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A B S T R A C T   

In this study, a novel 3,3′-bipyrazolo [3,4-b]pyridine-type structure was synthesized from 5-ace
tylamino-3-methyl-1-phenylpyrazole using the Vilsmeier-Haack reaction as a key step. The 
spectroscopic properties and structural elucidation of the compound were determined with the 
use of FT-IR, HRMS, 1H NMR, and 13C NMR. Likewise, the theoretical analysis of the IR and NMR 
spectra allowed peaks to be assigned and a solid correlation was demonstrated between the 
experimental and theoretical results. Finally, ab initio calculations based on the density functional 
theory method at the B3LYP/6-311G (d,p) level of theory were used to determine the confor
mational energy barrier, facilitating the identification of the most probable conformers of the 
synthesized compound. Overall, our findings contribute to the understanding of bipyrazolo [3,4- 
b]pyridine derivatives.   

1. Introduction 

Pyrazolo [3,4-b]pyridine derivatives exhibit promising pharmacological activities, making them attractive candidates for drug 
development. These compounds have been explored for their potential in various therapeutic applications, including cancer [1], 
inflammation [2], neurological disorders [3], infectious diseases [4], and cardiovascular conditions [5]. The unique structural features 
of pyrazolo [3,4-b]pyridine derivatives contribute to their interactions with specific biological targets, leading to the discovery of novel 
drug candidates [6]. Additionally, owing to their unique luminescent properties [7,8], pyrazolo [3,4-b]pyridine scaffolds can be 
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exploited for biosensing applications [9–11]. 
Due to the importance of pyrazolo [3,4-b]pyridine derivatives as substructures in drug design, many efforts have been devoted to 

the development of effective protocols for their preparation. The methods for obtaining this nucleus can be summarized into two 
strategies: forming a pyridine ring into an existing pyrazole ring and forming a pyrazole ring into a preexisting pyridine ring [12]. 

Vilsmeier–Haack reaction carried out on acetamidopyrazoles can form a series of fused structures pyrazolo-pyridine, which are 
valuable precursors in the construction of different heterocyclic compounds through various transformations, such as nucleophilic 
addition reactions, condensations, or reductions, resulting in the formation of diverse products with enhanced complexity. In 
particular, the reaction of 5-acetylamino-3-methyl-1-phenylpyrazole 2 under Vilsmeier-Haack reaction conditions produces mostly 6- 
chloro-3-methyl-1-phenyl-1H-pyrazolo [3,4-b]pyridine-5-carbaldehyde 3, in addition to the formation of a chlorinated product (6- 
chloro-3-methyl-1-phenyl-1H-pyrazolo [3,4-b]pyridine) 4 in small quantities [13] (Scheme 1). 

Continuing our ongoing interest in bioactive nitrogen-containing heterocycles, we directed our attention towards the synthesis of 5- 
carbaldehyde 3. However, upon purifying the reaction mixture and performing NMR analysis, compound 3 was not obtained; instead, 
compound 5 was formed. Herein, we present the data and results utilized to confirm the structure of the novel 3,3′-bipyrazolo [3,4-b] 
pyridine scaffold 5 (Fig. 1). 

In addition to employing FT-IR, HRMS, and NMR experimental techniques, the conformational barrier of the obtained compound 
was also studied. The most likely conformers of bipyrazolo [3,4-b]pyridine 5 were identified, and the theoretical IR and NMR spectra 
were generated for comparison with the corresponding experimental spectra. 

2. Experimental 

2.1. Materials and methods 

1D and 2D NMR spectra (400 MHz for protons and 100 MHz for carbon) were recorded on an AM-400 spectrometer (Bruker, 
Rheinstetten, Germany) using CDCl3 as the solvent. Tetramethylsilane (TMS) was used as an internal standard. IR spectra (KBr pellets, 
500–4000 cm− 1) were recorded using a NEXUS 670 FT-IR spectrophotometer (Thermo Nicolet, Madison, WI, USA). High-resolution 
mass spectrometry (HRMS) analyses were carried out using a Bruker “Compact” quadrupole time-of-flight mass spectrometry 
(qTOF-MS, Germany) coupled with an Apollo II ion funnel electrospray ionization (ESI) source. The melting point (m.p.) was deter
mined using an Electrothermal IA9100 apparatus (Stone, Staffs, UK) and was uncorrected. The reaction progress was monitored by 
thin-layer chromatography (TLC) using Kieselgel 60 F254 plates (Merck). All chemical reagents were of analytical grade, obtained 
from commercial suppliers, and used without further purification. 

