
Access to a Catalytically Generated Umpolung Reagent through the
Use of Cu-Catalyzed Reductive Coupling of Ketones and Allenes for
the Synthesis of Chiral Vicinal Aminoalcohol Synthons
Samantha L. Gargaro,† Raphael K. Klake,† Kevin L. Burns, Sharon O. Elele, Skyler L. Gentry,
and Joshua D. Sieber*

Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United
States

*S Supporting Information

ABSTRACT: We report the development of a stereoselective
method for the allylation of ketones utilizing N-substituted allyl
equivalents generated from a chiral allenamide. By employing N-
heterocyclic carbenes as ligands for the Cu catalyst, good branched
selectivity can be obtained with high diastereocontrol. This
methodology allows access to a catalytically generated, polarity-
reversed (umpolung) allyl nucleophile to enable the preparation of
chiral 1,2-aminoalcohol synthons containing a dissonant functional
group relationship.

Chiral 1,2-aminoalcohols [1 (Figure 1)] make up an
important class of biologically active compounds

prevalent in nature and the pharmaceutical industry.1 A recent
publication2 states that there are currently >300000 com-
pounds, >2000 natural products, and >80 Food and Drug
Administration-approved drugs bearing this motif. As a result,
the development of asymmetric methods for preparing 1,2-
aminoalcohols is an important endeavor in organic chemis-
try.1b−d,3 However, the 1,2-dipolar substitution present in 1
can be challenging to access using typical two-electron
processes (i.e., electrophile + nucleophile) because the 1,2-
relationship between the hydroxyl and amino groups creates a
dissonant pattern about the carbon skeleton.4 As a result,
polarity-reversed (umpolung4a) methods for accessing anion
equivalents of type 3 or 4 are a possible strategy for enabling
this challenging bond formation. For example, the Henry
reaction5 between a nitroalkane nucleophile and a carbonyl
electrophile is a powerful technique for accessing vicinal
aminoalcohols after reduction of the nitro group to the desired
amine. Alternatively, 4 can be prepared by direct α-lithiation of
alkylamines,6,7 but these methods require cryogenic conditions,
the use of stoichiometric amounts of sparteine to control
stereochemistry, and the use of a strong base (alkyllithiums).
To circumvent these limitations, it would be desirable to
develop methodologies that enable generation of the polarity-
reversed anion 3 or 4 in a catalytic fashion under ambient
conditions.8

Recently, Malcolmson8a developed an elegant umpolung-
based approach for the stereoselective synthesis of 1,2-
aminoalcohols (8) by an asymmetric Cu-catalyzed reductive
coupling of enamines and ketones (Figure 1 B). The process
presumably is enabled by the catalytic generation of α-
aminoanion equivalent 9 by hydrocupration of enamine 7 by a

chiral Cu−H catalyst. Addition of 9 to a ketone ultimately
generates silylated product 10 after turnover of the catalyst
with silane. Additionally, we recently developed a Cu-catalyzed
reductive coupling of ketones and allenamide 11 for the
diastereoselective synthesis of linear product l-12 that
represents a masked γ-hydroxyaldehyde equivalent (Figure
1C).9 By tuning of the ligand in this reaction, high linear
selectivity could be obtained when using phosphoramidite
(PhO)2PNMe2 (14) for this process. This methodology is
currently proposed to proceed through the catalytically
generated α,γ-aminoanion 13. Initial results imply that linear
selectivity occurs through addition of 13 to ketone 6 at the γ-
position of the anion due to the directing effect of the
oxazolidinone by coordination with Cu. Inspired by the work
of Malcolmson,8a,b we envisioned that if the ligand could be
modified to destabilize the coordinating ability of the
oxazolidinone, the α-site of nucleophile 13 may become
more reactive, enabling a branched selective process to provide
b-12 as an 1,2-aminoalcohol surrogate. Such a process would
represent a catalytic stereoselective aminoallylation reaction
that is only recently beginning to emerge.2,10,11 The results of
our study to enable a diastereoselective synthesis of 1,2-
aminoalcohol synthon b-12 by use of an N-heterocyclic
carbene (NHC)-derived Cu catalyst are disclosed herein.
Investigation of the ligand effect in the reaction of

acetophenone with allenamide 11 was initially studied in an
effort to develop a branched selective reductive coupling for
the formation of product b-12a (Table 1). Allenamide 11
bearing the phenethanol-derived oxazolidinone chiral auxiliary
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was specifically examined because the benzylic N-substitution
allows for additional options for subsequent deprotection of
the amino group within b-12a (e.g., hydrogenolysis). Previous
work toward developing the linear selective version of this
reaction identified that when using monodentate phosphine
ligands, a decreasing linear selectivity was obtained as the
electron-donating ability of the phosphine improved (entries
1−4).
Because coordination of the oxazolidinone moiety to Cu is

