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Phosphorus containing analogues of SAHA as inhibitors of HDACs
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ABSTRACT
Histone deacetylases (HDACs) are a family of enzymes responsible for regulating DNA transcription by
modulating its binding to histone proteins. HDACs are overexpressed in several types of cancers and are
recognised as drug targets. Vorinostat, or suberanilohydroxamic acid (SAHA), is an histone deacetylase
(HDAC) inhibitor with a hydroxamic acid as a zinc-binding group (ZBG), and it has been FDA approved for
the treatment of T-cell lymphoma. In this work, phosphorus-based SAHA analogues were synthesised to
assess their zinc-binding effectiveness compared to the hydroxamic acid of SAHA. Specifically, we exam-
ined phosphate, phosphoramidate and phosphorothiolate groups as isosteres of the canonical hydroxamic
acid motif of conventional HDAC inhibitors. The compounds were screened for binding to HDAC enzymes
from HeLa cell lysate. The most potent derivatives were then screened against HDAC3 and HDAC8 iso-
forms. HDAC inhibition assays demonstrated that these phosphorus-based SAHA analogs exhibited slow
binding to HDACs but with greater potency than phosphonate SAHA analogs examined previously. All
compounds inhibited HDACs, the most potent having an IC50 of 50mM.
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Introduction

Chromatin is a protein–DNA complex that consist of segments of
DNA wrapped around a histone octamer which are then woven
into fibres1,2. These chromatin fibres condense the vast amounts
of DNA into compact dense structures3,4. Histones proteins are
modified via acetylation or deacetylation by histone acetyltransfer-
ase HAT and histone deacetylase HDAC enzymes, respectively5,6

to regulate DNA transcription by affecting how tightly DNA
strands are bound to histone proteins7. HDACs inhibit transcrip-
tion by removing N-acetyl modifications on histone lysine residues
allowing the histone to carry a positive charge and thereby
strengthening its electrostatic interactions with DNA8,9.

The HDAC family of zinc metalloproteinases contains 11 mem-
bers and are conserved across all eukaryotes10. With the exception
of NADþ-dependent class III HDACS, all HDAC family enzymes
share a common catalytic mechanism. In brief, a zinc (II) ion in the
active site functions to simultaneously coordinate a water mol-
ecule and act as a Lewis acid towards substrate acetyl groups11.
This coordination serves to lower the pKa of the water molecule
and polarise the carbonyl group, thus increasing the nucleophilic-
ity and electrophilicity of each, respectively12. Nucleophilic add-
ition of water to the carbonyl centre of the substrate acetyl leads
to a tetrahedral intermediate13, which, once collapsed, releases
the lysine amine and acetic acid.

CONTACT Clifford E. Berkman cberkman@wsu.edu Department of Chemistry, Washington State University, Pullman, WA, USA.�These authors contributed equally to this work.
Supplemental data for this article can be accessed here.

� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY
2022, VOL. 37, NO. 1, 1315–1319
https://doi.org/10.1080/14756366.2022.2063281

http://crossmark.crossref.org/dialog/?doi=10.1080/14756366.2022.2063281&domain=pdf&date_stamp=2022-05-05
https://doi.org/10.1080/14756366.2022.2063281
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


HDACs have served as drug targets for many diseases including
various cancers, interstitial fibrosis, autoimmune and inflammatory
diseases, and metabolic disorders14. Indeed, considerable efforts
have been made to develop HDAC inhibitors (HDACi). Vorinostat,
or SAHA, is a broad spectrum HDACi (IC50 ¼ 13 nM) has been FDA
approved to treat cutaneous T-cell lymphoma15,16. This molecule
utilises a hydroxamic acid as a zinc-binding group17 as do
Belinostat and Panobinostat18, while a thiol serves as the zinc-
binding group in Romidepsin19. Because none of the known
HDAC inhibitors are specific for a single HDAC, off-target effects
remain an issue.

In recent work, much attention has been towards increasing
the potency of HDACi molecules and improving selectivity for cer-
tain isoenzymes. Negmeldin et al. modified the C2 position of
SAHA with a n-hexyl to exploit a wider active site entrance of
HDAC6/8. This compound resulted in a 49- to 300-fold HDAC6/8
(IC50¼ 0.6 and 2.0mM) selectivity over HDAC1-320. Procainamide-
SAHA fused inhibitors proposed by Nardella et al. targeted post
translational modifications in the malaria parasite plasmodium fal-
ciparum. This compound combines SAHA, a potent pan-HDAC
inhibitor with a DNA methyltransferase inhibitor procainamide.
The lead SAHA/procainamide fusion molecule was fully active in
drug resistant plasmodium falciparum isolates (IC50¼ 41 nM) and
human HDAC6 (IC50¼ 14 nM)21. Another strategy for optimisation
of SAHA derivatives is replacing the anilide with different hydro-
phobic functional groups. Huang et al. synthesised and evaluated
SAHA derivatives with osthole fused to the aliphatic hydroxamate
core. Their best compound showed potency and selectivity similar
to SAHA with moderate selectivity towards HDAC6
(IC50¼ 14 nM)22.

