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Currently, Aedes aegypti, the principal vector of dengue virus in Indonesia, has spread
throughout the archipelago. Aedes albopictus is also present. Invasion and high
adaptability of the Aedes mosquitoes to all of these areas are closely related to their
ecology and biology. Between June 2016 and July 2017, larval and adult mosquito
collections were conducted in 43 locations in 25 provinces of Indonesia using
standardized sampling methods for dengue vector surveillance. The samples collected
were analyzed for polymorphism and phylogenetic relationship using the mitochondrial
cox1 gene and the nuclear ribosomal internal transcribed spacer 2 (ITS2). Almost all Ae.
aegypti samples collected in this study (89%) belonged to the same haplotype. A similar
situation is observed with the nuclear ITS2 marker. Populations of Ae. aegypti
characterized few years ago were genetically different. A closely related observation
was made with Aedes albopictus for which the current populations are different from
those described earlier. Ae. aegypti populations were found to be highly homogenous all
over Indonesia with all samples belonging to the same maternal lineage. Although difficult
to demonstrate formally, there is a possibility of population replacement. Although to a
lower extent, a similar conclusion was reached with Ae. albopictus.

Keywords: Aedes aegypti, Aedes albopictus, Indonesia, cox1, internal transcribed spacer 2 (ITS2)
gy | www.frontiersin.org July 2021 | Volume 11 | Article 7051291

https://www.frontiersin.org/articles/10.3389/fcimb.2021.705129/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.705129/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.705129/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.705129/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:triwibowo@litbang.kemkes.go.id
mailto:roger.frutos@cirad.fr
https://doi.org/10.3389/fcimb.2021.705129
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2021.705129
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2021.705129&domain=pdf&date_stamp=2021-07-07


Garjito et al. Aedes Populations in Indonesia
INTRODUCTION

Aedes aegypti is known as a major vector of dengue viruses
(family Flaviviridae, genus Flavivirus, DENV) (Simmons et al.,
2012; Kraemer et al., 2015), yellow fever virus (family
Flaviviridae, genus Flavivirus, YF) (da Costa-da-Silva et al.,
2005; Kraemer et al., 2015; Yohan et al., 2018), zika virus
(family Flaviviridae, genus Flavivirus, ZIKV) (Ja, 2016; Olson
et al., 2020), and chikungunya virus (family Togaviridae, genus
Alphavirus, CHIKV) (Kraemer et al., 2015; Yohan et al., 2018).
This mosquito species originates from the forest of Africa and,
since the 18th century, has spread via transcontinental trade
throughout tropical and subtropical regions (Gubler, 1997; da
Costa-da-Silva et al., 2005; Gubler, 2011; Joyce et al., 2018;
Tedjou et al., 2019). In Southeast Asia, Ae. aegypti was
formally identified for the first time in Malaysia and Thailand
(1907) at the early 20th century (Urdaneta-Marquez and
Failloux, 2011; Parimittr et al., 2018). Ae. aegypti was formally
identified in Indonesia in 1908 (Leicester, 1908). A local strain of
Ae. aegypti, the Medan strain, was first reported and successfully
colonized in a laboratory in the 1930s (Kuno, 2010). Currently,
the species is reported to have spread throughout the archipelago
(Setiati et al., 2006; IVRCRD, 2018).

Another dengue vector species is the Asian tiger mosquito,
Aedes albopictus. This species has for long been considered
as a secondary vector of several viruses (Paupy et al., 2009;
Grard et al., 2014; Goubert et al., 2016; Mulyatno et al., 2018). Ae.
albopictus originates in the forests of Southeast Asia, and has
spread worlwide since the 1970s (Moncayo et al., 2004).
According to the Global invasive species database (http://www.
issg.org/database/), this species has been recorded as one of the
worst invasive species in the world. Currently, Ae. albopictus can
be found in Asia, Africa, Europe, North and South America, and
many locations in the Pacific and Indian oceans except Antartica
(Paupy et al., 2009; Kraemer et al., 2015). As an invasive species,
Ae. albopictus plays a potential role in triggering a re-emergence
of arboviruses transmission in many locations. Recently, this
species played an important role in Dengue, Chikungunya, and
Zika outbreaks in both endemic and invaded regions (Rezza
et al., 2007; Teixeira et al., 2009; Paupy et al., 2010; McKenzie
et al., 2019; Lai et al., 2020).