believed to be important for improving linear selectivity,
increasing branched selectivity with increasing ligand electron-
donating ability can be rationalized by inhibition of
oxazolidinone binding to Cu as the catalyst becomes more
electron-rich. On the basis of this concept, we hypothesized
that reaction conditions that would inhibit oxazolidinone
coordination should enable improved branched selectivity
(e.g., bidentate ligands, coordinating solvents, and strongly
electron-donating ligands12). Therefore, we initially inves-
tigated some electron-rich bidentate phosphine ligands (entries
5−10). Use of dcpe, a common ligand employed in Cu-
catalyzed reductive coupling reactions,13 afforded branched
selectivity albeit with poor diastereocontrol (entry 5). Use of
more strongly coordinating solvents was not beneficial (entries
6 and 7), and changing the bite angle of the ligand (entry 8) or
the size of the phosphorus substituent (entries 9 and 10) did
not offer any additional improvements. Finally, we investigated

NHC ligands due to their strong electron-donating ability
(entries 11−14).14 Gratifyingly, use of SIMes enabled good
branched selectivity with good yield and acceptable diaster-
eoselectivity (entry 14).
After identifying a catalyst for selective generation of the

branched product (Table 1, entry 14), we next investigated the
scope of this reductive coupling reaction (Scheme 1). Both
electron-rich (b-12b) and electron-poor (b-12c and b-12j)
ketones performed similarly in the reaction, affording slightly
improved diastereoselectivities. Aryl halides (b-12d and b-12j)
and heterocyclic ketones (b-12e−h) were well tolerated in the
reaction, and a ketone with a free amino group (b-12n) could
also be employed. Overall, the reaction was very sensitive to
steric effects. For example, meta substitution (b-12d and b-12i)
afforded reduced branched selectivity, resulting in a lower
overall yield. Similarly, ortho substitution (b-12m) was not well
tolerated, leading to a low yield of a branched product due to
the formation of increased amounts of the linear product.
Cyclic ketones (b-12o and l-12q) also afforded reduced
branched selectivity. Furthermore, an aliphatic ketone also
generated preferentially the linear reaction product (l-12r).
A rationale for the observed stereochemical outcome and the

branched selectivity obtained when using NHC ligands in the
reaction is given in Scheme 2. Previous work demonstrated
that the use of phosphine ligands in the reaction results in
selective formation of linear product l-12a through proposed γ-
addition of complex π-15 or b-σ-15 to ketones through a
closed chairlike transition state.9 Initial hydrocupration of 11 is
proposed to occur trans to the large oxazolidinone group to
give rise initially to the Z geometry of (σ-allyl)Cu complex l-Z-
15.9,16 The preferred linear selectivity is believed to occur by a
preference for complexes π-15 and/or b-σ-15 due to the A1,3-

Figure 1. Catalytic umpolung reagent generation.

Table 1. Copper-Catalyzed Reductive Couplinga

entry ligand TEPb yield b-12ac (%) drc b:lc

1 P(OPh)3 2085 <2 − 1:99
2 (PhO)2PNMe2 − 2 − 3:97
3 P(NMe2)3 2062 16 88:12 17:83
4 PCy3 2056 17 93:7 20:80
5 dcpe − 47 53:47 77:23
6d dcpe − 28 59:41 65:35
7e dcpe − 24 60:40 53:47
8 dcpmf − 25 92:8 39:61
9 dcyppeg − 32 54:46 66:34
10 depeh − 27 57:43 50:50
11 IPr 2052 70 87:13 87:13
12 SIPr 2052 15 82:18 99:1
13 IMes 2051 76 93:7 83:17
14 SIMes 2052 78 92:8 89:11

a6a (0.25 mmol) and 11 (0.30 mmol) in 0.5 mL of toluene. See the
Supporting Information for details. bTolman electronic parameter
from refs 12 and 14a. cDetermined by 1HNMR spectroscopy on the
unpurified reaction mixture using dimethylfumarate as a standard.
dReaction in DME. eReaction in THF. fDicyclohexylphosphino-
methane. gDicyclopentylphosphinoethane. hDiethylphosphinoethane.
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strain present in l-Z-15 and the directing effect of the
oxazolidinone carbonyl9,17 that distorts π-15 so that Cu is
biased toward the α-site.18 The A1,3-strain present in l-Z-15
appears to be the main interaction that leads to linear product

formation using phosphine ligands because both electron-rich
(Table 1, entry 4) and electron-deficient (Table 1, entry 1)
phosphines provide linear selectivity. However, ligand
electronics still play an important role as weakening the
electron-donating ability of the phosphine allows for an
increase in the linear selectivity, presumably due to enhance-
ment of the coordinating ability of the oxazolidinone moiety as
Cu becomes more electrophilic (Table 1, entries 1−4).9
Finally, because the A1,3-strain appears to play a critical role in
regioselectivity, full isomerization of 15 to l-E-15 likely is not
occurring, which suggests that the alkene moiety of b-σ-15 is
still bound to Cu.9,18

