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Abstract

Calcium-dependent protein kinases (CDPKs) are important calcium receptors, which play a

crucial part in the process of sensing and decoding intracellular calcium signals during plant

development and adaptation to various environmental stresses. In this study, a CDPK gene

MdCPK1a, was isolated from apple (Malus×domestica) which contains 1701bp nucleotide

and encodes a protein of 566 amino acid residues, and contains the conserved domain of

CDPKs. The transient expression and western blot experiment showed that MdCPK1a pro-

tein was localized in the nucleus and cell plasma membrane. Ectopic expression of

MdCPK1a in Nicotiana benthamiana increased the resistance of the tobacco plants to salt

and cold stresses. The mechanism of MdCPK1a regulating cold resistance was further

investigated. The overexpressed MdCPK1a tobacco plants had higher survival rates and

longer root length than wild type (WT) plants under cold stress, and the electrolyte leakages

(EL), the content of malondialdehyde (MDA) and reactive oxygen species (ROS) were

lower, and accordingly, antioxidant enzyme activities, such as superoxide dismutase

(SOD), peroxidase (POD) and catalase (CAT) were higher, suggesting the transgenic plants

suffered less chilling injury than WT plants. Moreover, the transcript levels of ROS-scaveng-

ing and stress-related genes were higher in the transgenic plants than those in WT plants

whether under normal conditions or cold stress. The above results suggest that the improve-

ment of cold tolerance in MdCPK1a-overexpressed plants was due to scavenging ROS

accumulation and modulating the expression of stress-related genes.

Introduction

Abiotic stresses, such as drought, high salinity, cold or submergence, are serious threats to

crop productivity. Plants have evolved fine signaling strategies enabling them to overcome

these stresses and other harmful conditions. Among the strategies adopted by plants, calcium

signals are important regulators in many crucial and sophisticated cellular processes [1].
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When plants are subjected to various stresses, they rapidly release calcium ions (Ca2+) from

storage compartments (such as vacuole, endoplasmic reticulum) into the cytosol. Transient

increases of free Ca2+ in cytosolic are perceived and decoded through different Ca2+ sensors

and Ca2+ binding proteins, such as calcium-dependent protein kinases (CDPKs), calmodulin-

like proteins, calmodulins and calcineurin B-like proteins. CDPKs distinguished from other

calcium-sensing proteins, as they not only can decode and translate the increase of Ca2+ con-

centration into improvement of protein kinase activity but also can activate downstream effec-

tors [2].

CDPKs exist in protists, oomycetes, green algae and plants, but not in animals [3].

Genome-wide analysis of different plant species showed that they are encoded by a large multi-

gene family. For example, Oryza sativa, Zea mays, Malus domestica, Populus trichocarpa, and

Arabidopsis thaliana were identified 31, 35, 37, 30 and 34 CDPK genes in their genomes,

respectively [4–11]. CDPKs have a conserved modular structure including a variable N-termi-

nal domain, a kinase domain, an auto-inhibitory domain or junction domain and a regulatory

domain or CaM-like domain, which canonically contains four EF-hands [12, 13]. In the

absence or low concentration of cytoplasmic Ca2+, auto-inhibitory domain blocks the kinase

domain and inhibits its activity [14, 15]. When plants perceive stimuli, an immediate increase

of the concentration of Ca2+ in plant intracellular promotes Ca2+ binding to EF-hand motifs,

which will induce molecular conformation changes and activate enzyme activities, leading to

phosphorylation of the targeted substrates as well as CDPK autophosphorylations [16–18].

The phosphorylated proteins probably participate in plant defense reactions, ethylene synthe-

sis, cytoskeleton organization, carbon and nitrogen metabolism, and stress responses [5, 17,

19–22]. Knowledge about CDPK functions and mechanisms of the responses to environmen-

tal stress is increasing. Substantial experimental evidences indicate CDPKs play important

roles in response to abiotic/biotic stress. For example, Arabidopsis CPK28 acts as a positive reg-

ulator in response to osmotic stress [23]. OsCPK9 in rice plays a positive role in drought,

osmotic, and dehydration stress responses [24]. Overexpressing of OsCPK4, OsCPK12 in rice

exhibited increased salt/drought stress tolerance and rice blast disease resistance [25–27].

