11 [19]. Amino acid sequences from different species
were obtained from the NCBI protein database (*) and CyanoBase database (#), and ID number is
between square brackets. Colors are used as group identifiers: black for animals, green for plants,
blue for microalgae (eukaryotic and cyanobacteria), red for fungi, orange for bacteria (except for
cyanobacteria), and purple for arquea.

2.1. Type of Enzyme

Photolyases are monomeric proteins with a molecular mass from 50 to 61 kDa. They
are made up of 450–550 amino acids and two unsorted covalently bound chromophores
as cofactors. One of the cofactors is always flavin adenine dinucleotide FAD, and the sec-
ond is methenyltetrahydrofolate (MTHF) or 8-hydroxy-7, 8-didemethyl-5-deazariboflavin
(8-HDF) [20]. Light is an indispensable resource in the photoreactivation process for the
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conversion of enzyme–substrate complexes into additional DNA repair products [21]. The
surface of photolyases is characterized by a positive charge near the substrate binding
which promotes the interaction with DNA [22]. The structure of photolyase consists of
two domains: a C-terminal α-helical catalytic domain that contains the flavin cofactor and
an N-terminal α/β domain [23].

The superfamily of chromophores/photolyases (CRY/PHR) consists of subfamilies
(Figure 3) [24,25], of which there are three types of photolyases that have been identified to
repair a specific type of dimer: (1) CPD photolyase, responsible for repairing CPD, (6-4);
(2) photolyase, which repairs (6-4) pyrimidine pyrimidone; and (3) cryptochrome-DASH,
which causes a variety of physiological changes to DNA [2,26].
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2.2. Photolyase and Microorganisms

Photolyase biosynthesis begins with the transfer of an electron from the anionic
chromophore FADH−, promoted by light. In a catalytically active form, this binds to
damaged DNA in a high-affinity, light-independent step [27,28].

To study numerous characteristics of the photolyases obtained from various organ-
isms such as structural, physical, and mechanical properties, researchers have employed
genetic manipulation approaches to promote the overexpression of DNA repair enzymes,
since biosynthesis naturally provides low concentrations. Subsequently, extraction and
purification processes are performed to obtain better quality enzymes (Table 1) [29]. After
these steps, generally, between 15 and 25 mg of photolyase with a purity greater than 98%
is obtained. The quality of the enzyme obtained is reflected in the color of the extract: a
dark blue color indicates a good quality product. Therefore, it is important to measure and
quantify the absorbance spectrum after enzyme purification [29].
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Table 1. Studies demonstrating the presence of different types of photolyases in various organisms
and the extraction and purification methods necessary to prove their DNA repair activity.

Microorganisms Genus Type Photolyase Extraction and Purification References

Agrobacterium fabrum Prokaryote (6-4) Photolyase
Heated and cleared by

centrifugation HPLC column from
Macherey and Nagel

[30]

Rhodococcus sp. NJ-530 Marine bacterium CPD Class I Disrupted with ultrasonication,
Ni-NTA resin [31]

Chlamydomonas sp. ICE-L Psychrophilic
microalga (6-4) Photolyase Disrupted with ultrasonication,

Ni-NTA resin [32]

Hymenobacter sp. Antarctic bacterium CPD Class I Lysed with sonication, Ni-NTA resin [33]

Methanosarcina mazei
Mm0852 Archaea CPD Class II

Cell disruption with lysozyme,
EDTA and PMSF with an emulsifier,

Ni-NTA resin
[34]

Pohlia nutans M211 Antarctic Moss CPD Class II and (6-4)
Photolyase

Ultrasonic cell disruptor, Ni-NTA
resin [35]

Phaeodactylum
tricornutum ICE-H Antarctic diatom CPD Class II Ultrasonic cell disruptor, Ni-NTA

resin [36]

Caulobacter crescentus Oligotrophic
bacterium CPD Class III

Heated and cleared with
centrifugation, purified by affinity
chromatography on amylose resin