2.2. Synthesis of 3,3′-dimethyl-1,1′-diphenyl-1H,1′H-[6,6′-bipyrazolo [3,4-b]pyridine]-5-carbaldehyde 5 

A mixture of 5-amino-3-methyl-1-phenylpyrazole 1 (1 g, 5.8 mmol) and an AcOH/Ac2O mixture (10 mL) was refluxed for 3 h. The 
reaction mixture was cooled, and the obtained solid was filtered off and recrystallized from EtOH to give 1.1 g of compound 2 (88 %) as 
white crystals. Acetamide 2 (0.9902 g, 4.6 mmol) was dissolved in DMF (5.0 mL) and the solution was cooled to 0 ◦C. POCl3 (2.58 mL, 
6 mmol) was added slowly under intensive stirring at 0 ◦C. The reaction mixture was allowed to reach room temperature and then, was 
refluxed for 8 h at 80 ◦C. After the completion of the reaction, the mixture was cooled and neutralized with saturated aq. NaOAc 
solution. The resulting reaction mixture was extracted with EtOAc (20 mL), washed with water (100 mL), and dried over anhydrous 
Na2SO4. The solvent was evaporated and the crude material was purified by column chromatography (30 % EtOAc/hexane) to obtain 
pure product 5 (40 %) as a white solid; m. p. = 182–184 ◦C; IR (νmax, KBr, cm− 1): 3050 (CH arom.), 2990 (CH aliph.), 1690 (CO); 1H 
NMR (CDCl3, 400 MHz) δH (ppm): 2.68 (s, 3H, CH3), 2.72 (s, 3H, CH3), 7.22 (d, J = 8.3 Hz, 1H, CH-pyridine), 7.36 (t, J = 7.4 Hz, 1H, 
ArH), 7.42 (t, J = 7.4 Hz, 1H, ArH), 7.59 (m, 4H, ArH), 8.00 (d, J = 8.3 Hz, 1H, CH-pyridine), 8.27 (dd, J = 8.2, 2.3 Hz, 4H, ArH), 8.67 
(s, 1H, CH-pyridine), 10.55 (s, 1H, CHO). 13C NMR (CDCl3, 101 MHz) δC (ppm): 12.4 (CH3), 12.4 (CH3), 115.6(C), 116.6 (C), 117.4 
(CH), 120.6 (2 x CH), 120.9 (2 x CH), 122.8 (C), 125.8 (CH), 126.6 (CH), 129.0 (2 x CH), 129.2 (2 x CH), 131.4 (CH), 132.7 (CH), 138.3 
(C), 139.0 (C), 142.7 (C), 145.5 (C), 149.5 (C), 149.9 (C), 150.7 (C), 152.8 (C), 188.7 (C––O). HRMS (ESI, m/z): C13H3N6 [M–2 (.C6H5)- 
(CH4)–CHO + H]2.+ 243.0414 found 243.7811 (base ion). 

Scheme 1. 5-acetylamino-3-methyl-1-phenylpyrazole (2) under Vilsmeier-Haack reaction conditions.  
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3. Computational methods 

3.1. Theoretical calculations 

To calculate the conformational barrier, the energy values for the curve were computed using the B3LYP hybrid density functional 
[14,15] and 6-311G (d,p) basis set [16,17]. Subsequently, the points on the curve corresponding to the maxima or minima (eight 
structures) were optimized at the B3LYP/6-311 + G (2d,p) level of calculation [18]. The energy was then determined using the 
CAM-B3LYP method/basis set (Handy and coworkers’ long-range-corrected version of B3LYP using the Coulomb-attenuating meth
od)/aug-cc-pVTZ [19,20] on the geometry obtained with B3LYP/6-311 + G (2d,p). 

