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ABSTRACT

We present SODA, a lightweight and open-source
visualization library for biological sequence anno-
tations that enables straightforward development
of flexible, dynamic and interactive web graphics.
SODA is implemented in TypeScript and can be used
as a library within TypeScript and JavaScript.

INTRODUCTION

Annotation of biological sequences and the visualization
of these annotations is central to molecular biology. It is
common to represent features (e.g. genes) annotated in the
context of a reference sequence (e.g. a genome) using a
combination of glyphs (rectangles, lines, arrows, etc.) and
plots (line plots, bar plots, heatmaps, etc.). Countless soft-
ware tools have been developed that produce such visualiza-
tions, with modern applications typically developed using
web technologies. Most prominent among these are genome
browsers such as JBrowse (1), and hosted services such as
Ensembl (2) and the UCSC genome browser (3). Recent in-
novations include the grammar-based JavaScript toolkit for
visualizing genomics data, Gosling (4). Libraries also ex-
ist for visualizing annotation specific to protein sequences,
such as ProtVista (5) and its successor Nightingale (6). In
order to constrain the scope of this application note, we re-
frain from an extensive comparison of alternative browsers
and visualization libraries.

These frameworks provide extensive visualization func-
tionality, but may not meet the needs that arise in the de-
velopment of custom visualization systems. Custom visual-
izations may require visual features or data types not sup-
ported by out-of-the-box solutions, may involve interactive
response to user actions that exceed the options provided
by these frameworks, and may demand integration of mul-
tiple visual facets into a coherent whole. Furthermore, the
use of standardized browsers may impose hefty dependen-
cies and inclusion of unwanted GUI components. To avoid
these compromises, developers of custom visualization sys-
tems often turn to core web browser technologies (HTML,

CSS, SVG, Canvas, WebGL), or libraries that lightly ab-
stract over those core technologies (D3 (7), PixiJS (8)).

These developers would be well served by a front-end
software library that enables extensive control over the
form and function of annotation visualization elements
useful for representing genome annotations, while further
abstracting over most of the complexity of low-level li-
braries. To our knowledge, there exists no lightweight web-
based library that meets this need. Here, we present SODA
(Soda Obediently Draws Annotations), an open-source
TypeScript/JavaScript library that aims to facilitate the de-
velopment of flexible, dynamic, and interactive annotation
visualization systems. SODA is designed to enable augmen-
tation with lower-level visualization libraries where needed,
and it can also be used to generate simple one-time-use fig-
ures. The SODA source code is available at https://github.
com/sodaviz/soda, the library is packaged through NPM
(@sodaviz/soda), and the website https://sodaviz.org/ pro-
vides documentation and examples of visuals implemented
with SODA.

MATERIALS AND METHODS

Design

SODA is a lightweight, purely front-end library imple-
mented in TypeScript. TypeScript is compiled to JavaScript,
which means SODA can be used from either TypeScript or
JavaScript. Under the hood, SODA figures are created with
Scalable Vector Graphics (SVG). SODA is an object ori-
ented library and depends only on the popular JavaScript
visualization library D3. SODA objects are designed with
extension in mind, and they expose functions that allow for
a great deal of programmatically-driven change at runtime.
Currently, SODA is focused on the presentation of annota-
tions in linear context, with light support for representation
in a circular context (e.g. for bacterial genomes).

SODA is a toolkit with which a developer may create a
visualization system, rather than a visualization system in
and of itself. The main consequence of this philosophy is
that SODA does not produce visualizations using templat-
ing mechanisms commonly found in genome browser tools
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and the like. Instead, SODA places fine-grained control in
the hands of developers with a modest complexity trade-
off: developers must define simple data structures to house
their data, and functions that utilize SODA’s rendering API
to produce a visualization.

High-level description of developing with SODA

Development using SODA is largely focused on the config-
uration and management of Chart objects, which are wrap-
per objects that control SVG-based viewports in web pages.
Creating a SODA visualization typically involves imple-
menting simple objects that describe the annotation data
being visualized, designing a data rendering payload that
contains collections of those objects, and using the SODA
API to configure the visual representation of the payload
and the ways in which that visualization will respond to user
inputs (e.g. clicking, panning, zooming).

SODA’s treatment of data

SODA is designed around a minimal abstraction of annota-
tion data, rather than specific annotation data formats (e.g.
BED, GFF3, GTF). For gene-like annotations that describe
an interval, this is a simple object composed of an identifier
string, a start coordinate, and an end coordinate. For anno-
tations that describe position-specific information through-
out an interval, SODA uses the same object specification
with an additional array/vector of position-specific values.
All of the core SODA rendering features are designed to
produce a visual representation of any JavaScript objects
that extend this simple pattern. In practice, annotations are
commonly augmented with auxiliary data (e.g. alignment
strand or score) which, during visualization, can be used to
modulate some aspect of the visual representation of the an-
notation (e.g. color or opacity). With this in mind, SODA
rendering features are also designed such that it is easy for
a developer to use additional object data fields to control
glyph styling parameters.