[37]

Mucor circinelloides Fungus CRY-DASH
Disrupted with a French press,

affinity chromatography-HisTrap
HP column

[38]

Phycomyces blakesleeanus
(NRRL1555) Fungus CRY-DASH

Disrupted with a French press,
affinity chromatography-His Trap

HP column
[39]

2.3. DNA Damage by UV Irradiation

The organisms and cells that inhabit the earth naturally are continuously exposed to
genotoxic agents present in the environment. Sunlight, as a source of UV rays, is one of the
main genotoxic agents; nonetheless, it is essential for the development of life, for example,
in the process of photosynthesis [40].

The damage caused by exposure to UV radiation (Figure 4) can trigger various skin
reactions, mainly (as mentioned before) by affecting pyrimidine dimers; erythema, im-
munosuppression, and melanogenesis are just some of the disorders that can occur. Hence,
it has been proven that overexposure to sunlight almost irreversibly damages skin cells [41].
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skin cancers [42]. Created with BioRender.com.
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2.4. Photolyase Mechanism of Action

There are multiple mechanisms of DNA repair: direct reversal [43], base excision,
nucleotide excision [44], mismatch [45], single-strand break, and double-strand break
repair [46].

Photolyases are light-driven DNA repair enzymes which function specifically in the
reversal of genomic lesions induced by UV radiation [47]. An important DNA repair mech-
anism for mutagenic and cytotoxic UV-induced photolesions in DNA is photoreactivation,
which utilizes enzyme photolyase for reverting modified nitrogenous bases into normal
form, employing blue wavelength [48]. DNA repair to minimize mutagenic changes is
divided into two main mechanisms: single-strand (ss) and double-strand (ds) DNA dam-
age repair. In the same way, ss and ds DNA repair are divided into direct reversal repair,
nucleotide excision repair, base excision repair, and mismatch repair for ss DNA repair
and homologous recombination and non-homologous end-joining repairs for ds DNA
repairs [7].

The photolyase for the CPD and 6-4PP lesions can be divided into CPD photolyases
based on the photoproduct that they recognize, which are subdivided in relation to the
amino acid sequence they possess, and 6-4PP photolyases, respectively [49]. Photolyases
can possess flavin adenine dinucleotide (FAD) in four different redox states: oxidized (FAD),
anionic semiquinone (FAD−), neutral semiquinone (FADH), and anionic hydroquinone
(FADH−) [7]. Different redox states will act differently in the absorption spectrum. While
FAD and FAD− mainly absorb UV-A, and blue light, FADH absorbs blue, green, and red
light, and FADH− does not absorb visible light. An absorption spectrum was determined
from two organisms by following flavin intermediates during the catalytic process, showing
the mode of action on the DNA repair by photolyase based on the absorption properties of
FAD [50].

According to Wang et al. [50], DNA repair by photolyase can be divided into three steps
(Figure 5): (i) Recognition, which is a light-independent process where
CPD or (6-4) photoproduct in the damaged DNA forms a photolyase/DNA complex by
flipping into the active site containing the flavin cofactor of the DNA photolyase. (ii) During
the catalytic reaction [51] taking place when FAD is at a fully reduced state (FADH−), the
methenytetrahydrofolate (MTHF), a photolyase chromophore, transfers energy to FADH−

through the absorption of photons from the blue-light spectrum, changing FADH− to an
exciting form of FADH−. In this step, CPD or the (6-4) photoproduct ring is opened by
bond dissociation in the dimer radical anion, and electron transfers from FADH− to the
lesions occur [7,52]. (iii) Finally, the separation step completes the repair process by the
departure of repaired DNA from photolyases.
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Figure 5. DNA repair by photolyase. DNA damage can be repaired by the enzyme photolyase in
three steps: recognition of the damage, binding of the photolyase and the DNA damage, and lastly
the separation of the enzyme resulting in the repaired DNA [47,50,53]. Created with BioRender.com.