For calculating vibrational frequencies, the B3LYP/6-311 + G (2d,p) method/basis-set was employed for previously optimized 
structures using the same method/basis-set. Chloroform solvent effects were considered using the integral equation formalism 
polarizable continuum model (IEFPCM) [21–23]. The scheme used to organize this analysis was consistent with employed in Ref. [23]. 

The theoretical NMR values were obtained using the Gauge-Independent Atomic Orbital (GIAO) method [24–27] in conjunction 
with the B3LYP/6-311 + G (2d,p) method/basis-set. The scheme used to organize this analysis was the same as that employed in Refs. 
[28–30]. 

4. Results and discussion 

4.1. Synthesis and characterization 

The starting compound, 5-acetylamino-3-methyl-1-phenylpyrazole 2, was synthesized via conventional methods, as reported in the 
literature [31], involving the reaction of 5-amino-3-methyl-1-phenylpyrazole 1 with an AcOH/Ac2O mixture. The bipyrazolo [3,4-b] 
pyridine 5 derivative was obtained by the reaction of 5-acetylamino-3-methyl-1-phenylpyrazole 2 with Vilsmeier-Haack reagent 
(Scheme 2). 

The structure of compound 5 was supported by findings derived from 1H NMR, 13C NMR, IR, and HRMS (Fig. 2). The IR spectrum of 
the synthesized bipyrazolopyridine showed the presence of absorption bands at 3050 and 2990 cm− 1, due to aromatic and aliphatic 
C–H stretching vibrations, and a strong absorption band at 1690 cm− 1, corresponding to the C––O group frequency (see Figs. SI–8). 

1H and 13C NMR assignments were completed using 1D and 2D heteronuclear correlation HSQC and HMBC techniques (Fig. 3). The 
1H NMR spectrum (Figs. SI–1) was characterized by the presence of three groups of signals (aliphatic protons, aromatic protons, and 
protons near heteroatoms). 

The observed signals in the 1H NMR spectrum at δH = 2.72 ppm (3H, s) and 2.68 (3H, s) were attributed to methyl groups CH3-3 and 
CH3-3′, respectively. In the 13C NMR spectrum, the carbons CH3-3 and CH3-3′ appeared at δC = 12.49 and 12.42 ppm, respectively. The 
assignments for these signals were confirmed using 2D HSQC spectra (see Figs. S4 and S5). Further evidence was obtained from the 2D 
HMBC spectrum (Figs. S6 and S7), which showed two important correlated couplings (Fig. 4B). The first coupling was between protons 
CH3-3 (1H, at 2.72 ppm) and C-3 (13C, 145.54 ppm) and C-3a (13C, 116.64 ppm), while the second coupling was between protons CH3- 
3’ (1H, at 2.68 ppm) and C-3’ (13C, 142.73 ppm) and C-3a’ (13C, 115.61 ppm). 

Fig. 1. 3,3′-dimethyl-1,1′-diphenyl-1H,1′H-[6,6′-bipyrazolo [3,4-b]pyridine]-5-carbaldehyde 5.  

Scheme 2. Synthesis of the bipyrazolo [3,4-b]pyridine derivative 9 from 2.  
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The presence of aromatic signals at δH = 8.27 ppm (4H, dd, J = 8.2, 2.3 Hz, ArH-o and -o’), 7.59 ppm (4H, m, ArH-m and -m’), 7.42 
ppm (1H,t, J = 7.4 Hz, ArH-p) and 7.36 ppm (1H, t, J = 7.4 Hz, ArH-p’) were assigned to the hydrogens -o, -m, and -p in both aromatic 
systems, respectively. In the 13C NMR spectrum (see Figs. S2 and S3), the observed signals at δC = 129.23 (2 x CH), 129.09 (2 x CH), 

Fig. 2. The numbering system of 3,3′-dimethyl-1,1′-diphenyl-1H,1′H-[6,6′-bipyrazolo [3,4-b]pyridine]-5-carbaldehyde 5.  