On the basis of the preceding analysis, the branched product
would be expected to arise from reaction of ketone 6a with l-Z-
15 or l-Z-16. When NHC ligands are employed (i.e., l-Z-16
and π-16), reaction of the linear (σ-allyl)Cu complex l-Z-16
with ketone 6a through dipole-minimized19 chairlike20

transition structure 17 correctly predicts the observed major
diastereomer formed in the reaction (determined by X-ray
crystollagraphic analysis of b-12a).15 The preference for l-Z-16
over π-16 for NHC ligands can be rationalized by the strong
electron-donating ability of these ligands14 that can disfavor
oxazolidinone coordination and because the large mesitylene
group may sterically shield the Cu atom from carbonyl
coordination. Evidence for this steric shielding effect by the
NHC is supported by the improved branched selectivity that
was obtained when utilizing IPr or SIPr in place of IMes or
SIMes, respectively (Table 1, entries 11 and 12 vs entries 13
and 14). For example, SIPr and SIMes are electronically
similar, yet the more sterically demanding SIPr ligand provided
improved branched selectivity over SIMes albeit with reduced
diastereocontrol. Presumably, these effects introduced by the
NHC ligand are stronger than those of the A1,3-strain present

Scheme 1. Branched Selective Copper(NHC)-Catalyzed
Reductive Coupling of Ketones and Allenamide 11a

aIsolated yields are of the branched product as a mixture of detectable
diastereomers (ref 15) as an average of two experiments performed on
a 0.5 mmol scale of 6 using 1.2 equiv of 11. Diastereomerially pure
material can be obtained by crystallization (see the Supporting
Information for details). Diastereomeric ratios (dr’s) and branched:-
linear ratios (b:l) were determined by 1H NMR spectroscopy on the
unpurified reaction mixture. bIMes·HCl was used. cReaction
performed at 40 °C. dDouble the catalyst loading used. eIsolated
yield and dr of the linear isomer. fReaction performed at 60 °C.

Scheme 2. Stereo- and Regiochemical Model
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in l-Z-16, resulting in selective formation of the branched
product.
Overall, there appears to be a delicate balance between the

stability of l-Z-16 versus π-16, and the resulting transition
states leading to branched versus linear product formation in
this (NHC)Cu-catalyzed reductive coupling reaction as ortho-
substituted (12m and 12o), cyclic (12o and 12q), and dialkyl
(12r) ketones all resulted in reduced branched selectivity. The
cause of this decreased regioselectivity for these ketones
requires further investigation but may arise due to enhanced
steric interactions present with these ketones in transition
structure 17 due to the presence of ortho substitution (12m
and 12o) or nonplanar substituents (12q and 12r) on the
ketone electrophile.
On the basis of the model given in Scheme 2, allenamide 18

lacking branching on the oxazolidinone was examined in the
reaction (Scheme 3). If steric and electronic effects of the

NHC ligand in π-16 are more pronounced than the A1,3-strain
present in l-Z-16, one would predict that alleviating A1,3-strain
in l-Z-16 would lead to increased branched selectivity.
Consistent with this proposal, use of unsubstituted allenamide
18 having a smaller oxazolidinone group relative to allenamide
11 in the reaction afforded improved branched selectivity
(96:4 b:l), further supporting the importance of oxazolidinone
size on the magnitude of the A1,3 interaction present in the
linear (σ-allyl)Cu complexes (l-Z-15 and l-Z-16) as a tuning
element for reaction regioselectivity.
Synthetic applications of the products produced in the

branched selective Cu-catalyzed reductive coupling reaction
are given in Scheme 4. The reaction could be carried out on a

1.0 mmol scale, and diastereomerically pure product could be
isolated after crystallization from hexanes/EtOAc in good
overall yield. Oxidative cleavage of the olefin functionality of b-
12a was achieved to enable the synthesis of chiral α-amido-β-
hydroxyaldehyde 20. Finally, to remove the chiral oxazolidi-
none group to unmask the 1,2-aminoalcohol, treatment of b-
12a with NaH led to clean carbamate migration affording 21.
The phenethanol group of 21 was then cleaved to carbamate
protected aminoalcohol 22 through mesylation/elimination
followed by acidic hydrolysis of the enamide in good overall
yield for the three-step sequence.21 Basic hydrolysis of 22 then
provided 1,2-aminoalcohol 23.
In conclusion, we have disclosed a strategy for the

stereoselective reductive coupling of ketones and a chiral
allenamide to selectively afford branched products providing
dissonant 1,2-aminoalcohol patterns. This method employs
simple starting materials and a readily available catalyst system
for furnishing chiral products with increased complexity in an
efficient manner. Further development of this reaction to
enable stereocontrol by a chiral catalyst is currently being
pursued and will be reported in due course.
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