CaCDPK15 in pepper (Capsicum annum) positively regulates response to Ralstonia solana-
cearum [28]. In Arabidopsis, overexpression of SiCDPK24 enhanced drought tolerance [29].

OsCDPK1 positively regulates salt and drought tolerance in rice [30], meanwhile it acts as a

positive regulator of OsPR10a participating in the defense signaling pathway [31]. Conversely,

some CDPKs are negative regulators of stress response because transgenic plants overexpres-

sing them are more sensitive to abiotic/biotic stresses. Arabidopsis thaliana cpk23 mutant

increased endurance to drought and salt stresses, while AtCPK23 overexpressing plants

reduced the resistance to drought and salt stresses [32]. Overexpression of ZmCPK1 in maize

mesophyll protoplasts suppressed the expression of the cold-induced marker gene Zmerf3, and

ectopic expression of ZmCPK1 in Arabidopsis reduces plants adaption to the cold tolerance,

suggesting ZmCPK1 act as a negative regulator of cold stress signalling in maize [33]. The Ara-
bidopsis CPK28 plays as a negative regulator of immune signaling that continually buffers

immune signaling by controlling the turnover of BIK1, an important convergent substrate of

multiple pattern recognition receptor (PRR) complexes [34]. Thus, CDPKs are implicated in

both positive and negative regulation of plant abiotic/biotic stress adaptation.

However, the research on function of CDPKs in apple has been rarely reported. This study

focused on the function of MdCPK1a, a CDPK gene from M. domestica, in response to abiotic

stresses. MdCPK1a-overexpressed N.benthamiana plants were investigated to different abiotic

stress conditions. Experimental results showed that overexpression of MdCPK1a in N.

benthamiana confers it resistance to salt and cold stresses. Furthermore, the mechanism of

enhancement of cold tolerance in the transgenic plants was disclosed in this research.
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Materials and methods

Cloning, sequencing and phylogenetic analysis of MdCPK1a
The fourth and fifth young leaves were taken from the annual branches of the Malus domestica
cv.‘Jonathan’ growing in the greenhouse. Total RNA was extracted by using CTAB method.

[35]. Based on the released sequence of MdCPK1a (MDP0000153100) from Phytozome

(https://phytozome. jgi.doe.gov/pz/portal.html), a pair of primers GSP1 was designed for gene

amplification by RT-PCR (S1 Table). The PCR amplification was performed in a total 50 μL

reaction volume containing 300 ng cDNA, 1×TransStart Fast Pfu buffer, 0.25 mM dNTPs, 0.4

mM of each primer and 2.5 units of TransStart Fast Pfu DNA polymerase. PCR conditions

were set as follows: initial denaturation at 95˚C for 2 min; 40 cycles of 95˚C for 20 s, 55˚C for

20 s, and 72˚C for 60 s, and followed by a final extension at 72˚C for 5 min. The construction

of PCR products ligation with pMD19-T vector were named pMD19T-MdCPK1a, and

sequenced by Invitrogen (Shanghai, China).

The domain was identified through PROSITE and Smart™ databases (http://smart.embl-

heidelberg.de/); Molecular weight and theoretical isoelectric point (pI) were calculated by

ExPASy software (http://www.expasy.org/); The position of S-Palmitoylation and N-Myristoy-

lation were predicted using the online tool GPS-Lipid (http://lipid.biocuckoo.org/presult.php)

[36–38]. The homologous proteins were searched by BLASTp program (http://www.ncbi.nlm.

nih.gov/) using the deduced amino acid sequence of MdCPK1a. Multialignment was per-

formed by DNAMAN software (http://www.lynnon.com/). A phylogenetic tree was built

through the neighbor-joining (NJ) method under the MEGA 6.0 program with Poisson-cor-

rected distances with 500 bootstrap replicates.

Subcellular localization analysis

The coding sequence of MdCPK1a with termination codon removal was amplified from

pMD19T-MdCPK1a using primer GSP3 (S1 Table). Amplification products were digested

with Xba I and BamH I, and cloned into the downstream of CaMV 35S promoter in pCAM-

BIA1300 vector resulting in MdCPK1a C-terminal in-frame fusion with GFP gene to form a

plasmid 35S::MdCPK1a-GFP. The 35S::MdCPK1a-GFP and 35S::GFP (control) constructs

were transiently transformed into N. benthamiana leaves described by Sheludko [39]. GFP

fluorescence was imaged under a laser confocal fluorescence microscopy (Zeiss TCS SP8) with

an excitation wavelength of 488 nm and a 505–530 nm bandpass filter.