Fig. 3. 1H and 13C NMR chemical shifts of bipyrazolo [3,4-b]pyridine 5.  

Fig. 4. HMBC correlations of bipyrazolo [3,4-b]pyridine 5.  
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126.68 (CH), 125.88 (CH), 120.93 (2 x CH), and 120.68 (2 x CH) ppm were assigned to the aromatic carbons –m’, -m, -p, -p’, -o and –o’, 
respectively. The assignment of these signals was confirmed by 2D HSQC and HMBC spectra (Fig. 4C). 

The most valuable information regarding the structure of bipyrazolo [3,4-b]pyridine was obtained from the proton resonance of 
pyridine rings at 8.67 ppm (1H, s), 8.00 (1H, d, J = 8.3 Hz, 1H), and 7.22 (1H, d, J = 8.3 Hz) corresponding to the H-4, H-5′, and H-4′ 
protons, respectively. Additionally, the 2D HSQC spectrum provided essential data for the assignment of carbons C-4, C-5′, and C-4’ 
appearing at δC = 132.70, 131.49, and 117.40 ppm, respectively. In the 1H NMR spectrum, a singlet at 10.55 ppm (1H, s) was observed, 
attributed to the –CHO proton. The 13C NMR spectrum showed the carbonyl group at δC = 188.77 ppm, supported by the HMBC 
correlation (Fig. 4D). 

Additional assignments were obtained from the HMBC spectra (Table S1). The H-4 signal (1H, 8.67 ppm) displayed correlations 
with C-7a (13C, 152.84 ppm), C-6 (13C, 149.99 ppm), and CHO (13C, 188.77 ppm) (Fig. 4D). The H-5′ signal (1H, at 8.00 ppm) 
exhibited and HMBC correlation with both C-6 (13C, 149.99 ppm) and C-3a’ (13C, 115.61 ppm) (Fig. 4A). 

Compound 5 (mass exact = 444.1699) was analyzed by stepwise mass spectrometric fragmentation experiments in positive 
ionization mode (see Supporting Information Fig. S14). Scheme 3 depicts the fragmentation pathway of 5 and the postulated fragment 
ion structures. 

Novel 3,3′-bipyrazolo [3,4-b]pyridine scaffold 5 was obtained from intermediates 8 and 9, contrary to what has been proposed by 
other authors [32] who suggest that similar formylation should lead to compounds 3 and 4 shown in Scheme 1. Thus, intermediate 8 
would lead to compound 3 while intermediate 9 to compound 4. However, what occurred was the interaction of these two in
termediates to generate compound 5, as outlined in Scheme 4 as plausible mechanism. 

The reaction involves the use of Vilsmeier’s reagent (VR), consisting of a dimethylformamide (DMF), and phosphoryl chloride 
(POCl3) mixture. A plausible mechanism proceeds via formylation of 5-acetylamino-3-methyl-1-phenylpyrazole 2 to generate inter
mediate 6. This entails the attack of the carbon 3 of the amino pyrazole 2 by VR. Then, a new VR molecule is attacked, but this time by 
the oxygen of the amide leading to the formation of 7. The mechanism bifurcates into two pathways to form intermediates 8 and 9 from 
7. The pathway for the formation of intermediate 8 is shown with red arrows representing specific electronic movements for its 
generation, as well as the formation of intermediate 9 (depicted with blue arrows). Subsequently, a nucleophilic attack from inter
mediate 8 to 9 occurs, leading to the formation of 10, which then undergoes a transposition for stability to generate intermediate 11. 
Consequently, in intermediate 11, there is an elimination of HCl along with water attacking the iminic carbon, and eliminations of 
trimethylamine occur to generate the unexpected bipyrazolo [3,4-b]pyridine 5. 