Kapustin et al.23 demonstrated the utility of phosphonamidate,
phosphonate and phosphinate analogs of SAHA (Figure 1) as
HDAC inhibitors. The most potent of these was a monobasic phos-
phoramidate-based compound PA1 (Figure 1) with an IC50 of
570 mM against HeLa cell lysates. It also exhibited a slow binding
mode of inhibition, requiring a 10-h preincubation time. The focus
of this study was to expand upon the Kapustin study by examin-
ing dibasic phosphoryl motifs as zinc-binding groups in the con-
text of HDAC inhibitors.

Our inhibitor selectivity experiments focussed on the Class-I
HDACs (HDAC1, 2, 3, and 8). The HDAC isoforms 3 and 8 were
chosen from this class due to the differences in their sequence
and structure. Both of these enzymes are present in the cell
nucleus and use zinc as a cofactor for catalytic activity. There are
4 key differences in the active site amino acid sequence

suggesting that there is a selectivity towards substrates24. HDAC8
contains a flexible L1 loop made up of 7 amino acids that form a
hydrophobic secondary pocket adjacent to the active site25. This
pocket has been exploited for HDAC8-specific inhibitor research
and has led to “L shaped” molecules with improved activity
against HDAC826. These HDACs are clinically relevant due to
HDAC 8 being overexpressed in T-Cell leukaemia and
Neuroblastoma27,28. HDAC3, however, is associated with neurode-
generative diseases such as Alzheimer’s disease.

The time course enzyme inhibition assay using compound 2
showed optimal inhibition at 8 h for HeLa cell Lysate and HDAC 8,
and 4 h for HDAC 3. These results suggest that our series of phos-
phoryl compounds are slow binding inhibitors. These types of
inhibitors also express tight binding qualities such that the mole-
cules have low dissociation rates and long drug target residence
time29. In vitro, this strong binding quality can disrupt cell viability
due to the inhibitors ability to shutdown the enzyme for a long
period of time. If enzyme synthesis time in targeted cells cannot
overcome the inhibition time, cell viability can be affected30. The
advantage of slow and tight binding inhibitors for in vivo biomed-
ical purposes stems from the decreased off target toxicity of the
compound. Because of the decreased systemic circulation time
and increased inhibitor residence time a lower concentration of
the compound is available in the blood stream to bind to non-tar-
geted protein31. There are several known examples of slow bind-
ing as FDA-approved drugs32. There are also several know types
of HDAC inhibitors that exhibit slow binding kinetics33.

Results and discussion

Amino aniline amides14–16 were synthesised from commercially
available Boc-protected amino acids by a HBTU coupling
reaction with aniline followed by deprotection with HCl (Scheme
1). Phosphoramidates17–19 were synthesised by an Atherton-Todd
reaction with amino aniline amides and dibenzylphosphite. The
resulting dibenzyl protected phosphoramidates were deprotected
by catalytic hydrogenation in the presence of potassium bicarbon-
ate to provide products1–3. Hydroxy aniline amides27–29 were
synthesised either starting from the commercially available
bromo-alkyl ester or corresponding lactone. Ethyl 7-bromohepta-
noate 20 was hydrolysed using HBr in acetic acid to provide
7-bromoheptanoic acid 22. Both bromoheptanoic acid 22 and
commercially available bromopentanoic acid 21 were coupled
with aniline using DCC. An O-acetyl group was installed by reac-
tion with bromo alkyl acid 23 and 24 and potassium acetate.
Saponification with NaOH was preformed to provide the alcohols
27 and 29. e-Caprolactone was hydrolysed and TBDMS protected
following an established literature procedure (ref). TBDMS pro-
tected alkyl acid was coupled to aniline using HBTU followed by
deprotection of the silyl ester using aqueous acid to provide
alcohol 28 (34). The alcohols were treated with dibenzyl diisopro-
pylphosphoramidite and oxidised with tert-butyl hydrogen perox-
ide to give the dibenzyl phosphates30–32. Deprotection was
accomplished by catalytic hydrogenation in the presence of potas-
sium bicarbonate to provide products4–6. Phosphorothioates were
synthesised by reacting 6-hydroxy-N-phenylhexamadmide 28 with
bis(2-cyanoethyl) diisopropylphosphoramidite then oxidising with
elemental sulphur. The cyanoethyl esters were removed by treat-
ing with an excess of sodium hydroxide to give product 7.