Protein extraction and western blot

Tobacco leaves that transiently expressed 35S::MdCPK1a-GFP and 35S::GFP (control) were

homogenized in liquid nitrogen. The nuclear proteins, cytoplasmic proteins and plasma mem-

brane(PM) proteins were extracted with the Plant Nuclear, Cytoplasmic and Membrane Pro-

teins Extraction Kit (BestBio, Shanghai, China) from plant tissues, respectively. Total proteins

were extracted with extraction buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA,

0.1%SDS, 1%Triton X-100), and followed by centrifugation at 12000 rpm for 15min, and the

supernatants were collected.

Following standardization of protein concentrations using BCA Protein Assay kit (BestBio,

Shanghai, China), Equal amounts of protein were employed in 10% SDS-PAGE and trans-

ferred to the NC membrane. After blocking with 5% skimmed milk powder in PBST (0.5%

Tween in PBS) at room temperature for 2 h, the membrane was incubated with Anti-GFP rab-

bit polyclonal antibody (Sangon Biotech, Shanghai, China) at 4˚C overnight. After this, the

membrane was rinsed three times with PBST for 5 min and then incubated with the HRP-
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conjugated Goat Anti-Rabbit IgG (Sangon Biotech, Shanghai, China) for 1 h. Subsequently,

the membrane was washed with PBST, visualized by enhanced chemiluminescence and then

detected in the Tanon 2500 chemiluminescence imaging system (Shanghai, China).

Overexpression of MdCPK1a in N.benthamiana
The full length ORF of MdCPK1a flanking BamH I and Sac I at 5’ and 3’ respectively was

amplified by the primers GSP2 (S1 Table). The PCR products were double-digested with

BamH I and Sac I, then ligated into the pYH455 vector at downstream of CaMV35S promoter

(S2 Fig), generating a plasmid pYH455-MdCPK1a. Subsequently, it was transferred into

EHA105. Tobacco transformation was conducted using leaf disk method [40]. Transgenic

tobacco plants were selected on MS medium supplement 50 mg�L-1 kanamycin. The kanamy-

cin-resistance plants were further confirmed by PCR and RT-PCR respectively with the con-

trol of non-transformed tobacco plants cultured on MS medium.

Abiotic tolerance analysis of the transgenic tobacco plants

Three independent lines (A2, A4 and A36) and wild type (WT) plants were used to analyze

abiotic tolerance. After being surface disinfected, the seeds of A2, A4, A36 and WT were sown

on MS medium (for transgenic lines MS medium supplemented 50 mg�L-1 kanamycin). N.

benthamiana were cultured under long day conditions 16 h light at 23–25˚C and 8 h dark at

18–20˚C.

To assess cold resistance, we grew the seedlings under cold stress (4˚C) for 10 d after seeds

germinating on MS medium and measured the root length after cold treatment. Meanwhile,

four-week-old plants growing in medium were stressed at 4˚C for 10 d, and then the survival

rates were calculated after recovering at 25˚C for 14 d according to the number of green

plants.

For salt or drought tolerance assays, 4-week-old plants were transplanted into soil with suf-

ficient water under a normal environmental chamber at 25˚C for 14 d. They were then watered

with 200 mM NaCl solution in soil for salt stress analysis, or cultured without irrigation for 25

d, and then recovered by re-watering for 10 d for drought stress analysis. The biomass and

phenotype were investigated after the treatments.

Physiological measurements and histochemical staining

Sixty-day-old plants treated at 4˚C for 48 h were used as material. Malondialdehyde (MDA)

contents were measured using the thiobarbituric acid (TBA)-based colorimetric method [41].

