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Bisphosphonates (BPs) such as Zoledronic acid (ZA) are a subset of synthetic small
molecules, which are now marketed as the main drugs to stimulate the growth and
differentiation of osteoblast cells, thereby increasing bone formation as well as preventing
bone loss. Also, Halloysite Nanotubes (HNTs)-polymer composites have attracted a lot of
attention due to their high surface-to-volume ratio, low density, and high hydrophilicity, and
are easily dispersed in hydrophilic biopolymers. In addition, their ability to carry enough
amounts of drugs and the ability to control release has been demonstrated. Based on
studies, the Gelatin-based scaffold with Halloysite nanotube (HNT) has the capacity as a
drug carrier and Zoledronic acid (ZA) sustains release. Previous studies show that using ZA
intravenously has some severe side effects and limitations. But by attention to the
advantages of its osteogenesis, the current study has been done in order to reduce
the side effects of local delivery of it. The 3-dimensional scaffolds were prepared by the
Freeze-drying method. Characterization methods such as FE-SEM, FTIR, XRD, and
release behavior of the scaffold has been performed to evaluate the features of the
scaffolds. In fact, as-prepared Gel-HNT/ZA release 49% ZA in Phosphate Buffered Saline
(PBS) within 21 days. The mechanical properties have been increased after adding HNTs
and ZA from 10.27 to 26.18 MPa. Also, the water absorption has been increased after
adding HNTs and ZA from 1.67 to 5.02 (g/g). Seeded human Adipose stem cells (hASCs)
on the prepared scaffolds showed that the ZA effectively elevated the proliferation of the
hASCs and also the MTT results proved the non-toxicity of all prepared scaffolds by high
cell viability (˃80%). The osteogenic differentiation has been accelerated as displayed by
ALP and Ca assay. The results propose that the HNTs-loaded Gelatin scaffold could
control the releasing of ZA and its localized delivery at the defect site, simultaneously
promoting the mechanical and osteogenesis ability of gelatin-based scaffolds.
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1 INTRODUCTION

An important and big class of orthopedic problems is bone
defects (Wiese and Pape, 2010; Guerado and Caso, 2017; Gage
et al., 2018; Kim et al., 2020). Over the last few decades, many
efforts have been made by researchers to find suitable bone
replacements. Early efforts focused on the use of metal
substitutes. However, corrosion of these implants in the
patient’s body, in addition to their mechanical properties and
gradual loosening, led to the release of highly toxic metal ions and
subsequent inflammatory reactions of these products with the
surrounding tissue (Parks and Lakes, 1992). Another problem
with metals is their very high modulus (Liu and Dixit, 1997). The
elastic modulus of metals is higher than 100 GPa, which will be
much higher than the density of dense bone (6–20 GPa). The
result of this high stiffness is the occurrence of the phenomenon
of stress protection on the growing bone, which will lead to
thinning of the new bone tissue and will increase the probability
of its re-failure (Flahiff et al., 1996). Problems such as this have
drawn the attention of many researchers to newer materials;
Materials that do not have the problems of previous implants and
at the same time allow the formation of bone tissue in the defect
position with higher speed and quality. Thus, a new chapter called
“Bone Tissue Engineering” was opened and new biomaterials for
this purpose were introduced to the medical community (Park
and Bronzino, 2000; Burg et al., 2000; Lee et al., 2001). It has been
reported that the production of novel scaffolds as the carrier for
osteogenesis drugs could be an advantageous approach to eschew
systemic problems of the drug while improving its therapeutic
efficiency (Cartmell, 2009; Xu et al., 2020).

Small molecules are natural or synthetic molecules that have
low molecular weight and have the ability to regulate cellular,
tissue, and therapeutic functions. These molecules are organic in
nature and have less than 1,000 Da in size (Carbone et al., 2014).
Bisphosphonates (BPs) are a subset of small molecules, small
synthetic compounds, and now marketed as the main drugs to
stimulate the growth and differentiation of osteoblast cells,
thereby increasing bone formation as well as preventing
bone loss.