The invasion and adaptation to all of these areas are closely
related to their ecology and biology. Ae. aegypti has high
adaptability to urban and peridomestic areas, where it breeds
in the vicinity of human dwellings in a variety of artificial and
natural containers in urban and rural areas (Kusriastuti and
Sutomo, 2005; Kraemer et al., 2015; IVRCRD, 2018). This species
is also recognized as the most anthropophilic mosquito and has
the ability to blood-feed repeatedly on humans almost on a daily
basis (Ritchie, 2014). This behavior may have contributed to the
capacity of Ae. aegypti to cause high epidemics of dengue fever in
Indonesia. A total of 68,407 dengue cases (incidence: 78.85/
100,000) with 493 deaths (case fatality rates (CFR): 0.72%) were
reported in 2017 (MoH Indonesia, 2018; Harapan et al., 2019).
Ae. albopictus displays a strong ecological plasticity and has
shown a remarkable capacity to adapt to urban and sub-urbans
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under various climate conditions, displacing Ae. aegypti
population in some areas. Ae. albopictus has now become
a significant vector of CHIKV and DENV (Knudsen., 1995;
Paupy et al., 2009; Thiberville et al., 2013; Ngoagouni
et al., 2015).

While an effective multivalent dengue vaccine is still under
research and not yet available, vector control and entomological
surveillance are the only reliable means of prevention and
control of dengue fever (Wilder-Smith et al., 2010; Thisyakorn
and Thisyakorn, 2014; Chang et al., 2015; Parra et al., 2018).
Updated information on the genetic diversity and evolutionary
patterns among Ae. aegypti and Ae. albopictus populations is
needed to provide clues for better understanding the origin, the
structuration, and the distribution of populations. Moreover, this
is also a prerequisite to define differences in vector competence
and capacity to transmit dengue virus, in ecological adaptations
and in resistance to insecticides (Gupta and Preet, 2014; Yohan
et al., 2018; Naim et al., 2020). However, a comprehensive
information about genetic diversity and structuration of
populations of Ae. aegypti and Ae. albopictus in Indonesia is
still missing.

Therefore, we investigated the genetic diversity, evolutionary
relationship, and distribution of Ae. aegypti and Ae. albopictus
mosquitoes collected in different locations and islands, from
Western Sumatra (Aceh) to Eastern Indonesia (Papua) using the
mitochondrial cox1 or COI gene and the internal transcribed
spacer 2 (ITS2) of the ribosomal DNA as target sequences.
MATERIAL AND METHODS

Collection and Rearing of Mosquitoes
Larva, pupa, and adult mosquitoes were collected using
standardized sampling methods for dengue vector surveillance
(Focks and Special Program for Research and Training in
Tropical Diseases (TDR), 2003; Kusriastuti and Sutomo, 2005;
WHO, 2011; Ritchie, 2014; WHO, 2016; MoH Indonesia, 2018;
Harapan et al., 2019). In each house, larvae and pupae from
different containers were put in different plastic bags. All samples
were then transported to a field laboratory. Larvae and pupae
were reared in the field laboratory for 3 days until the emergence
of adult mosquitoes. Mosquitoes were then morphologically
identified, sorted according to locality, and preserved in 250 µl
of RNAlater (Ambion-Thermo Fisher Scientific, Watham, USA).
This large sampling campaign was conducted as part of a
nationwide program supervised by the Ministry of Health.
Mosquitoes were collected during this campaign as a cohort of
samples for use in different projects. This explains why the
samples were stored individually in RNAlater even though no
virus detection was conducted in this work. They were then
stored at −80°C until further analysis. Larvae which did not
emerge after 3 days were preserved the same way as adult
mosquito samples for further analysis. All mosquito samples
were individual samples, and only female mosquitoes were used
as samples.
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DNA Extraction, Amplification and
Sequencing
Whole DNA from each mosquito was individually extracted
using a DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s standard protocol. ITS2 and
cox1 (COI) were selected as target sequence because they are the
most used sequences for phylogenetic and population structure
analyses of mosquitoes. They are present in databases. They were
also used in previous works on the genotyping of Aedes
mosquitoes in Indonesia, allowing thus for comparison. The
amplification of cox1 was conducted using the primers CI-N-
2087 (5′-AAT TTC GGT CAG TTA ATA ATA TAG-3′ and TY-
J-1460 (5′-TAC AAT TTA TCG CCT AAA CTT CAG CC-3′) as
previously described (Rueanghiran, et al., 2011; Ngoagouni et al.,
2015). The ITS2 sequence was amplified using the primers ITS2a
(5′-TGT GAA CTG CAG GAC ACA T-3′) and ITS2b (5′-TAT
GCT TAA ATT CAG GGG GT-3′). PCR reactions were carried
out using the GoTaq® Green Master Mix (Promega, Madison,
WI, USA). The conditions for PCR amplification of the cox1
gene were as follows: one cycle at 94°C for 1 min for initial
denaturation, followed by five cycles at 94°C for 30 s, 45°C for 40
s, and 72°C for 1 min. This was then followed by 35 cycles at 94°
C for 30 s, 44°C for 40 s, and 72°C for 1 min, and by a final
extension step at 72°C for 10 min (Ngoagouni et al., 2015). PCR
thermocycling conditions for ITS2 were as follows: 94°C for
10 min; followed by 40 cycles of denaturation at 94°C for 1 min,
annealing at 56°C for 45 s, and elongation at 72°C for 1 min;
followed by a final extension step at 72°C for 10 min. PCR
products were electrophoresed in 1.5% agarose gel and visualized
by SYBR® safe DNA gel stain (Invitrogen, Carlsbad, CA, USA)
using a Biorad Molecular Image Gel Doc XR (Biorad
Laboratories Inc, California, USA). A 100-bp DNA ladder was
used for calculating the size of the PCR products. Amplicons
were purified using Applied Biosystems ExoSAP-IT™ (Thermo
Fisher Scientific, Vilnius, Lithuania). Cycle sequencing was
performed using the primers listed above and an Applied
Biosystems BigDye™ Terminator v.3.1 Cycle Sequencing Kit
(Life Technologies Cooperation, Austin, TX, USA). To remove
unincorporated BigDye® terminators and salts, cycle sequencing
products were purified using a BigDye® Xterminator Purification
Kit (Life technologies, Bedford, MA, USA). Sequence data
were obtained using a DNA sequencer (Applied Biosystems®