Once prepared, the compounds were screened for inhibition of
HDAC activity from the cell lysates of HeLa cells and the recom-
binant isoforms HDAC3 and HDAC8. Linker lengths of 5–7 atoms
(including O or NH) were chosen for these structures to compare

Figure 1. Phosphorus containing SAHA analogues discovered by Kapustin et al.
IC50 values reported for Hela cell lysate and 10 h incubation time.
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to the analogous structure of SAHA with its 6-atom linker
between the hydrophobic analide cap and hydroxamate ZBG.
While incubation times less than 1 h resulted in little inhibition of
HDAC activity, the compounds exhibited significant inhibition
when pre-incubated with HeLa cell lysates, for 8 h (Figure 2),
which was consistent with phosphonyl-based HDAC inhibitors
(PA1-3). Recombinant HDAC3 and HDAC8 were also tested for
slow binding inhibition using compound 2.

The screening results (Table 1) showed evidence of concentra-
tion dependent inhibition for each compound. The most potent
compounds were the phosphoramidate 2 and phosphate 5, both
possessing a 6-atom linker. Based on these results, we further
expanded the library to include the thiophosphate 7, while main-
taining a 6-atom linker. Interestingly, the inhibitory potency of
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Scheme 1. Synthesis of HDAC inhibitors 1–7. a) HBTU, DIPEA, aniline, DMF b) 4 N HCl in dioxane c) dibenzyl phosphite, BrCCl3, Et3N, CH3CN d) H2, Pd/C, MeOH, KHCO3

e) 33% HBr in AcOH f) DCC, DMAP, aniline, DMF g) KOAc, DMF, 70 �C h) NaOH, MeOH i) NaOH, H2O j) imidazole, TBDMS-Cl, DCM k) HBTU, DIPEA, aniline, DMF l) 4 N
HCl in dioxane m) Dibenzyl N,N-diisopropylphosphoramidite, 5-(Ethylthio)-1H-tetrazole, ACN, tert-butyl hydrogen peroxide n) H2, Pd/C, MeOH, KHCO3 o) Bis(2-cya-
noethyl)-N,N-diisopropylphosphoramidite, Sulphur, ACN p) KOH, MeOH.
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Figure 2. Time-dependent inhibition of HDACs from HeLa cell lysates, HDAC8
and HDAC3 with inhibitor 2 (100lM).
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compounds 2, 5, and 7 were similar, suggesting little difference in
the zinc-binding of these the three motifs; phosphoramidate,
phosphate, and thiophosphate. Therefore, we tested these com-
pounds 2, 5, and 7 using recombinant HDAC3 and HDAC8
(Table 1). The assay results showed that compound 2 had the
highest potency for the cell lysate (IC50¼ 70 ± 8 mM) but was
more selective for HDAC8 (IC50¼ 129 ± 23mM) over HDAC3
(IC50¼ 240 ± 34mM). Similarly compound 5 also had the highest
potency for cell lysate (IC50¼ 60 ± 9 mM), and was more selective
for HDAC8 (IC50¼ 179 ± 34mM) over HDAC3 (IC50¼ 690 ± 60 mM).
Compound 7 showed similar potency between cell lysate
(IC50¼ 50± 13 mM) and HDAC8 (IC50¼ 49 ± 8 mM) but was less
selective for HDAC3 (IC50¼ 103 ± 20mM).

Conclusion

In summary, we synthesised a library of 7 phosphoryl-based ana-
logs of SAHA. These inhibitors were designed to contain the
canonical hydrophobic anilide cap and aliphatic linker, but present
an alternative phosphoryl-based ZBG. While each of these motifs
could provide multidentate interactions with the HDAC active-site
zinc ion, this was not an advantage with respect to inhibitory
potency against HDACs. However, while these compounds were
considerably less potent than SAHA (0.2mM) against HDACs from
HeLa cell lysates or HDAC3 (0.24mM) and HDAC8 (1 mM), they
exhibited greater potency compared to previously reported phop-
shonyl-based HDAC inhibitors (23). Investigations into the

specificity of inhibitory potency against individual HDACs and can-
cer cells by these compounds will be forthcoming.
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Table 1. IC50 values for inhibitors 1–7 and SAHA.

Compound Structure HeLa Cell Lysate IC50 (lM)a Recombinant HDAC 8 IC50 (lM)a Recombinant HDAC 3 IC50 (lM)a

1 360 (60) NT NT

2 70 (8) 129 (23) 240 (34)

3 490 (9) NT NT

4 2200 (570) NT NT

5 60 (9) 179 (34) 690 (60)

6 3900 (1800) NT NT

7 50 (13) 49 (8) 103 (20)

SAHA 0.2 (0.04) 1 (0.3) 0.24 (0.02)

aDetermined for HeLa cell extract, recombinant HDAC3 and HDAC8 using a fluorometric assay incubating for 8 h. Standard deviation in parentheses.
NT¼Not Tested.
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