BPs have been shown to reduce the risk of vertebral and non-
vertebral fractures (Lambrinoudaki et al., 2006). They are
pyrophosphate analogues that have been modified to act as a
specific stimulant of osteogenesis and anti-bone resorption, the
mechanism of which is to have a strong inhibitory effect on
osteoclasts and increase bone induction. BPs have a strong
affinity for bone surfaces and accumulate there, and due to
this selective action, they have systemic side effects. BPs are
also potent bone resorption inhibitors that inhibit osteoclast
differentiation (Coxon et al., 2000) and stimulate the
programmatic death of osteoclast cells (Benford et al., 2001).
The results show a high tendency of BPs to bone mineralization
and especially the return of lost bone volume (Nancollas et al.,
2006). Using of bisphosphonates is considered, as one of the
applicable methods that can be increased the integration of
scaffolds with the surrounding bone tissue by increasing bone
growth, for example, Zoledronic acid (ZA), which is a member of
this group. (Yang et al., 2020).

In recent decades, Halloysite Nanotubes (HNTs)-polymer
composites have attracted a lot of attention due to their high
surface-to-volume ratio, low density and high hydrophilicity, and
are easily dispersed in hydrophilic biopolymers (Ji et al., 2017;
Zare and Rhee, 2021c; Zare and Rhee, 2021b). In addition, HNTs
have shown excellent mechanical properties and good
biocompatibility (Abdollahi Boraei et al., 2020a; Abdollahi
Boraei et al., 2021a; Zare and Rhee, 2022). HNT-containing
polymer nanocomposite scaffolds have been shown to be
capable of carrying sufficient amounts of drugs as well as their
controlled release (Zare et al., 2021). Also, the opposite charge on
the outer and inner surface of HNTs makes them attractive for
electrostatic bonding with polymers and drugs (Lee Y. J. et al.,
2019; Zare and Rhee, 2021a).

In the present study, a gelatin based-nanocomposite with
HNTs containing of Zoledronic acid was used for bone
regeneration, with the aim of targeting ZA release in a
controlled manner. This new drug delivery system is designed
as a novel nanocomposite system for use in bone tissue
engineering. Also, HNT was also used as a carrier of ZA drug,
which strengthened the specificity of the system. Moreover,
improving the physical, mechanical and bone properties of
gelatin scaffolds has been expected by using this composition.
The application of BTE is evaluated by making a specific scaffold
in combination with gelatin. Gelatin was selected as a matrix of
scaffold due to its non-toxicity, low cost, availability, ease of
processing, high cell adhesion and proliferation (Ji et al., 2017).
Finally, the effects of both HNT and ZA loading on the biological
properties of gelatin-based scaffolds were evaluated in vitro and
in vivo.

2 MATERIALS AND METHODS

2.1 Loading of ZA on/into HNTs
At the first, HNTs (4 mg/ml; Sigma Co.) were added to ZA
supersaturated solution (4 mg/ml; Sigma Co.) mixed in deionized
water under vacuum situation. After 20 min, the suspension was
removed, stirred vigorously overnight and then centrifuged for
20 min with 6,000 rpm. The obtained precipitates were washed
thoroughly and then freeze dried.

2.2 Preparation and Characterization of
Scaffolds
2.2.1 Preparation
Gelatin (2.4 g; sigma, Type A) was poured in 40 ml of deionized
water to be dissolved at room temperature and HNTs (4 wt. %
relative to gelatin) and ZA-loaded HNTs were added to the
solution of gelatin. After stirring thoroughly, the prepared
suspensions were dispensed in 24 well tissue culture plates,
kept in the refrigerator at 4°C for 24 h and finally frozen at
–80°C overnight before doing freeze-drying process (OPERON
Company, Korea). Moreover, pure gelatin scaffold without HNTs
was chosen as the control group. The prepared scaffolds were
coded as 1) Gel (without HNTs), 2) Gel/HNTs (without ZA), and
3) Gel/HNT-ZA (with ZA). Then, the cross linking of scaffolds
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was done in a sealed desiccator in the presence of glutaraldehyde
(8 ml) at 37°C for 4 h. Afterward, the prepared scaffolds were
washed with 1% (W/V) of Glycine solution to remove the
unreacted glutaraldehyde.

2.2.2 Field Emission Scanning Electron Microscopy
The ross-section views of the composite scaffolds were
investigated by FE-SEM (S-4700 model, HITACHI
Company, Japan). The dispersion of the ZA into the
nanocomposite samples was evaluated by energy dispersive
spectroscopy (EDS). The ImageJ software was hired to
examined pore size and the porosity percentage of each
scaffold from the three SEM images by the following
equation (Shahriarpanah et al., 2016):

Porosity(%) � Ap

AT
× 100

In this equation, Ap is total area of pores in each cross-section
and AT is total area of each cross-section from the SEM images.