3500 Genetic Analyzer) and analyzed using the Sequencing
Analysis 6 program (Applied Biosystems). All sequences have
been deposited in Genbank under the accession numbers
MW280620 to MW280792, MW280794 to MW280797 and
MW280800 to MW280818 for Ae. aegypti cox1 sequences. The
accession numbers for Ae. aegypti ITS2 sequences range from
MW288143 to MW288145 and MW290431 to MW290468. The
accession numbers for Ae. albopictus cox1 sequences are
MW280793, MW280798, MW280799, and MW283303 to
MW283318. The accession numbers for Ae. albopictus ITS2
sequences are MW287155 to MW287157. The accession
numbers of the cox1 and ITS2 sequences of the unknown
spec ies Aedes sp (s l s25_Asp) are MW286812 and
MW293720, respectively.
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Polymorphism and Phylogenetic Analysis
Sequences were analyzed for definition of haplotypes using
DnaSP software v.6.12.03 (Rozas et al., 2017). The relationship
between haplotypes, based on pairwise difference to generate a
minimum spanning tree (MST) and minimum spanning
network (MSN), was calculated and modeled using Network
software and Hapstar v. 0.7. Multiple alignment and
phylogenetic analysis were performed using the SaeView
package (Gouy et al., 2010). Phylogenetic trees were built using
maximum-likelihood (ML) with the general time reversible
model with gama distributed with four discrete categories
(GTR + I + G). The clade support was assessed via 500
bootstrap replicates.
RESULTS

Mosquito Collection
Collections were conducted in 43 districts/municipalities in 25
dengue-endemic provinces in Indonesia (Supplementary
Table 1 and Figure 1). These provinces were Aceh, Riau, Riau
Islands, Jambi, Bangka-Belitung, Lampung, Banten, West Java,
Central Java, Yogyakarta, East Java, West Kalimantan, South
Kalimantan, Central Kalimantan, East Kalimantan, Bali, West
Nusa Tenggara, East Nusa Tenggara, North Sulawesi, Central
Sulawesi, South Sulawesi, Southeast Sulawesi, Maluku, North
Maluku, and West Papua. Sampling of larva and adult
mosquitoes was conducted as part of the 2nd year of the
“Rikhus Vektora” project in July–August 2016 in 28 locations,
the WHO project SEINO (#1611945) in September–October
2016 in six locations, and subsequently in nine locations as
part of the 3rd year of “Rikhus Vektora” project in May–July
2017 (Figure 1). A total of 60,873 Ae. aegypti mosquitoes were
collected: 2,184 adults, 54,251 larvae, and 4,438 adults obtained
from reared larvae. With respect to Ae. albopictus, 16,223
mosquitoes were collected with the following breakdown: 4,957
adults, 9,638 larvae, and 1,628 adults obtained from reared
larvae. From these samples 196 Ae. aegypti mosquitoes were
sequenced: 34 adults and 162 adults obtained from reared larvae.
For Ae. albopictus, 19 samples were sequenced, two adults and 17
adults obtained from reared larvae.

Phylogenetic Relationships of the
Collected Samples
The samples collected in this work fell into three different
branches, both for cox1 and ITS2 (Supplementary Figure 1).
These branches corresponded to Ae. aegypti, Ae. albopictus, and
another undetermined Aedes species. The latter sample was
therefore named sls25_Asp (Supplementary Figure 1).
The cox1 gene phylogeny showed the presence of two main
clusters in Ae. aegypti, Cluster Aae1 and Cluster Aae2, with
Cluster Aae1 being separated into two subclusters: Subcluster
Aae1a and Subcluster Aae1b (Supplementary Table 1 and
Supplementary Figure 1). These clusters were separated by
very low bootstrap values indicating that the tree was not well
structured and that the samples belonged to the same population
July 2021 | Volume 11 | Article 705129
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(Supplementary Figure 1). However, with the cox1 gene from
Ae. albopictus, three clusters could be identified with strong
bootstraps (100), Cluster Aal1, Cluster Aal2, and Cluster Aal3
(Supplementary Table 2 and Supplementary Figure 1).