As previously mentioned, FAD oxidation states influence the light absorption spectra;
hence, catalytic reactions for DNA repair from FADH− take place under blue-light condi-
tions. Considering the poor permeability of living tissues to blue light, works that aim to
remove the barrier of this range of light have been developed using harvesting or antenna
chromophores. Antenna chromophores are utilized by some photolyase to gain the photore-
ception ability of a light range, and the development and application of artificial antenna
chromophores demonstrate an increase of up to 1.5-fold in DNA repair activity. This is a
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promising strategy area for the optimization of photolyase DNA repair [52]. Nevertheless,
reports on the application of artificial antenna chromophores remain scarce.

2.5. Immobilization and Biocarriers

Photolyase offers outstanding protection and recovery mechanisms against sunlight-
induced DNA damage, but if the enzyme lacks the capacity of reaching the site where it
should intervene, or lacks the stability necessary to complete this, its utilization will go to
waste.

Currently, immobilization strategies such as the encapsulation of photolyases within
liposomes are the most used method to stabilize and deliver the protein; nonetheless,
other methods, such as the application of nanomaterials, are being explored [49]. There
are an assortment of technologies and systems currently being used as an approach to
deliver active ingredients in skincare, such as antioxidants that can be useful and might
offer an alternative to liposomes. Some of these technologies include the use of different
formulations, such as gels, hydrogels, and emulsions (micro and nano-emulsions), the usage
of other vesicular delivery systems instead of liposomes, such as ethosomes, transfersomes,
niosomes, and non-vesicular particles such as solid lipid nanoparticles, and nanostructured
lipid carriers, polymeric nanoparticles, nanocrystals, and—lastly—carbon, metal, or metal
oxide nanoparticles. These immobilization technologies seek to improve long-term stability
and sensitivity in order to provide a better catalytic activity; however, it is necessary to
explore their efficiency according to their final applications [54–61].

3. Photolyase Applications

The sun is the most vital star in our solar system. The radiation from this star promotes
photosynthesis in photoautotroph organisms, and in mammalian species, light promotes
the synthesis of vitamins necessary for the bone structure, such as the production of vitamin
D, among other things [62,63]. However, everything in excess can be harmful, and high
exposure to UV rays can be harmful to cells [64,65]. For this reason, some organisms,
such as bacteria and algae, which are constantly exposed to UV radiation, have evolved to
develop several mechanisms that prevent or even revert damages caused by the exposure
of different UV wavelengths. Unfortunately, most organisms, humans included, do not
have the mechanisms to mitigate the effects of prolonged exposure to UV rays, with the
consequence of causing damage to DNA which ultimately can result in the development of
skin diseases, or even skin cancer.

The use of enzymes that promote DNA repair, such as photolyase, represents a key
alternative for a wide range of applications in skin care products aimed to prevent or reverse
the damage prompted by extensive sunlight exposure. Advances in immobilization within
liposomes and nanomaterials have made the application of photolyase more accessible in a
wide range of commercial products, due to its higher stability. The activity of the enzyme is
maintained even in harsh conditions [49]. Photolyase is typically used in topical creams or
sunscreens which are used to prevent UV damage, and in therapy to restore the skin from
conditions such as premature photoaging, actinic keratosis, and squamous cell carcinoma.

In the following sections, we will discuss the different applications of photolyases in
different fields and cosmetics, and explore some examples of them being used and their
effects on different organisms or skin conditions. Table 2 presents some studies related to
the use of sunscreens containing photolyase and their effects on the treatment of premature
photoaging, actinic keratosis, and some types of skin cancer.