2.2.3 Water Uptake
In order to examine the equilibrium water adsorption, the
finalized scaffolds with the initial weight (Wo) were place into
the deionized water for 24 h at 37°C. Then, the samples were
pulled out and the excess water was wiped off by using a filter
paper and weighed (Ws). The equilibrium water adsorption was
gained by the following equation (Abdollahi Boraei et al., 2021a;
Zadegan et al., 2019):

Equilibriumwater absorption(g/g) � Ws −W0
W0

2.2.4 Fourier-Transform Infrared
FTIR spectroscopy (Spectrum 100, PerkinElmer Company,
United Kingdom) was hired to investigate the changes in
the structure of gelatin after HNTs and ZA-loaded HNTs
addition. X-ray diffraction analysis (XRD; D8 ADVANCE
diffractometer, BRUKER Company, United Kingdom) was
done by using Cu-Kα radiation at 40 kV and speed of 2°/
min to evaluate the crystallographic changes of (GEL) scaffolds
after HNTs and ZA-loaded HNTs addition.

2.2.5 Mechanical Properties
The compressive behavior of the prepared scaffolds (GEL,
GEL-HNT and GEL-HNT/ZA) were measured by the
ZWICK/ROEL Z005 testing machine (ZWICK, Germany)
with the cross-head speed of 1 mm/min.

2.3 Release Behavior of ZA
Drug release behavior of the scaffolds were measured by
immersing and incubating the scaffolds in PBS at 37°C in a
shaker incubator (90 rpm). The scaffold-released ZA level was
examined by UV-Visible spectroscopy (NANODROP 2000c;
Thermo Scientific Company, United States) at the wavelength
of 210 nm at many times point (24, 48, 72 h and 7, 14 and
21 days).

2.4 Cellular Assays
2.4.1 Cell Culture Procedure
The hASCs (Shariati Hospital, Tehran, Iran) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM/F-12; Gibco,
United States) with 12% fetal bovine serum and 1% Pen-strep
(Gibco, United States), followed by incubation at humidified
condition with 5% CO2 at 37°C. Moreover, the osteogenic
agents (10,000 µM Beta-Glycerophosphate, 50 μg/ml L-Ascorbic
acid and 10–4 μM Dexamethasone) were added to the medium.
The prepared mediummust be changing every 3 days. All cellular
assays were performed by the second-passage of cells. Before
seeding the cells on the scaffolds, all scaffolds were sterilized by
UV irradiation for 20 min on each side of them.

2.4.2 Cytotoxicity of Prepared Scaffolds
Cytotoxicity of the scaffolds were measured by the 3-(4,5-
Dimethylthiazol-2-yl)-2,5- Diphenyl Tetrazolium Bromide
assay kit (MTT, Bioidea, Iran). The hASCs were seeded on
sterilized scaffolds (20,000 cells/cm2). Then they were cultured
in DMEM (15% FBS) at 5%CO2 and 37°C in the incubator for 1, 4
and 7 days. After that, 30 μl MTT was poured into each well, and
incubation proceeded for 3 h. Then 200 μl DMSO (Bioidea, Iran)
was added to cells and keep them for 30 min in a dark place.
Finally, the absorption amounts were examined by using an
ELISA plate reader (Stat Fax-2100, United States) at a
wavelength of 545 nm.

2.4.3 Osteogenesis Assays
Alkaline phosphatase (ALP) activity assay was performed by
using 200 μl of RIPA buffer. The total protein was extracted
from hASCs cultured on Tissue Culture polystyrene (TCPS) and
different scaffolds after 7 and 14 days during the period of study.
In order to sedimentation of cell debris, the lysate was centrifuged
at 1,200 rpm at 4°C for 5 min. Then, the supernatant was collected
and ALP activity was examined with an ALP assay kit
(Parsazmun, Tehran, Iran).

2.4.4 Calcium Assay
Calcium deposition on the scaffolds was examined by using
Alizarin red staining (ARS) method. The hASCs cells were
seeded on the scaffolds which were placed in the 24 well tissue
culture plate. After 7 and 14 days of incubation, the fixation of
cell-sample constructs was performed by the following
instruction: 1) rinsing samples with PBS, 2) dehydration of
samples through graded concentrations of ethanol 50, 70, 80
(for 15 min), 96, and 100% (for 8–10 min), respectively, 3) the
Alizarin red-40 mM was poured on the samples and keep for
20–30 min. The deposited calcium, which is red/purple colour,
was then observed using an inverted optical microscope (Nikon
Eclipse TE2000-U, Japan).