The result of this design philosophy is that, in principle,
SODA supports exactly one data format: JavaScript ob-
jects. In practice, this means that SODA may use data in
any format from any source, as along as the developer has
the means to create JavaScript objects from the data. How-
ever, this process is simple under standard database con-
figurations with an accompanying REST API that exposes
annotation records via HTTP GET requests. In modern
JavaScript, storing the result of a GET request as a string
in browser memory may be performed in as little as a sin-
gle line of code. Commonly, the result string is formatted
in JSON (JavaScript Object Notation), which can be seri-
alized directly into JavaScript objects. Typically, these seri-
alized objects fall into three categories: (i) they are imme-
diately suitable for use with SODA; (ii) they can be lightly
augmented to become suitable objects or (iii) they contain
string records that can be parsed into suitable objects. To
aid in (iii), SODA provides parsers for the BED and GFF3
formats. In some cases (e.g. no REST API, using local data
files), the burden of implementing the loading and parsing
data may fall more heavily on the developer. For more de-
tails on the process of loading data, refer to the library doc-
umentation (https://sodaviz.readthedocs.io).

SODA’s rendering API

To render glyphs with SODA, Annotation objects are
passed into rendering functions along with a configuration
that specifies the target Chart object and styling parameters.
For each style parameter, either a static value or a callback
function may be provided. The callback functions are eval-
uated for each individual glyph, and the represented An-
notation object and target Chart are passed as arguments.
Styling callback functions provide a simple mechanism to
control glyph style using annotation data and may be re-
evaluated at runtime to achieve visualization dynamics (e.g.
zooming and transforming).

RESULTS

Development of SODA was motivated by a need in our
group to create genome-oriented visualizations for which
existing genome visualization tools either were unable to
provide desired functionality or were deemed unnecessar-
ily heavyweight. Here, we present several of these visual-
izations, with the goal of demonstrating SODA’s flexibility
in providing options for rendering and interactivity. Work-
ing demonstrations for each example can be found at https:
//sodaviz.org, and the underlying source code can be found
at https://github.com/sodaviz/. These examples present ap-
plications of SODA for visualizing genome annotations, but
it can be used to visualize protein annotations as well.

Dfam visualization

Dfam (9) is an open access database of Transposable Ele-
ments (TEs). One feature on the Dfam website allows users
to view a representation of the set of annotated TE instances
in a relatively short region (up to 100 000 nucleotides) of
a chromosome. In collaboration with the maintainers of
Dfam, we replaced the original implementation with a more
feature-rich variant using SODA (Figure 1).

The bulk of the annotations underlying the Dfam visual-
ization are the result of comparing a genome to a database
of known TE families. The resulting TE annotations are
supplemented with annotations for instances of simple tan-
dem repeats (repetitive sequence such as ‘atgatgatgatg’). In
the linear genome portion of the visualization (top of Fig-
ure 1), each annotation record is represented by a rectangle
glyph that is colored according to the TE family assigned
to the position. There are three SODA components in the
visualization, stacked vertically in the following order:

• TEs annotated on the forward strand of the chromosome
• Simple tandem repeat annotations (black glyph on gray

genome background)
• TEs annotated on the reverse strand of the chromosome

Immediately following the SODA components are two
additional visual components, not built with SODA: (i) a
legend describing the colors used in the visualization, and
(ii) a tabular description of each annotation rendered above
(the table is a fixture of the Dfam website, found at https://
www.dfam.org/search/annotations; it is not found in the ex-
ample on sodaviz.org). Within the SODA components, hov-
ering over glyphs triggers a highlight effect along with an in-
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Figure 1. (I) depicts the Dfam-SODA visualization. At (I.A), (I.B) and (I.C) are the forward strand TE annotations, simple repeat annotations, and reverse
strand TE annotations, respectively. At (I.D) is the repeat classification color map, and at (I.E) is the table describing the annotations visualized––neither
(I.D) nor (I.E) are created with SODA. At (I.F), the green rectangle has been hovered and clicked, causing the descriptive tooltip to appear and the
annotation’s corresponding row at (I.G) to be highlighted. (II) depicts the RepeatMasker-SODA visualization. At (II.A) is a simple glyph representing a
full-length TE annotation. At (II.B) is a compound glyph representing a joined group of TE fragment annotations. At (II.C), an image is shown of the
L1MC3 text label after the visualization is zoomed out––when the label has less screen space, it renders a less detailed string.

formational tooltip popup. Additionally, this figure demon-
strates the way that SODA objects can interact with the sur-
rounding website based on SODA callback functions: when
a glyph is clicked by the user, the table highlights and scrolls
to the row corresponding to the clicked glyph.