Leaf samples (0.5 g) were homogenized in 2 mL 20% trichloroacetic acid with the aid of some

sand, and then the homogenate was centrifuged at 16,000 g for 20 min at 4˚C. The supernatant

(1 mL) was mixed with equal volume of 0.5% (w/v) TBA. The mixture was heated at 95˚C for

30 min and then quickly cooled in an ice bath. After centrifugation at 10,000 g for 10 min,

absorbancy was measured at 532 nm corrected for nonspecific turbidity by subtracting the

absorbancy at 600 nm. The MDA content was calculated using its molar extinction coefficient

(155 mM-1 cm-1), and the value was expressed as μmol MDA�mg-1 fresh weight (FW). Electro-

lyte leakages (EL) were detected using the protocol according to [42]. The leaf segments from

at least three plants of each line were placed in deionized water for 2 h at 25˚C. Total electrolyte

content was measured after autoclaving the leaf segments for 15 min and taken as 100% leak-

age. Activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were

analyzed according to [43]. Leaf samples (0.2 g) were homogenized in liquid nitrogen adding 2

mL precooled 50 mM pH 7.8 phosphate buffer (containing 0.1 mM EDTA and 1% PVP) and

ground into homogenate in an ice bath. Add extraction medium to rinse the mortar for 2–3
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times and make the final volume 8.0 mL. The supernatant was centrifuged at 12 000 × g for 15

min at 4˚C and stored in the ice bath for the detection of SOD, POD, CAT activities. The accu-

mulation of H2O2 and O2
- was tested by histochemical staining with nitroblue tetrazolium

(NBT) and 3, 3’-diaminobenzidine (DAB) respectively. Leaves were incubated in the NBT

solution (0.1 mg�mL-1) and DAB solution (1.0 mg�mL-1, pH 3.8) for 24 h at 25˚C in the dark.

Then, the leaves were soaked in 95% ethanol overnight to remove the chlorophyll [44, 45].

DAB/NBT-stained leaves were scanned, and the pixel intensity of the DAB/NBT stain was

quantified using Adobe PHOTOSHOP CS4 software.

Quantitative RT-PCR analysis of gene expression in transgenic plants

The expression level of stress-related genes was monitored by quantitative RT-PCR (qPCR) on

an ABI7300 Detection System using SYBR1 Premix ExTaq™ qRT-PCR kits (TaKaRa, Dalian,

China). Gene-specific primers were designed by Primer 5.0 (S1 Table). PCR mixtures contained

10.0 μL of 2×SYBR Premix, 1.0 μL of cDNA template, 200 nM of each primer, then added

ddH2O up to a total volume of 20.0 μL. PCR reaction was performed as follows: denaturation at

94˚C for 3 min followed by 40 cycles at 94˚C for 20 s, 60˚C for 20 s, and 72˚C for 40 s. After

that, melting curves were determined as follows: 95˚C for 15 s, 60˚C for 1 min, and 95˚C for 15

s. qPCR was performed three independent biological repeats for each sample and three techni-

cal repeats for each reaction. Expression values were normalized with NtTubulin gene (Acces-

sion No: EF051136). The relative expression of a gene was calculated by using 2-ΔΔCt method

[ΔΔCt = (Cttarget gene− Cttubulin gene) treatment−(Cttarget gene–Cttubulin gene) control].

Statistical analysis

Every experiment was repeated three times, and the value was got from an average from three

independent replicates and shown with error bar representing with standard error (SE). All

statistical analyses were performed using SPSS software and based on Duncan’s multiple range

tests, statistical differences were compared and p values<0.05 or <0.01 were used as the

thresholds for significant or extremely significant differences, respectively.

Results

Cloning and bioinformatics analysis

The full length open reading frame (ORF) of MdCPK1a was isolated from apple, which con-

sisted of 1701 nucleotides encoding a 566-amino acid polypeptide with the predicted molecu-

lar weight 62.86 kDa and the isoelectric point 5.16. MdCPK1a protein possesses the

characteristics as other plant CDPKs: an N-terminal variable domain (107aa) preceding a Ser/

Thr protein kinase catalytic domain (259 aa), a junction domain (42 aa), a CaM-like domain

containing four EF hand Ca2+-binding motifs (142 aa) and a C-terminal variable domain (16

aa). A possible ATP-binding site and active site in the N-terminal region and 15 invariant

amino acid residues for eukaryotic Ser/Thr protein kinase in the N-terminal of kinase domain

were shown in Fig 1. The putative post-translational modifications of MdCPK1a protein was

predicted by the software GPS-Lipid, showing that there are one myristoylation (Gly at the 2nd

residue from the N-terminus) and two palmitoylation (Cys at the 5th and 136th residues from

the N-terminus) in the protein (Fig 1).