2.5 Statistical Analysis
All tested were performed in triplicates and the data were
presented as the mean ± standard deviation (SD). One-way
ANOVA was used to evaluate the differences between the
samples. Statistically significant levels were considered to be
p < 0.05.
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3 RESULTS AND DISCUSSION

3.1 Characterization of the Nanocomposite
Scaffolds
The morphology and pore size of the prepared scaffolds are
shown in Figure 1. As expected, an interconnected network
structure was observed in the scaffolds that is in line with the
our previous study in which a gelatin-based scaffold containing
HNTs and the hydrophilic drug strontium ranelate was
synthesized, and the results showed a uniform structure with
well-sized and interconnected cavities (Abdollahi Boraei et al.,
2020b). Since the pore size distribution doesn’t significantly
change with the addition of ZA, the prepared scaffolds show
almost similar surface morphologies which consisted of
homogenous porosities.

The pore size results showed that the Gel scaffold has the
minimum pore size with the mean value of 80.94 ± 43.80 µm,
while the pore size elevated to 175.57 ± 21.09 µm in Gel-HNT and
257.89 ± 16.11 µm in Gel-HNT/ZA scaffolds. As expected, the
augmentation of HNTs and HNT/ZA leads to create bigger pores,
which is in a desire range for BTE applications. In the studies,
different numbers have been reported for the appropriateness of
the pore size of scaffolds in tissue engineering, for example, in the
article of Li et al., The number of 300–400 microns has been
selected as the appropriate range (Li et al., 2016; Rashedi et al.,
2021). Lee et al. Also considered the number 500 microns to be
suitable for adhesion, differentiation, and proliferation of cells
inside the scaffold (Lee D. J. et al., 2019). In our studies reported

that the scaffolds with larger pore size (>100 µm) provide better
matrices for bone regeneration (Abdollahi Boraei et al., 2021b). In
general, this number (porosity) should be suitable for delivering
nutrients into the scaffold and removing waste from the scaffold
(Tolba et al., 2010; Ghazalian et al., 2022).

Table 1 displays the porosity percentage of the prepared
scaffolds. A similar upward trend is observed for porosity.
Increasing pore size and porosity probably can effects on the
electrostatic repulsion forces between carboxyl and hydroxyl
groups in gelatin (Type A; pI = 7–9) and HNTs, since both
HNTs and gelatin are negatively charged at pH 7 (Abdollahi
Boraei et al., 2021a).

The equilibrium water uptake results of the scaffolds are
brought in Figure 2. The water uptake for the Gel-HNT/ZA
scaffold was the highest (5.02 ± 0.316 (g/g)), while this value for
the Gel and Gel-HNT scaffolds decreased to 4.66 ± 0.33 and 1.67
± 0.369 (g/g), respectively. This increase can be related to the
larger pore nature in the Gel-HNT/ZA scaffold and proved by
such studies that the microstructure can affect the swelling ratio
(Mirahmadi et al., 2013). The more swelling ratio resulted in
more water adsorption that is suitable for dipper diffusion of
nutrition and better removing of waste from the matrix
(Mirahmadi et al., 2013).

FTIR analysis examines the chemical interaction of scaffold
components that can determine the three-dimensional structure,
the drug release properties, and the biological properties of the
scaffold. Figure 3 shows the FTIR graphs of the scaffolds. As
expected, in the gelatinous scaffold graph, characteristic gelatin
peaks, including amide I, II, III, amide B, and amide A peaks, were
observed at 1,698, 1,543, 1,236, 3,067, and 3,421 cm−1,
respectively. In the previous study, where the gelatin-based
scaffold was made by the freeze-drying method, the peaks
mentioned above were observed in the scaffold structure and
examined (Abdollahi Boraei et al., 2020a). After the HNTs are
added to the scaffold, most of its peaks are overlapped with

FIGURE 1 | The morphology of the (A) Gel, (B) Gel-HNT and (C) Gel-
HNT/ZA scaffolds.

TABLE 1 | Pore size of the scaffolds.

Sample Gel Gel-HNT Gel-HNT/ZA

Pore size (µm) 80.94 ± 43.80 175.57 ± 21.09 257.89 ± 16.11

FIGURE 2 | Equilibrium water uptake values of the scaffolds.
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gelatin, a phenomenon that has been observed in the previous
study (Abdollahi Boraei et al., 2021b). Only peaks of gelatin
amide A (3,421 cm−1) and O-H stretching of HNTs (3,695 cm−1)
shifted slightly, indicating successful incorporation of HNTs into
the gelatin structure and even reinforcing the possibility of
hydrogen bonding interactions between them. With the
addition of ZA to the structure and synthesis of Gel-HNT/ZA
nanocomposite scaffolds, new peaks appeared, these peaks
include the following: P-O bond (1,300 and 1,322 cm−1), free
hydroxyl group (3,492 cm−1), hydroxyl group (2,500–3,300 cm−1)
(Paris et al., 2015; Chen et al., 2020) that is the reason for the
successful addition of ZA to the structure.