Presence of a Yet Unidentified Species
The sample sls25_Asp from Maros in South Sulawesi (site No 36
in Figure 1) was initially misidentified in the field as Culex
quinquefasciatus. This sample was branching apart from Ae.
aegypti and Ae. albopictus for the cox1 gene indicating that it was
neither Ae. aegypti nor Ae. albopictus (Supplementary Figure 1).
It was also different from Cx. quinquefasciatus which was used as
outgroup. The phylogeny of the ITS2 sequences showed a similar
result. The sample sls25_Asp was different from Ae. aegypti and
Ae. albopictus (Supplementary Figure 2). The ITS2 sequence
showed a best hit with an Aedes polynesiensis mosquito from
Fidji (AY822662) with a percentage of identity of 88.24%,
whereas the cox1 sequence displayed a best hit with an Ae.
albopictus sample from Vietnam (HQ398902) with 91.95%
identity. However, there was no cox1 sequence for Ae.
polynesiensis in Genbank, and it was thus impossible to
confirm if the cox1 gene would also link sls25_Asp to Ae.
polynesiensis. A morphological analysis showed that the closest
species, although still with morphological differences, was Aedes
paullusi (data not shown). There is no cox1 or ITS2 records for
Ae. paullusi in databases. The Ae. albopictus and Ae. polynesiensis
hits for sls25_Asp cox1 and ITS2 sequences, respectively, might
simply be default hits due of the lack of relevant sequences in
the databases.

Phylogeny and Polymorphism of Aedes
aegypti cox1 Gene
The cox1 sequences from 196 samples collected for this work
were compared to the only other source of Ae. aegypti cox1
sequences from Indonesia, a 17-sample collection from 2013 in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the North Coast of Central Java (Yohan et al., 2018). These
samples, identified in the tree by their accession numbers from
KP869121 to KP869126 and KP334259 to KP334269, make a
completely separate cluster (Figure 2). The genetic distance
between the sequences from this work and those reported by
Yohan et al. (2018) ranged from 0.4 to 3.1%. With a mutation
rate of the cox1 gene in insects ranging from 2.4% Mya−1 to 3.5%
Mya−1 (Brower, 1994; Papadopoulou et al., 2010), the time
needed for the accumulation of these mutations ranges from
114,285 to 167,000 years for a mutation rate of 2.4% Mya−1 and
from 885,714 to 1,291,667 years for a mutation rate of 3.1%
Mya−1. When blasting the cox1 sequences from this work
against Genbank data, the sequences from previously Ae.
aegypti identified from Indonesia in 2013 (Yohan et al., 2018)
did not respond as best hits. However, best hits were obtained
with the same score with a series of nine cox1 sequences of Ae.
aegypti mosquitoes captured in Peru, Cambodia, Puerto Rico,
India, Georgia, England, and Germany (Supplementary
Table 3). Subcluster Aae2a showed two best hits both from
Kenya (Supplementary Table 3). Subclusters Aae2b and Aae2d
had only one corresponding best hit in Genbank from
Mozambique and Haiti, respectively (Supplementary Table 4).
Subcluster Aae2c showed five best hits with the same score from
Egypt and Kenya (Supplementary Table 3). Interestingly,
Subcluster Aae2e displayed four best hits with the same score,
but only one was a wild-type mosquito captured in Haiti. The
other three best hits corresponded to the reference strains reared
in laboratory conditions of Liverpool and RED (Supplementary
Table 3). Finally, each of the two individual samples diverging
from Cluster 1, 46_Aae (IS1) and 28-1-Aae (IS2) displayed a
different best hit. IS1 showed a best hit with a mosquito collected
in Russia, whereas IS2 showed a best hit with Aedes aegypti
formosus, which is considered an ancestral feral population from
sub-Saharan Africa (Powell and Tabachnick, 2013; Gloria-Soria
et al., 2016) (Supplementary Table 3). The breakdown into
FIGURE 1 | Map of sampling sites.
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individual haplotypes showed that Cluster Aae1 comprised 176
samples out of 198 (89%) and 39 haplotypes out of 53 (73.6%)
with two of them, H1 and H4, being the most represented
(Supplementary Tables 1, 3 and Figure 3). H1 haplotype
comprised 57 samples (32.85%) whereas the haplotype H4
contained 61 samples (34.6%) (Supplementary Table 1).
Subcluster Aae1a comprised 16 haplotypes, including
haplotype H1, and 75 samples, whereas Subcluster Aae1b
contained haplotype H4 and 22 other haplotypes for a total of
102 samples (Supplementary Table 1).