Multiple sequence alignments showed the deduced amino acid sequence of MdCPK1a with

72.73% similarity to OsCDPK7 (BAB16888), 76% to AtCPK1 (NP_196107), and 71.75% to

ZmCPK1 (BAA12338). The phylogenetic relationships between MdCPK1a and several stress-

related CDPKs are presented in S1 Fig. The selected CDPK proteins were clustered into three
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subgroups including I, II, III. MdCPK1a, along with OsCDPK7, AtCPK1, and ZmCPK1 which

were reported to regulate abiotic and biotic stress tolerances [33, 46, 47], belongs to the sub-

groups I, which hints that MdCPK1a may participate in stress responses in apple.

Fig 1. Protein sequence analysis of MdCPK1a. Kinase domains, Junction domain, and EF hand loops of CaM-LD

domain of CDPK are marked. The 15 invariant amino acid residues for eukaryotic Ser/Thr protein kinase are indicated by

asterisks. Protein kinase ATP-binding site and active site are highlighted in dark orange and green, respectively. The

positions of predicted S-Palmitoylation (Pal) and N-myristoylation (Myr) are indicated in the diagram.

https://doi.org/10.1371/journal.pone.0242139.g001
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Subcellular localization

The subcellular location of a protein determines or is closely correlated with its function. To

investigate the subcellular location of MdCPK1a protein, we cloned the full-length ORF

sequence of MdCPK1a into pCAMBIA1300 vector under CaMV35S promoter, constructing

an in-frame fusion protein plasmid 35S::MdCPK1a-GFP (Fig 2A). The construct was trans-

formed to N. benthamiana leaves by agro-infiltration for transient expression analysis. The

subcellular location of MdCPK1a-GFP was detected by laser scanning confocal microscopy,

with the leaves transiently transformed 35S::GFP as the control. The tobacco cells expressing

the 35S::MdCPK1a-GFP emitted fluorescence both in nucleus and plasma membrane, whereas

in expressing the 35S::GFP tobacco cells, the fluorescence filled the entire cytoplasm, plasma

membrane and nucleus (Fig 2B). We further verified the subcellular localization by western

blot by immunoblotting with anti-GFP antibody. MdCPK1a-GFP was detected exclusively in

the fractions of plasma membrane and cell nucleus but not in the fraction of cytosol (Fig 2C).

These results indicated that MdCPK1a protein was localized to the nucleus and cell plasma

membrane.

Overexpression of MdCPK1a gene in tobacco

The overexpression construct of MdCPK1a (pYH455-MdCPK1a) was introduced into N.

benthamiana by A. tumefaciens-mediated transformation. Ten transgenic lines were obtained

and further identified by PCR using gene-specific primers (GSP1). Six lines were randomly

selected for gene transcription analysis. The result showed MdCPK1a was expressed constitu-

tively in these lines, among which three independent lines (A4, A36, and A2) were used for

analysis of the resistance to abiotic stresses. The levels of MdCPK1a mRNA in the three trans-

genic lines were quantified by qPCR. MdCPK1a mRNA displayed the highest level in A4 and

the lowest level in A2 (S2 Fig).

Fig 2. Subcellular location of MdCPK1a. (a) Schematic representations of the vector constructs of 35S::GFP and 35S::

MdCPK1a-GFP. (b) Subcellular localization of MdCPK1a-GFP fusion protein was conducted by transient expression

experiment in N. benthamiana cells. Images were taken by using Leica confocal microscopy at 72 hours post

agroinfiltration (GFP: fluorescence, green; Bright: visible light image; Merge: merged images of above two images).