RepeatMasker visualization

The UCSC genome browser (3) is a popular tool that
houses visualization tracks for dozens of kinds of genomic
annotation. The tracks are independently configured and
many are submitted by external groups; they can differ
greatly in visual complexity. The RepeatMasker Viz. track
is a highly nuanced and information-dense track that rep-
resents the annotation of TEs and other repetitive DNA
features as labeled by the tool RepeatMasker (10). Using
SODA, we developed a copy-cat implementation of the Re-
peatMasker Viz. track (Figure 1) to serve as a test-case with
complex visual expression requirements.

The RepeatMasker Viz. track presents the same type of
annotations as the Dfam visualization described in the pre-
vious section, but includes additional visual indicators to
represent complex relationships that are not present in the
Dfam visualization. As in the Dfam visualization, anno-
tated TEs and simple repeats are represented with rectangle
glyphs. The rectangles in the RepeatMasker plot, however,
differ in three ways:

• The outline, rather than the entire glyph, is colored ac-
cording to the TE family color scheme.

• The interior of the rectangles are shaded in grayscale to
indicate the inferred biological age (determined by the
quality of the sequence alignment that defines the anno-
tation) of the annotated feature. Younger features appear
darker, while older features appear lighter.

• The interior of each rectangle is textured with a repeating
chevron pattern to indicate the chromosome strand on
which the feature is found.

TE annotations in a genome are often fragments of a
full-length known TE family. These fragments can arise
from partial replication (at time of insertion), partial dele-
tion (some time after full-length insertion), or insertion of
a newer element into the middle of a previously inserted TE
(resulting in two fragments for the older element). Two indi-
cators are added to the RepeatMasker visualization to rep-
resent these events:

• When an annotation is identified as a fragment, dashed
horizontal lines are rendered on either side to indicate
portions of the consensus TE sequence that are missing
from the fragment.

• When discontiguous fragments are inferred to be the re-
sult of an older element having been split by a newer in-
sertion, they are joined by two angled lines meeting at a
point.

We refer to groups of joined fragments, dashed lines, and
angled lines as a compound glyph. A text label is placed
immediately to the left of each compound glyph. As the user
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Figure 2. In the PolyA-SODA visualization, pre-existing TE annotations are shown at (I) and PolyA-adjudicated annotations are shown at (II). At (A),
a brush selection has been made, and the selected interval is magnified and displayed at (III). The alignments and confidence scores corresponding to the
selected interval are shown at (IV). (B) The results of hovering over one of the triangle glyphs that represent alignment insertions relative to the genome––the
inserted sequence replaces the triangle while hovered.

zooms in and out, the labels automatically adjust the level
of displayed text detail, based on available space.

PolyA visualization

Our group has developed a tool, called PolyA (11), that
adjudicates between competing alignment-based annota-
tions by computing position-specific measures of confi-
dence, identifying a trace with maximal confidence, and re-
cursively splicing/stitching inserted elements. For debug-
ging and exploration purposes, we found it helpful to de-
velop a visualization application that provides insight into
the differences between annotation results with PolyA and
an alternative adjudication method (see Figure 2).

Because PolyA’s development was motivated by the goal
of improving annotation of TEs, the visualization places
PolyA information in the context of RepeatMasker’s adju-
dication results, as produced by its internal tool, ProcessRe-
peats. Specifically, the PolyA-SODA visualization has four
components:

• A component displaying annotations queried from a mir-
ror of the UCSC RepeatMasker database (these represent
the results from the adjudication method found in Re-
peatMasker, called ProcessRepeats).

• A component displaying the PolyA adjudicated annota-
tions for the same region. The user can make a brush se-
lection on this component, resulting in changes to the fol-
lowing two components.

• A component that displays the exact (magnified) contents
of the brushed interval in the above component.

• A component that displays a heatmap of the confidence
scores for competing alignments in the same region. The
sequence alignments from which the confidence scores
were calculated are overlaid on top of the heatmap for
each alignment.

This tool enables visual inspection of complicated ge-
nomic regions, identifying differences between the two an-
notation adjudication methods, and providing quick visual
access to the sequence alignments and corresponding con-
fidence values computed within PolyA.

VIBES visualization

We are currently developing a tool for the identification of
phage sequences integrated into bacterial genomes, called
VIBES (Viral Integrations in Bacterial gEnomeS). To sup-
port data exploration by VIBES users, we have developed
a SODA-based application consisting of several intercon-
nected components.