Phylogeographic Distribution of Aedes
aegypti cox1 Lineages
Cluster Aae1 was, as expected, present everywhere with the
exception of East Aceh and North Lombok (Supplementary
Figure 3 and Supplementary Table 1). No correlation could be
found between any cluster and any location. When considering
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the geographic distribution of the haplotypes, a lack of
correlation was also observed (Supplementary Figure 4). Only
a default correlation could be observed, i.e. rare haplotypes from
a region with few samples. However, this is a sampling bias and is
not significant.

Phylogeny and Polymorphism of Aedes
aegypti ITS2
The 40 sequences were distributed into two clusters and 21
haplotypes (Supplementary Table 1 , Figure 4 and
Supplementary Table 5). Cluster 1 is divided into four
subclusters (1a to 1d), which displayed limited variations
(Figure 5). As a consequence, Cluster 1 gathered 42 samples
and 23 haplotypes representing all the sequence variations
observed within this monophyletic group (Figure 5). The
different haplotypes were closely related with a maximum
relative distance of 11.54% (Supplementary Table 5). Cluster 2
comprised only four samples, each one corresponding to a
different haplotype. They were very closely related with an
overall variation of 0.51% (Supplementary Table 5).

Phylogeographic Distribution of Aedes
aegypti ITS2 Sequences
The analysis of the polymorphism of Ae. aegypti ITS2 haplotype
in this study showed that cluster 1 was the dominant one
(Supplementary Figure 5). Subcluster 1a displayed the most
extensive distribution, covering Sumatra (East Aceh-Aceh,
Pematang Raman-Jambi, Pekan Baru-Riau, South Lampung-
Lampung), Java (West Bandung-West Java, Semarang-Central
Java, Bantul-Yogyakarta, Malang-East Java), Kalimantan
(Sambas-West Kalimantan, Balikpapan-East Kalimantan), Bali
(Karangasem), West Nusa Tenggara (Lombok), and Sulawesi
(Palu-Central Sulawesi, Maros-South Sulawesi) (Supplementary
Figure 5). Subcluster 1a showed a best hit with mosquitoes
collected in Russia, Sri Lanka. The other subclusters, namely 1b,
1c, and 1d, showed a limited distribution. Subcluster 1b was only
found in the Sambas-West Kalimantan region, while Subcluster
1c was identified in two locations: Batam-Riau Islands and
Bantul-Yogyakarta. Subcluster 1d was found in two locations,
i.e. Pematang Raman-Jambi and Palu-Central Sulawesi
(Supplementary Figure 5 and Supplementary Table 5).
Cluster 2 had a more limited distribution. This cluster was
found in Karangasem-Bali, Ambon-Maluku, Malang-East Java
and Batam-Riau islands (Supplementary Figure 5 and
Supplementary Table 5).