Figure 4 shows the diffraction pattern of a gelatinous scaffold
with a wide peak at 20.25°, which is related to the crystalline
structure of the gelatin triple helical, which has been reported in
several studies (Jalaja et al., 2015). In general, the HNT pattern
has many sharp peaks (Liao et al., 2016). A peak at 20.3° is

observed which is one of the characteristic peaks of HNT that
related to (020/110) plane (Liao et al., 2016). The location of this
peak has not changed due to the scaffolding production process,
which indicates that the HNT layers do not change and that the
HNT and gelatin do not intercalate (White et al., 2012). As a
result of the addition of ZA to the Gel-HNT scaffold, a small
increase in the intensity of the Gel-HNT scaffold peaks occurred,
which could be due to the penetration of ZA into the silicate
layers of the HNTs. However, due to the absence of ZA
characteristic peaks in the graph, it can be concluded that ZA
is not completely crystalline in structure. This may be due to the
very low concentration of ZA (˃10–4 mol/L) in the structure that is
in line with the results of a previous study in which ZAwas loaded
into a composite structure and coated on a magnesium implant
containing strontium (Li et al., 2019).

Table 2 shows the results of the mechanical compressive
strength test of scaffolds. As can be seen, the Gel scaffold has
the lowest mechanical strength (σ = 10.27 ± 1.58 MPa), followed
by the Gel-HNT scaffold with (σ = 20.92 ± 2.16 MPa) and Gel-
HNT/ZA scaffold with (σ = 26.18 ± 2.9 MPa). Despite the
increase in pore size in Gel-HNT and Gel-HNT/ZA scaffolds,
which should have led to a decrease in mechanical strength, the
strength of these samples has increased. The reason for this can be
related to the presence of HNTs, which is a ceramic with very high
mechanical properties, and the presence of HNT in the structure
may lead to the bearing and transfer of force throughout the
structure and increase the mechanical properties of scaffolds
containing HNTs. In several studies, the effect of adding HNT

FIGURE 3 | The FTIR spectra of the Gel, Gel-HNT and Gel-HNT/ZA Scaffolds.

FIGURE 4 | X-ray diffraction pattern of the Gel, Gel-HNT and Gel-HNT/
ZA scaffolds.

TABLE 2 | Compressive strength of the scaffolds.

Sample Gel Gel-HNT Gel-HNT/ZA

Compressive strength (MPa) 10.27 ± 1.58 20.92 ± 2.16 26.18 ± 2.9

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 8905835

Abdulahy et al. Nanocomposite Scaffold for Drug Delivery

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


to biopolymers was investigated, all of which showed an increase
in the mechanical properties of the resulting structure (Liu et al.,
2013; Liu et al., 2015). Increasing the strength of synthesized
tissue engineering scaffolds is considered as one of the practical
advantages because scaffolds must act as temporary support
against stresses and forces until the tissue is completely
repaired (Liu et al., 2015).

3.2 In vitro Release Study
Recent studies have shown that local delivery of osteogenesis
drugs with a controlled behavior can be used as a way to
improve large and severe bone defects with low side effects
(Boraei et al., 2020). The release behavior of ZA was initiated by
a low burst mode and then continued via a stable release with a
low rate. Also, the release profile successfully extended to
21 days, meaning proper time to complete in vitro osteogenic
differentiation of stem cells (Bou Assaf et al., 2019) (Figure 5).
Of course, the actual burst release is reduced through bonding
between HNT and ZA. In addition, the low crystallinity of the
scaffolds with more ZA facilitated the water diffusion into the
scaffolds and consequently increased the ZA release from the
samples. These results are in accordance with the previous
study (Karavelidis et al., 2011), which proved that the ZA
release rate is amplified by lowering the crystallinity of the
polymer matrix.