5. Theoretical details 

5.1. Structural optimization. Conformational barrier 

In this section, the most probable conformers of bipyrazolo [3,4-b]pyridine 5 are determined by studying the torsion of its char
acteristic dihedral angle. After determining the conformational energy barrier, the most probable structures were qualitatively esti
mated and refined at a higher calculation level. Fig. 5-A displays the conformational energy curve of bipyrazolo [3,4-b]pyridine, while 
Fig. 5-B illustrates the rotation of the dihedral angle to obtain points on curve A. As depicted, the curve shows four relative minima 
(marked as 1–4) corresponding to dihedral angles of 146.8, 206.8, 304.3, and 409.3◦, respectively. Additionally, four relative maxima 
(labeled A-D) corresponding to dihedral angles of 86.8, 191.8, 274.3, and 379.3◦, respectively, are also visible. These eight structures 
are shown in Figs. S9 and S10 of the Supporting Information. 

Fig. 6 depicts the energy profile of bipyrazolo [3,4-b]pyridine (main structures from Fig. 5-A), and it is like Fig. 5-A with the 
distinction that only the important structures, the maxima, and the minima are depicted, aiming to obtain the values of the energy 

Scheme 3. Possible fragmentation pathways for compound 5.  
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barriers. These geometries have been refined using a slightly superior methodology compared to that employed to obtain Fig. 5-A. 
Subsequently, the energies of the key structures (marked as 1–4 and A-D in Fig. 5) have been recalculated using a highly accurate 
computational approach as discussed in the Theoretical calculations section. The lowest-energy structures, 1 and 2, exhibit identical 
energy values since they are enantiomers. Hence, the Boltzmann distribution ratio between these two structures is one. In contrast, 
structure 3, compared to the previous ones, possesses a Boltzmann ratio of 0.01079. Consequently, a significant contribution to the 
experimental spectra is not expected due to its low population. The outcomes presented in Fig. 5 lead examination of the spectra of 
structure 1 in the subsequent sections, as the spectra of structure 2 mirror those of 1, and the contributions of structures 3 and 4 are 
negligible. 

5.2. Theoretical versus experimental IR analysis 

The experimental and theoretical transmittances in the IR spectrum of bipyrazolo [3,4-b]pyridine 5 are shown in Fig. 7. This 
spectrum has been divided into three regions for interpretation purposes. The first region spans from 3200 to 2800 cm− 1 and includes 
different C–H stretching vibrations, highlighting the hydrogen stretching of the phenyl group observed at 2921 cm− 1. Moving to the 
second part of the spectrum, ranging from 1800 to 1000 cm− 1, several significant peaks of different vibrational modes are observed. At 
1680 cm− 1, vibrations belonging to the C––O stretching of the carbonyl group are evident, while two other notable peaks (1595 and 
1506 cm− 1) are associated with multiple bending modes involving many hydrogen atoms. Finally, the spectral range between 900 and 

Scheme 4. A plausible mechanism for the formation of bipyrazolo [3,4-b]pyridine 5.  

Fig. 5. A) Conformational energy profile of bipyrazolo [3,4-b]pyridine. The points on the curve were obtained at the B3LYP/6-311G (d,p) level. B) 
Dihedral angle rotated to obtain points on curve A. 
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500 cm− 1 predominantly features medium to low-intensity bands of bending, torsion, and out-of-plane vibrations. The intense peak at 
750 cm− 1 corresponds to the bending of the hydrogen atoms in the phenyl group. 

The displacements corresponding to the different vibrational frequencies are shown in Fig. S11 of the Supporting Information. 
Based on a comparison between theoretical and experimental spectra (Fig. 7), we propose the following assignment for the peaks in the 
IR spectrum: A (2921 cm− 1), hydrogen stretching of the phenyl group in the same plane as the phenyl (see Figs. S11–A); B (2852 cm− 1), 
hydrogen stretching directly bonded to the carbonyl group; C (1680 cm− 1), carbonyl group stretching; D (1595 cm− 1), multiple 
bending modes involving a large number of hydrogen atoms (see Figs. S11–D); E (1506 cm− 1), multiple bending modes involving a 
large number of hydrogen atoms (Figs. S11–E); F (1421 cm− 1), bending of methyl group hydrogen atoms (see Figs. S11–F); G (1384 
cm-1), bending of methyl group hydrogen atoms; H (1305 cm− 1), multiple bending modes involving a large number of hydrogen atoms; 
and I (750 cm− 1), bending of phenyl group hydrogen atoms. 