3.1. Current Photolyase Production

As stated previously in the manuscript, there are many organisms capable of producing
photolyase to repair DNA damage from UV exposure, and currently, the industry is
focusing on the production of this enzyme to take advantage of its properties to improve
crops and its potential use in therapeutic products [28].
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The current application of the photolyase enzyme is focused on the enhancement of UV
resistance not only in microorganisms, but also in other organisms and areas. An example
of photolyase application is the use of it to improve agriculture practices, which has been
reported to improve plants. For example, in Japan, researchers successfully modified
African rice to overexpress the gene. CPD repaired enzyme photolyase, demonstrating
an increased UVB resistance compared to the rice plants without these modifications [66].
Similarly, there is open research about improving the UV irradiation resistance of fungal
insecticides to improve their pest control [67].

3.2. Sunscreen with Photolyase as an Ingredient

The use of products to protect the skin from the sun is something humankind has
undertaken for centuries, from the Egyptians’ use of different plant extracts to the sun-
screens we know today, composed of a wide variety of filters offering protection beyond
UV radiation [68,69]. In the last few decades, the use of sunscreens has been promoted and
advertised to prevent damage to the skin by UV radiation; thus, the sunscreen market is
expected to reach USD 24.4 billion by 2029 [68,70].

Despite the proven advantages of regular sunscreen application (from reducing the
effects of photoaging to protecting against skin cancer) [71,72], there are some concerns
about the systematic and regular use of sunscreens and the effect on vitamin D synthesis,
especially in older people; nonetheless, there is plenty of evidence that deny those claims
and assure that the usage of sunscreens does not affect levels of vitamin D [73–75]. Another
concern with sunscreens is the skin absorption of the most used active ingredients, such
as avobenzone and oxybenzone, among others, resulting in high plasmatic levels [5,6].
In addition to these health concerns, the damage these organic ingredients cause to the
environment has been studied [76,77]. However, these findings prove the importance and
the need to further assess the products used in sunscreens, and to find active ingredients
that can offer the same benefits for all ages and skin types without a detrimental effect on
human and environmental health [78].

The use of the photolyase has been around for the last few decades, with the first
patent in 1988 [79], and since then it has been tested and proven that this enzyme can
prevent and reverse sunlight-induced skin damage when used as an active ingredient in
traditional sunscreen formulations [7,80–82].

There are sunscreens containing DNA repair enzymes obtained from microalgae and
labeled as “plankton extract” available on the market. Some companies that offer this
product are Isdin (Barcelona, Spain) with the product Eryfotona® AK-NMSC, Kwizda
Pharma GmbH (Vienna, Austria) with Ateia®, and Pharma Cosmetics (Oradell, NJ, USA),
with a variety of products such as Neova Active®, Neova Everyday®, and Neova Silc Sheer®

2.0. Many other companies are also releasing new products containing photolyase [82]. For
a more in-depth listing of all the products currently available on the market, we recommend
consulting the Supplementary Material of the review by Yarosh et al. [83].

3.3. Photoaging

Normal signs of aging are the appearance of fine lines, pigmentation, and wrinkles
in the skin, all of which appear over time and are generally attributed to getting older;
however, there is evidence that multiple factors contribute to accelerating the aging process,
including lifestyle factors such as smoking, sleep, diet, the chronic use of drugs, environ-
mental factors such as contact with polluted air, exposure to visible and infrared light [84],
and UV radiation, with the last one accounting for up to 90% of visible changes on the
skin [85,86].

Photoaging is a term that has been used since 1986 [87] to reference the effect on the
skin produced by chronic exposure to UV radiation that causes damage to
DNA [82,84,88,89] and leads to premature aging. All of these signs overlap with nat-
ural signs of aging, such as wrinkles, thin and dry skin due to a loss of underlying fat,
more fragile skin, and pigmentation; however, the effects of photoaging go beyond these
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appearances with, depending on the skin type, the formation of fine to coarse wrinkles, a
leather-like appearance to the skin, and hyperpigmentation or dyschromia. All of these
signs are presented even when normal signs of aging have not appeared [85,90–92].

Given that photoaging only occurs in areas of the skin that have been exposed to the
sun for a prolonged time, it is recommended to avoid sun exposure and apply sunscreens
that provide protection against UVA and UVB radiation and can even in some cases reverse
damage [71,85,93]. Listed below are some studies related to the use of photolyase in clinical
trials intended to assess the efficacy of this enzyme to mitigate the effects of photoaging.