3.3 hASCs Proliferation and Differentiation
Cell viability and cytocompatibility of the scaffolds are shown
in Figure 6. Human Adipose Stem Cells (hASCs) were
cultured onto the samples, and an MTT assay was done.
Cell proliferation was investigated after 1, 4, and 7 days. In
a study by Davydenko et al., OD in a sample with pure gelatin
scaffold was higher than OD of TCPs, which can be considered
due to the presence of more sites for cell-matrix interaction.
These places are mostly due to the presence of interconnected
micron porosity (Davidenko et al., 2016). These results were
also observed in this study, which shows the importance of
interconnected porous structures. According to the results,
both Gel-HNT and Gel-HNT/ZA showed more proliferation
than Gel sample during the days of culture, especially in ZA-
containing scaffold. By adding HNTs nanorods to the
structure, the surface-to-volume ratio increases
dramatically, and consequently the cell-matrix interaction
increase, which in turn increases cell proliferation and
differentiation, which is consistent with previous studies (Ji
et al., 2017).

Alkaline phosphatase (ALP) activity assay was used to
investigate the osteogenic ability of hASCs. This enzyme is
one of the most famous early markers of osteogenesis. There
are some researches that demonstrated the role of ALP in
osteogenic differentiation (Ardeshirylajimi et al., 2015). The
ALP is the final marker for stem cell osteogenic differentiation
that promotes the mineralization of calcium (Boraei et al.,
2020). This test was performed on scaffolds for 7 and 14 days
(Figure 7). The results showed a higher expression of the
activity of samples containing ZA on day 14. There was also
a slight increase in ALP on day 7. It is important to note that
ALP values for all scaffolds were significantly higher than those
calculated for TCPs. In addition, the ALP amount is
considerably more in the samples including ZA, suggesting
the speed up of osteogenic differentiation of seeded hASCs
by the scaffold-released ZA. As reported previously,

FIGURE 5 | ZA release behavior from the Gel-HNT/ZA.

FIGURE 6 | MTT assay of hASCs cultured on the scaffolds (p < 0.05).

FIGURE 7 | Alkaline phosphatase (ALP) activity of (Gel, Gel-HNT and
Gel-HNT/ZA) scaffolds and tissue culture polystyrene (TCPS) at 7 and
14 days, during osteogenic differentiation (p < 0.05).
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maximum ALP activity is caused by enhancement in the
mineralization (Santo et al., 2012).

The state of mineralization, which is the formation of
inorganic calcium, was also investigated for 7, 14 and 21 days
(Figure 8). This state of mineralization (calcium deposition) acts
as the late marker of osteogenesis were investigated by Alizarin
Red Staining (ARS) (Veernala et al., 2019). In this analysis, the red
dots after imaging indicate the amount of calcium deposition at
specific times. The amount of deposited calcium was remarkably
increased with increasing the incubation time and adding the ZA
until 21st day. On day 14, ZA release from the scaffolds caused a
large difference in the amount of calcium deposited. The Bone
Mineral Density (BMD) and osteogenic ability of ZA have been
widely investigated and different mechanisms have been
discussed (Pavón de Paz et al., 2019; Jin et al., 2020). In
previous studies on ZA, the rate of increase in calcium
deposits was observed with increasing time, the amount of
calcium islets on the 14th day was significantly higher than
the 7th day, which is consistent with our present study that
the deposits Calcium has increased over time and the amount
of ZA in the scaffold has increased (Raina et al., 2020; Demir-
Oğuz and Ege, 2021).

CONCLUSION

The present study aimed to inset a novel nanocomposite scaffold
to accelerate osteogenesis and deliver enough amount of
Zoledronic Acid (ZA) to the bone cells in a suitable and
continues manner for osteogenesis. The size of the pores in
the scaffold containing ZA reached about 257 microns, which
is completely suitable for use in bone tissue engineering. The XRD
results showed that the ZA was molecularly scattered in the
scaffold structure and addition of ZA diminished the crystallinity
of the nanocomposite scaffolds. FTIR and EDS results were
proved the successful loading of ZA in the samples. The in
vitro release assay showed that ZA has displayed a low
primary burst release (15%) and then was stable and
controlled release up to 21 days (about 49%). The results of
Gel-HNT and Gel-HNT/ZA showed higher pore size, porosity,
mechanical properties, degradation rate, and water adsorption
in comparison with Gel scaffold. Cellular assays on hASCs
during 7 and 14 days of culture, demonstrated growth cell
viability on all Gel-based scaffolds with and without HNT and
ZA. ALP activity assay significantly increased after ZA adding from
0.553 to 0.718. Also, calcium deposition assay completely increased
after ZA adding. Hence, Gel-HNT/ZA could be proposed as a
capable nanocomposite scaffold for enhancing cell proliferation,
osteogenic differentiation, and improving bone regeneration.
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