Phylogeographic Distribution, Phylogeny
and Polymorphism of Aedes albopictus
cox1 and ITS2
The 19 cox1 sequences of the Ae. albopictus samples collected in
this work were compared to those released by Maynard et al.
(2017) who collected samples in Jakarta in 2012, in Waingapu
(Sumba) in 2013, and in Timika (Papua) in 2015. Sequences were
also compared to those released by Battaglia et al. (2016) who
established a worldwide classification of Ae. albopictus cox1
haplogroups (Battaglia et al., 2016). The COI sequences from
FIGURE 2 | Phylogeny of the Aedes aegypti cox1 gene. The phylogenetic
trees were built using maximum-likelihood (ML) with the general time
reversible model with gama distributed with four discrete categories
(GTR + I + G). The clade support was assessed via 500 bootstrap replicates.
The tree was rooted using the Culex quinquefasciatus cox1 gene (MK265737)
as outgroup. The color code is that of the cox1 subclusters shown in
Supplementary Table 1: light gray: References, dark blue: Subcluster Aae1,
red: Subcluster Aae2a, dark gray: Subcluster Aae2b, pink: Subcluster Aae2c,
purple: Subcluster Aae2d, green: Subcluster Aae2e, light blue: individual
sample 1, yellow: individual sample 2, black: root. “References” correspond
to the Ae. aegypti cox1 sequences published by Yohan et al. (2018) from
samples collected in 2013 whose accession numbers are KP334259 to
KP334269 and KP869121 to KP89126.
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Maynard et al. (2017) matched perfectly the haplogroups defined
by Battaglia et al. (2016) and were distributed within two
different haplogroups, A2a and A1b1a. The sequences obtained
in this work did not correspond to the sequences reported by
Maynard et al. (2017) and did not match any of the haplogroups
defined by Battaglia et al. (2016) (Figure 6). Out of the three
clusters identified within the Ae. albopictus sequences reported in
this work, Cluster Aal1 was closer, although clearly different, to
the haplogroups A2a; Cluster Aal3 was closer, although different,
to the haplogroup A1ba1; and Cluster Aal2 was not close to any
haplogroup. A total of 11 different haplotypes were found
(Figure 7 and Supplementary Table 2). The genetic distance
between the cox1 sequences reported in this work and those from
Maynard et al. (2017) ranges from 0.4 to 1.3%, depending on the
sample. The time needed to accumulate the number of mutations
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
separating the samples from this work to those described by
Maynard et al. (2017) ranges from 114,285 to 167,000 years for a
mutation rate of 2.4% Mya−1 and from 371,428 to 542,000 years
for a mutation rate of 3.5% Mya−1. Cluster Aal1 was found only
in Central Kalimantan, whereas the other two clusters were
spread over different provinces (Supplementary Figure 6).
However, the sample size is too small to draw any significant
conclusion on the phylogeography. When blasted on databases,
Cluster Aal1 and Cluster Aal2 both displayed best hits with the
same Ae. albopictus populations from The Philippines but with
differing percentage of identity ranging from 99.51 to 99.85%
(Supplementary Table 4). Cluster Aal3 showed best hits with
invasive populations of Ae. albopictus found in D.R. Congo,
China, Thailand, Greece, Brazil, and the USA with 99.65 to
99.84% of identity (Supplementary Table 4). With respect to
FIGURE 3 | Network of Aedes aegypti cox1 haplotypes. The figure represents the frequency of each haplotype of the cox1 gene of Ae. aegypti in the regions
sampled. The network represents the number of mutations between the haplotypes and their location.
FIGURE 4 | Network of Aedes aegypti ITS2 sequences. The figure represents the frequency of each haplotype of the ITS2 sequence of Ae. aegypti in the regions
sampled. The network represents the number of mutations between the haplotypes and their location.
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FIGURE 5 | Phylogeny of the Aedes aegypti ITS2 sequences. The
phylogenetic tree was built using maximum-likelihood (ML) with the general
time reversible model with gama distributed with four discrete categories
(GTR + I + G). The clade support was assessed via 500 bootstrap replicates.
The tree was rooted using the Culex quinquefasciatus ITS2 sequence
(HQ848572) as outgroup. The color code used is that of the ITS2 subclusters
given in Supplementary Table 1.
FIGURE 6 | Phylogeny of Aedes albopictus cox1 genes. The phylogenetic
tree was built using maximum-likelihood (ML) with the general time reversible
model with gama distributed with four discrete categories (GTR + I + G). The
clade support was assessed via 500 bootstrap replicates. The tree was
rooted using the Culex quinquefasciatus cox1 gene (MK265737) as outgroup.
The color code used is that of the cox1 subclusters displayed in
Supplementary Table 2. Gray: Subcluster Aal1, green: Subcluster Aal2,
orange: Subcluster Aal3.
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ITS2, the number of sequences available (only three) was too
small to draw a conclusion. Nevertheless, they corresponded to
invasive populations of Ae. albopictus found in Italy, Georgia,
Israel, or Sri Lanka (Supplementary Table 6).
DISCUSSION

Dengue, which is the fastest spreading arbovirus disease
worldwide, is also the first ranking vector-borne disease in
Indonesia and, thus, a national health priority. In the absence
of treatment and commercially available vaccine, vector
management remains the only way to control the disease.
However, in order to do so, the knowledge of vector
population structure is an obligate prerequisite. The capacity of
vectoring a given pathogen is not correlated with the species but
instead with the population. Some populations of Ae. aegypti or
Ae. albopictus are more prone to disseminate a given pathogen
than others (Alto et al., 2008; Reinhold et al., 2018). Therefore, a
species should be regarded as a metapopulation or the
combination of cross-fertile genetically distinct populations
displaying differing phenotypic traits (Garjito et al., 2020).
Vector competence is one of these phenotypic traits, which in
Aedes and other mosquitoes, was shown to be related to specific
populations (Beerntsen et al., 2000; Severson and Behura, 2016)
and not to the species per se. Deciphering the structure of the
vector populations is thus essential.

Although dengue is the transmissible disease ranking number
one in Indonesia, there have been very limited works on the
analysis of the structure of the populations of Aedes with only
one study on Ae. Aegypti (Yohan et al., 2018) and one on Ae.
albopictus (Maynard et al., 2017). In both cases, the number of
sampling sites was very limited. To these must be added studies
aiming at assessing the stability of populations in the framework
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
of a Wolbachia release program in Yogyakarta (Rasǐć et al.,
2015). However, in this case, the genetic diversity was assessed
with microsatellites and SNPs only on a sample from the city of
Yogyakarta in South Central Java (Rasǐć et al., 2015). This work
is, to our knowledge, the first one exploring the genetic diversity
of Ae. aegypti and Ae. albopictus throughout Indonesia, a huge
archipelago of more than 13,000 islands spanning 5,271 km from
east to west and 2,210 km from north to south.