Corinne Granger et al. conducted a study in which they tested, over 28 days, a tinted
sunscreen containing encapsulated photolyase on 30 women of ages ranging from 45 to 65
with slight-to-moderate photoaging signs [94]. The patients were evaluated on day zero
and on the last day of use and signs of photoaging were analyzed and evaluated. The
results showed an improvement between 6 and 12% for each factor analyzed in the treated
women compared to the control.

Another study was conducted to prove the efficacy of using photolyase from the
microalgae Anacystis nidulans to prevent damage to DNA produced by UV radiation on
the skin. This was performed by comparing the use of a regular sunscreen with a sun
protection factor (SPF) 50, and the same sunscreen supplemented with photolyase [95].

The results from this study revealed that, for the 10 participants (5 males and 5 females,
with ages ranging from 26 to 36 years old and Fitzpatrick skin type II), the formation of
CPDs and apoptosis of the skin cells was reduced by 93%, and 82%, respectively, with the
use of the sunscreen containing photolyase compared with the control that received only
radiation.

Similarly, Emanuele et al. [96] compared a novel topical product containing a tradi-
tional sunscreen with SPF 50, a mixture of DNA repair enzymes encapsulated in liposomes,
one of them being photolyase, and an antioxidant complex versus other topical prod-
ucts with similar characteristics. The study demonstrated the novel topical products
as the most effective in reducing the three parameters analyzed: the formation of CPD,
8-oxo-7,8-dihydro-2′-deoxyguanosine (8OHdG), and protein carbonylation (PC). This was
attributed to the synergistic effect of all the components within the product.

3.4. Actinic Keratosis

Actinic keratosis (AK) is a skin disease that is characterized by squamous lesions
that histologically show keratinocyte neoplasms occurring on skin that has had long-
term exposure to UV radiation [109]. AK is typically presented in people with light
skin belonging to the Fitzpatrick skin types of I to III in areas of the skin on which they
experience solar exposure regularly, such as the head (especially in areas with hair loss),
ears, neck, forearm, and the dorsum of the hand [80,110]. The lesions of AK can progress to
keratinocyte carcinoma, the most common type of skin cancer in the United States [111].
Therefore, AK must be prevented or treated early to avoid further disease progression.
The method to prevent skin damage is to avoid sun exposure, but when the exposure
is inevitable it is recommended to use protective clothes and at least 2 mg per cm2 of
sunscreen in the exposed areas [112]. However, these measures are not enough once the
skin damage is present and the use of active molecules capable of stopping and even
reversing this damage is essential [113].

Some studies have been published with diverse findings. For example, the efficacy
of photolyase in sunscreen and a combination of topical antioxidants in the treatment of
patients with AK were assessed in Brazil [106]. A total of 80 patient forearms were tested
using either regular sunscreen or sunscreen containing photolyase during the day and the
night. They either applied topical antioxidant or placebo cream to one forearm for 8 weeks.
The researchers found that all groups tested showed a significant improvement at the end
of the study; however, there were little to no significant differences between the groups
using regular sunscreen and those with additional photolyase. The authors attributed this
to the short time period of the treatment.
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Table 2. Studies on the use of photolyase in different skin conditions.

Study Skin Condition Therapy Evaluation Duration Assessment Results Reference

Clinical series AK Eryfotona 3 months Clinical photography Great improvement in AK lesions count. [97]
Retrospective case study Xeroderma Pigmentosum Eryfotona 12 months Histological records Reduction of 65% for AK, 56% for BCC, and

100% for SCC lesions. [98]

Longitudinal,
observational clinical AK Eryfotona 3 months

Clinical, dermoscopy,
and confocal

microscopy analysis

Grade I AK clinical and dermoscopy
improvement.

Reduction in desquamation.
Improvement in the epidermal

architectural pattern.
Grade II AK, no improvements.