The VIBES pipeline accepts a batch of bacterial genomes
and a batch of phage genomes and identifies regions in the
bacterial genomes that appear to be the result of phage in-
tegration. One output from VIBES is a representation, for
each bacterial genome, of the locations of inferred (possibly
partial) phage integrations––there can be several per bac-
terial genome. Another VIBES output is, for each phage
genome, a nucleotide-precision representation of the fre-
quency with which each phage nucleotide is part of an
observed integration across the batch of genomes. VIBES
also identifies all Swiss-Prot and Pfam annotations for each
phage genome.
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Figure 3. In the VIBES-SODA visualization, the linear bacteria chart is displayed at (I). At (I.A) is a handful of light blue bacterial gene annotations––each
of these rectangles represents an individual gene. At (I.B) is a handful of dark blue bacterial gene annotations––each of these rectangles represents a group
of genes aggregated to simplify display. At (I.C) is an orange phage integration annotation––it is highlighted in cyan to indicate that it is the current selected
annotation. At (II) is the circular bacteria chart. At (II.A), we see the same selected phage annotation and the gray shading that indicates the region that
is currently rendered in the linear chart. At (III) is the occurrences plot, which displays position specific integration counts across all bacterial genomes
for the selected phage integration annotation. At (III.A) is the interval on the plot that indicates the portion of the phage genome that was identified in
the selected phage annotation. At (III.B) is the collection of viral gene annotations for the selected phage. At (IV) is the table that describes the viral gene
annotations shown in (III.B). One of the viral gene annotations has been hovered and clicked, causing the tooltip at (III.B) and the row at (IV.A) to be
highlighted.

At the top of the VIBES visualization (Figure 3) is a
chart that represents a linearized version of the target bac-
terial genome. The top row of the linear chart displays an-
notations of phage integrations to the bacterial genome as
identified by VIBES, and the bottom row displays gene
annotations. At the lowest zoom level, the gene annota-
tions are condensed into groups based on proximity in the
chromosome. As the zoom level increases, the gene an-
notations are continuously re-rendered as more horizon-
tal screen real estate enables finer-grained separation and
display.

Below the linear chart on the left is a circular representa-
tion of the bacterial genome. Here, phage integrations are
shown on the outer ring and a condensed representation of
gene annotations are on the inner ring. As the linear chart is
zoomed and panned, a brush is drawn on the circular chart
that highlights the region of the bacterial genome that is
currently shown in the linear view.

On both the linear and circular charts, a single phage in-
tegration is highlighted blue, indicating that it is currently

‘selected’. The selected annotation determines the contents
of the occurrences plot, which is directly to the right of
the circular chart. The top of the occurrences plot displays
the position-specific integration frequencies of the phage re-
sponsible for the current selected annotation. In the occur-
rences plot, the region of the phage genome that was identi-
fied in the current bacterial genome is highlighted in blue (a
partial integration will have blue highlight over just the cor-
responding fragment of the full length phage). The bottom
of the occurrences plot indicates positions of genes and pro-
tein domains along the entirety of the phage genome. The
selected annotation can be switched by clicking on phage
annotations on either the linear or circular chart, or by
pressing the arrow buttons that appear when hovering over
the circular chart.

At the bottom of the visualization is a simple table that
describes the gene annotations across the selected phage
genome. Clicking on an annotation in the phage occur-
rences plot will cause the corresponding entry to be high-
lighted in the table.
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DISCUSSION

Here, we have introduced SODA, an open-source
TypeScript/JavaScript library that enables the devel-
opment of web-based biological sequence annotation
visualizations. SODA is primarily intended for creating
visualization systems, but it also has utility in the gener-
ation of one-off figures. In particular, we imagine SODA
as a replacement not for existing domain-specific tools,
but for lower-level, general purpose web visualization
technologies. SODA’s feature set is broadly capable, but, in
our experience, it is often useful to augment a SODA-based
visualization by integration with components built with
other web technologies. We have designed SODA to be
easy to use, broadly expressive, and extensible; we would
be grateful for community engagement, in the form of
identifying feature gaps and contributing to SODA’s source
code to extend expression options.

Future work

Though SODA is rich in features, it will benefit from con-
tinued development. In the future, we will expand the col-
lection of available glyph shapes, improve glyph customiza-
tion options, explore additional interactivity features, and
implement a robust system for the export of static images.
We will also improve support for rendering annotations in
a circular context, raising it to feature parity with linear
rendering features. We plan to implement optimized ren-
dering systems for visually linked annotations (e.g. synteny
maps (12)) and matrix-like data (e.g. Hi-C (13), and ge-
nomic repeat structures (14)). We plan to develop a system
that facilitates the addition of SODA visuals to offline soft-
ware (e.g. command line tools). Finally, we intend to de-
velop a complementary toolkit on top of SODA that oper-
ates at a higher level of abstraction with the goal of being
more accessible to non-developers.

DATA AVAILABILITY

The SODA source code is available at https://github.
com/sodaviz/soda, the library is packaged through NPM
(@sodaviz/soda), and the website https://sodaviz.org/ pro-
vides documentation and examples of visuals implemented
with SODA.
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