A first conclusion from this work is the homogeneity of the
Ae. aegypti populations found all over Indonesia. With respect to
the cox1 sequences, all Ae. aegypti samples belonged to the same
maternal lineage. Variations were observed and clusters were
described, but they simply represent a polymorphism within a
monophyletic population. All clusters identified correspond to
co-circulating variants. The main difference is that one cluster,
Cluster Aae2, comprised samples displaying a larger
polymorphism. Cluster Aae1, and in particular the haplotypes
H1 and H4, seemed to be populations with a very high colonizing
and demographic potential. These two haplotypes represent each
about 30% of the samples collected all over Indonesia. They
represent indeed the very same population with very limited or
no polymorphism at all with Cluster Aae1 making up 87% of all
samples and being present everywhere in Indonesia. Considering
the size and structure of Indonesia, an archipelago spanning
from the Indian Ocean to the Pacific Ocean, this is unexpected.
One would have instead expected patched populations differing
from one island to the other. What is observed is exactly the
contrary, the same population throughout the whole country.

Owing to the mutation rate of the cox1 gene in Ae. aegypti
(Brower, 1994; Papadopoulou et al., 2010), the population
described in this work cannot have evolved from the
populations previously described. Even in the case of
introgression, the maternal lineage remains the same. What is
described in this case is a different maternal lineage. This
indicates that the observed population is allogenic. The lack of
FIGURE 7 | Network of Aedes albopictus cox1 haplotypes. The figure represents the frequency of each haplotype of the cox1 gene of Ae. albopictus in the regions
sampled. The network represents the number of mutations between the haplotypes and their location on the gene sequence.
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BLAST best hits with the previously described Indonesian
populations and the occurrence of BLAST best hits with
populations from other parts of the world also support this
allogenic origin. Two hypotheses must then be considered to
explain the massive presence of this homogeneous and allogenic
population of Ae. aegypti. The first hypothesis is that the
population described in this work has been completely missed
in previous studies. Previous sampling conducted in 2013 yielded
genetically different populations (Yohan et al., 2018) but were
very limited and covered a limited zone (Yohan et al., 2018). This
result could then be considered a consequence of a sampling bias,
all mosquitoes from the previous study (Yohan et al., 2018)
having been captured in a specific area, i.e. Northern Coastal
Central Java. However, considering the extension of Cluster
Aae1 throughout Indonesia and its overwhelming presence
among samples (87%), it seems unlikely that it would have
been missed in the 2013 sampling campaign. Furthermore,
Cluster Aae1 was found to be strongly present in this same
Northern Coastal Central Java area. The second hypothesis is
that this allogenic population might have invaded Indonesia
after the 2013 sampling. This invasion would have been very
fast then, within a maximum of three years between 2013, date
of the former sampling, and 2016, date of our first sampling.
However, owing to the very limited information available
on the previous populations, it is not possible to formally
demonstrate this replacement hypothesis. Nevertheless, the
ITS2 marker showed a similar trend; and considering the high
potential of nuclear DNA for recombination and variation
and finding the same ITS2 cluster all over Indonesia confirm
the presence of a set of genetically closely related populations
in Indonesia with one specific population characterized by
two very closely related, monophyletic maternal haplotypes,
H1 and H4. These haplotypes seem to be highly invasive
most likely due to higher demographic and adaptability
potentials. This also suggests that assortative mating might
occur, which restricts greatly intraspecies breeding with
preexisting populations.

Ae. aegypti has been shown to be highly susceptible to
satyrization by Ae. albopictus leading to the replacement of Ae.
aegypti populations by Ae. albopictus ones, thus explaining in
part the invasive potential of the latter (Bargielowski and
Lounibos, 2016). However, what is observed in Indonesia does
not match this model despite the presence of populations of Ae.
albopictus described as invasive in other parts of the world. What
is seen in Indonesia is instead a homogeneous population of Ae.
aegypti occupying all the archipelago and outcompeting Ae.
albopictus. As per Ae. aegypti, the populations of Ae. albopictus
collected in Indonesia do not correspond to those previously
described from 2012 to 2015 (Maynard et al., 2017). Unlike
populations described by Maynard et al. (2017), they also do not
correspond to the haplogroups designed on samples from 2013
(Battaglia et al., 2016). They are related but not the same. Owing
to the rate of mutation of the cox1 gene in insects, 2.4% Mya−1 to
3.5% Mya−1 depending on the model (Brower, 1994;
Papadopoulou et al., 2010), the variations observed are not
compatible with an evolution of previous local populations and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
indicate an invasion by allogenic populations. However, just as
per Ae. aegypti the very limited number of previous studies
makes it difficult to formally demonstrate a replacement.