5.3. Comparing theoretical and experimental NMR 

Table S2 shows the theoretical and experimental NMR chemical shifts of the 1H NMR and 13C NMR spectra. As expected, the lowest 
chemical shift values were observed for the methyl groups at positions 3 and 3’, which were 2.68 and 2.72 ppm (2.74 and 2.76 ppm in 
the theoretical spectrum). On another hand, the highest chemical shift values were obtained for hydrogen atoms near the electro
negative atoms, particularly oxygen in the carbonyl group. In this case, the chemical shift of the H of the CO group was 10.55 ppm 
(10.90 ppm in the theoretical spectrum), while the H at position 4 registered a value of 8.67 ppm (9.18 ppm in the theoretical 
spectrum). 

The carbon atoms at positions p, p’, o, o’, 4, 3a, and 3a’ exhibited chemical shifts of approximately 120 ppm, consistent with the 

Fig. 6. The energy profile of bipyrazolo [3,4-b]pyridine was calculated using the CAM-B3LYP/aug-ccpVTZ method/basis set on geometries ob
tained at B3LYP/6-311 + G (2d,p). 

Fig. 7. Comparison of the main frequencies (experimental and theoretical transmittance) in the IR spectrum of bipyrazolo [3,4-b]pyridine.  
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range for aromatic carbon atoms. The highest chemical shift was obtained for the carbon atom of the carbonyl group, specifically 163 
ppm in the observed spectrum (167 ppm in the theoretical spectrum). Additionally, nitrogen atoms induced high chemical shifts in 
their neighboring carbons 7a and 7a′ due to their electronegativity, yielding values of 152.8 and 150.7 ppm, respectively (155.7 and 
155.9 ppm in the theoretical spectrum). 

The strong correlation between the theoretical and experimental values (R2 = 0.98, for 1H NMR spectra and 0.93 for 13C NMR 
spectra, respectively; see Fig. S15 in the Supporting Information) emphasizes the reliability of the peak assignments in Fig. 2 in 
conjunction with the theoretical results obtained. 

6. Conclusions 

The reaction between 5-acetylamino-3-methyl-1-phenylpyrazole 2 and the Vilsmeier-Haack reagent yielded bipyrazolopyridine 5. 
The structural elucidation of the synthesized compounds was achieved through a comprehensive approach combining experimental 
techniques such as FT-IR, HRMS, and NMR spectroscopy, along with theoretical calculations performed with various methods. This 
meticulous analysis unveiled both the identity and structural intricacies of 3,3′-dimethyl-1,1′-diphenyl-1H,1′H-[6,6′-bipyrazolo [3,4-b] 
pyridine]-5-carbaldehyde 5 with precision. This study provides a clearer explanation of the methods used to characterize the syn
thesized compound and emphasizes the precision achieved in identifying its structure and structural details. 

Theoretical study into the conformational barrier identified two highly probable enantiomeric structures, while two additional 
stable structures exhibiting a minimum conformational energy barrier showed very low Boltzmann ratios, suggesting brief lifetimes 
and minimal contribution of these compounds. 

Comparative analysis of theoretical IR spectra confirmed identical spectra for the enantiomers, aiding in the assignment of main 
vibrational frequencies to the corresponding functional groups in compound 5. This comprehensive analysis has provided a detailed 
examination of the atomic motions associated with the most significant normal modes of vibration. 

Theoretical 1H and 13C NMR spectra were generated and compared with experimental spectra, establishing a robust linear cor
relation, and confirming the reliability of theoretical predictions, confirmed by the R2 values. 
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