[99]

Pilot study AK Eryfotona 1 month

Clinical, dermoscopy,
and reflectance

confocal microscopy
assessments

Erythema and scaling improvement. [100]

Clinical AK Eryfotona 9 months Telethermografy
Hyperthermic halos area reduced from 3.46

to 0.64 cm2.
[101]

Randomized,
assessor-blinded
parallel-group

AK Eryfotona 9 months Lesion count
Significant reduction in new AK lesions.

No additional photodynamic therapy
required.

[102]

Prospective
observational study AK Eryfotona

Cryotherapy 6 months
Epidemiologic,

clinical, and
therapeutic variables

No adverse cutaneous effects and
84% improvement in AK lesion count. [103]

Prospective, single-arm,
case-series AK Eryfotona 3 months Clinical photography Partial response in 100% of patients.

50% reduction in lesion count. [104]

Randomized,
double-blind

parallel-group
Pilot study

AK Eryfotona 6 months

Clinical, dermoscopy,
and reflectance

confocal Microscopy
evaluation

Significant reduction in mean AK lesion
number up to 31%. [105]

– Photoaging

Tinted facial
sunscreen with high

sun protection,
peptide complex,
and encapsulated

photolyase

1 month

Periocular wrinkles,
skin firmness and

elasticity, UV spots,
and patient
subjective

questionnaire

Wrinkle count −6.9%.
Wrinkle volume −10.4%.

UV spots area −9%.
Firmness +8.2.

Elasticity +11.3%.

[94]



Molecules 2022, 27, 5998 11 of 17

Table 2. Cont.

Study Skin Condition Therapy Evaluation Duration Assessment Results Reference

– UV exposure Sunscreen amended
with photolyase 4 days

Skin biopsies after
experimental
irradiations

93% prevention of CPD formation.
82% apoptosis prevention. [95]

Head-to-head
comparison studies UV exposure

Triple-protection
factor

broad-spectrum
sunscreen (TPF50)

–
Skin biopsies after

experimental
irradiations

Reduction in CPD and protein
carboxylation. [96]

Randomized,
double-blind, factorial

clinical trial
AK Sunscreen amended

with photolyase 2 months
Clinical and

demographic
variables

No significant differences with common
sunscreen. [106]

– AK Eryfotona 1 month
Histopathological

and molecular
assessment

Improvement in the field of cancerization.
Restoration of normal phenotype through

CPI-17 up-regulation.
[107]

Randomized, clinical
study AK Sunscreen amended

with photolyase 6 months

Fluorescence
diagnostics using

methylaminolevuli-
nate

Skin biopsies

Superior to sunscreen in reduction in field
cancerization and UVR-associated

molecular signatures.
[108]

AK: actinic keratosis. SCC: squamous cell carcinoma. BCC: basal cell carcinoma. CPD: cyclobutane pyrimidine dimer.
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Puig-Butillé et al. [107] evaluated the use of a film-forming medical device containing
photolyase in liposomes on a small group of patients from a wide range of ages, composed
mainly of males that presented multiple AK and two patients with xeroderma pigmentosum.
The study was conducted for 4 weeks, and at the end of the study, all groups showed an
improvement in their condition. Notably, some showed total clearance on the assessed
area from lesions caused by UV radiations. With the same medical device with photolyase,
Eibenschutz et al. [102] analyzed the effect of the product with the enzyme compared to a
regular sunscreen on 30 patients that underwent photodynamic therapy (PDT) with a total
of 225 AK lesions for 9 months. At the end of the treatment, it was shown that the group
treated with the film-forming medical device did better than the group treated with regular
sunscreen. PDT was not needed, nor was any other medical procedure, and no new AK
lesions were observed.

A research study in 2015 compared the effects of sunscreen containing photolyase
and traditional sunscreens in 28 patients during 6 months of treatment [108]. The findings
showed that both treatments reduced hyperkeratosis; however, for the field cancerization
and the levels of CPDs, the results showed a better performance in the group that used the
sunscreen containing photolyase than the group that used the traditional sunscreens.