The domestication of Ae. aegypti and Ae. albopictus is a
process closely linked to the development of the human society
and in particular to long distance mobility, transportation of
goods, and international trade (Paupy et al., 2009). The current
expansion of the Aedes-borne diseases is by far a consequence of
the global economy. Ae. aegypti and Ae. albopictus, like all living
organisms, are structured in metapopulations, which differ
slightly one from the other and due to massive international
transportation are distributed all over the world within the areas
suitable for the survival of these species. The mobility of these
populations from one place to another is a stochastic event,
which depends on the place of departure, the place of arrival, the
genetic and physiological traits of the populations involved, the
economic situation, and the commercial exchanges and routes at
a given time. This is to our knowledge the first report of such a
massive homogeneity of a population of Ae. aegypti over such a
large area.

One limitation of this work is the lack of previous data at the
scale of the whole country. Only two studies have been
conducted prior to our work on the genotyping of Aedes
mosquitoes in Indonesia. There is only one report on the
genotyping of Ae. aegypti but only on few samples and only
in one restricted area in northern coastal central Java (Yohan
et al., 2018). This lack of previous data prevents us from fully
analyzing and concluding on the putative replacement of
populations that the phylogenetic analyses suggest. Regarding
the analysis of Ae. albopictus, the same problem occurred with
only one previous study (Maynard et al., 2017) thus preventing
the conduct of a fully significant comparison. On another hand,
a major limitation of this work is the limited number of Ae.
albopictus samples and sequences of ITS2. This is due to a
limitation in funding which prevented the conduct of a full
scale sequencing program. Further analyses of Ae. albopictus
diversity in Indonesia should be conducted to complete the
current study.
CONCLUSIONS

A general consequence of our results is that populations are
changing over time, even throughout a very large archipelago.
Whatever the population, established or invasive, Ae. aegypti and
Ae. albopictus mosquitoes will have to breed in the human
environment. Then, the best way to prevent any population of
vector from thriving is certainly to implement vector control at a
very local level, at maximum at the community level, essentially
by eliminating breeding sites using very simple and affordable
means of control such as containers and garbage removal. The
strategy of prevention of dengue transmission through
community participation currently recommended in Indonesia
will most likely be the most successful of all. This approach
named 3M for “Menutup” for covering water containers,
“Menguras” for cleaning water containers, and “Mengubur” for
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burying discarded containers, is implemented under the
responsibility of families in each household with at least one
person in charge of monitoring Aedes larvae in all water storage
(Paupy et al., 2009; MoH Indonesia, 2015). This strategy shed
light on what is most needed for the successful control of Aedes-
borne diseases, not big science, big management or big strategies
but simply information, education, people awareness and
community-based management.
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Supplementary Figure 1 | cox1 gene phylogeny of the collected samples. The
phylogenetic trees were built using maximum-likelihood (ML) with the general time
reversible model with gama distributed with four discrete categories (GTR + I + G).
The clade support was assessed via 500 bootstrap replicates. The tree was rooted
using the Culex quinquefasciatus cox1 gene (MK265737) as outgroup.

Supplementary Figure 2 | ITS2 phylogeny of the collected samples. The
phylogenetic tree was built using maximum-likelihood (ML) with the general time
reversible model with gama distributed with four discrete categories (GTR + I + G).
The clade support was assessed via 500 bootstrap replicates. The tree was rooted
using the Culex quinquefasciatus ITS2 sequence (HQ848572) as outgroup. The
color code used is that of the ITS2 clusters of Ae. aegypti and Ae. albopictus
displayed in Supplementary Tables 1 and 2, respectively. The color code for Ae.
aegypti ITS2 clusters is: blue: Cluster 1a, red: Cluster 1b, orange: Cluster 1c.

Supplementary Figure 3 | Geographic distribution of Aedes aegypti cox1 clusters.

Supplementary Figure 4 | Geographic distribution of Aedes aegypti cox1
haplotypes.

Supplementary Figure 5 | Geographic distribution of Aedes aegypti ITS2
sequences.

Supplementary Figure 6 | Geographic distribution of Aedes albopictus cox1
haplotypes.

Supplementary Table 1 | Specimens and sampling localities of Aedes aegypti.

Supplementary Table 2 | Specimens and sampling localities of Aedes
albopictus.

Supplementary Table 3 | Polymorphism of Aedes aegypti cox1 haplotypes from
Indonesia.

Supplementary Table 4 | Polymorphism of Aedes albopictus cox1 haplotypes
from Indonesia.

Supplementary Table 5 | Polymorphism of Aedes aegypti ITS2 haplotypes from
Indonesia.

Supplementary Table 6 | Polymorphism of Aedes albopictus ITS2 haplotypes
from Indonesia.
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