3.5. Skin Cancer

Skin cancer remains a major global public health threat [114]. As the human body
naturally grows, cells are divided when needed and die when they lose their normal
function, or due to natural cell-aging. Cancer starts as a result of an interference in the cycle
of cell growth division and death. This condition is characterized by an overproduction of
cell division and the permanency of abnormal cells, instead of their death [115].

According to the American Cancer Society, there are five types of skin cancer: basal
and squamous cell skin cancer, melanoma skin cancer, Merkel cell skin cancer, lymphoma of
the skin, and Kaposi sarcoma. The basal and squamous cell skin cancers are mostly found
on the body areas commonly exposed to the sun without protection, such as the head, neck,
and arms. These two types are the most common, and they start in the epidermis [115]. In
early-stage cases, a skin excision is the treatment for squamous cell carcinoma (SCC) [116].

The precursor cell of SCC is AK, and for BCC it is hypothesized that its occurrence is
related to interfollicular epidermal basal keratinocytes with retained basal morphology from
the follicular outer root sheath or sebaceous gland-derived keratinocytes [117]. Malignant
melanoma is a serious form of skin cancer that begins in cells known as melanocytes. While
it is less common than SCC and BCC, melanoma is the most severe type of skin cancer
due to its capacity to spread if it is not treated at an early stage [118,119]. Merker cell,
lymphoma, and Kaposi cancers are less common types of skin cancer [115].

Field cancerization refers to the replacement of the normal cell population by a cancer-
primed cell population that may show no morphological change [101]. Some studies have
focused on this topic and the role of photolyase as a potential treatment. A study with
a topic product categorized as a medical device containing photolyase showed positive
results for treating cancerization areas with long-term use versus the use of commercially
available sunscreen, not only in terms of Baseline Severity Index (BSI) and total Clinical
Score (TCS), but also by reducing the occurrence of new AK lesions [105].

In 2016, Naverrete-Dechent et al. [104] showed that subjects with skin field canceriza-
tion showed a partial positive response to the treatment with a photolyase-added sunscreen
and at least a 50% reduction in their lesion number. These findings are consistent with the
work of Laino et al. [101], where 30 individuals with AK were treated with a photolyase-
added medical device, which improved their lesions.

4. Perspectives

Photolyase’s potential for DNA repair has been widely studied in vitro and in vivo.
Especially, numerous studies have investigated the impact of the use of products containing
DNA repair enzymes in patients. Still, we found that one of the major limitations of these
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studies is the duration of the treatment, making it difficult to determine the effect of
photolyase; thus, several details remain as open questions. In this sense, it would be
advisable for researchers to consider longer-term treatments in order to achieve solid
information regarding the effect of photolyase in cosmetic use.

On the other hand, the mechanism of photolyase DNA repair has been widely studied,
which makes it plausible to begin the evaluation of possible modifications to increase the
activation of photolyase, even under unfavorable conditions. The use of artificial antenna
chromophores is an area of opportunity that has already shown results, but the literature
remains scarce. Additionally, microalgae biomass is a potential source of photolyase
enzymes. This represents an alternative source in the application of technologies where
microalgae can be implemented for bioremediation processes such as CO2 sequestration
and water treatment, and the produced microalgae biomass could further be used to extract
photolyase. These biomass production processes also represent a low-cost approach for
generating the enzyme, as a substrate is not needed during the production of microalgal
biomass.

5. Conclusions

The exploration of photolyase production improvement can be implemented to take ad-
vantage of several microorganisms. Biotechnologies for the development of new products
that mitigate the DNA damage produced by UV radiation have been explored. Techno-
logical advances have allowed the extraction and use of photolyases in different products.
Furthermore, new efforts for immobilization and delivery systems are needed to develop
new topical formulations to battle UV-damaged DNA affections.
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