Bars = 20 μm. (c) Subcellular localization of MdCPK1a-GFP fusion protein was detected by western blot. Total protein

extract (T), cell membrane fraction (Cm), cytosolic fraction (Cy), and cell nucleus fraction (Cn) isolated from 35S::

GFP-expressing (left) 35S::MdCPK1a-GFP-expressing (right) tobacco cells were immunoblotted with anti-GFP

antibody.

https://doi.org/10.1371/journal.pone.0242139.g002
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Stress tolerance of MdCPK1a-overexpressed N. benthamiana plants

For salt stress analysis, 6-week-old of WT and T2 plants of A4, A36 and A2 were irrigated with

200 mM NaCl solution in the soil once a week. After suffering from salt stress for 25 d, WT

plant leaves turn yellow, the MdCPK1a-overexpressed (MdCPK1a-OX) transgenic tobacco

plants grew better and more vigorously compared with WT,(Fig 3A). The dry weight of shoots

and roots of the transgenic lines, except A2, was significant higher than that of WT (Fig 3B),

which suggests that MdCPK1a-OX tobacco plants increased the tolerance to salt stress. How-

ever, the similar symptoms between WT and the transgenic lines were observed under drought

stress. The transgenic plants and WT displayed slow-growing, rolled and wilted leaves without

irrigation for 25 d and showed no significant difference after re-watering for 10 d (Fig 4), sug-

gesting that there were no obvious differences of drought resistance between WT and the

transgenic lines.

The cold tolerance of seedlings of WT and the transgenic plants was monitored on MS

medium at 4˚C. Both of them showed severe growth inhibition, however, the root length of

WT was significantly shorter than that of the transgenic plants (Fig 5A and 5C). Meanwhile,

we also analyzed the cold resistance of them at 4 weeks old. They were stressed in 4˚C for 10 d

then recovered in normal conditions (25˚C) for 14 d. WT plants suffered from chilling injury

more severely than A4, A36, and A2. Only 17% of WT plants survived after cold treatment,

while 60–96% of the transgenic lines survived (Fig 5B and 5D). Physiological analysis showed

that the transgenic plants had lower MDA content and less electrolyte leakage (EL) than WT

plants under cold stress (Fig 5E and 5F), indicating that the transgenic plants were less injured

compared with WT plants.

Fig 3. Phenotype and stress tolerance of the MdCPK1a-OX plants under salt stress. (a) Photographs of wild-type

and MdCPK1a-OX plants (line A4, A36, and A2) under 200 mM NaCl. The left shows the phenotype of aerial part of

tobacco plants, the right shows the phenotype of shoot and root. (b) Shoot and root dry weight of MdCPK1a-OX plants

after the salt-stress treatment. Error bars indicate the standard error of the mean (SEM) of three independent

experiments. Significant differences between the WT and transgenic plants are indicated by asterisks (�p< 0.05,
��p< 0.01).

https://doi.org/10.1371/journal.pone.0242139.g003
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Analysis of ROS levels and antioxidant enzyme activities in transgenic N.

benthamiana
Under abiotic stresses, reactive oxygen species (ROS) such as hydroxyl radical (�HO), superox-

ide radical (O2
-.) or hydrogen peroxide (H2O2), are excessively accumulated in plants, which

Fig 4. Photographs of wild-type and MdCPK1a-OX plants under drought stress. 4-week-old seedlings were

transplanted into soil with sufficient water in the chamber at 25˚C for 14 d. They were cultivated for 25 d without

watering for draught stress, and then re-watered for 10 d for recovery. Photographs of representative plants of WT and

MdCPK1a-OX plants (A4, A36, and A2) were taken before and after the treatment of drought stress, and 10 days after

re-watering, respectively. Twenty plants of each line were used for the experiments. Bars in picture = 10 cm.

https://doi.org/10.1371/journal.pone.0242139.g004

Fig 5. Overexpression of MdCPK1a enhances cold tolerance in transgenic tobacco. (a) Phenotype of seedlings of

WT and MdCPK1a-OX plants (A4, A36 and A2) at the normal growth temperature and low temperature (4˚C) for 10

d on MS medium after germinated; (b) Responses to cold stress of 4-week-old WT and MdCPK1a-OX plants; (c) Root

lengths of seedlings after germination for 10 d on MS medium at 4˚C; (d) Survival rates of WT and MdCPK1a-OX

plants. Values are the mean ± SE. Thirty plants of each line were used for statistics; (e) Detection of MDA content in

WT and MdCPK1a-OX plants. FW means Fresh weight. Data represent the means ± SE of at least three replicates; (f)

Electrolyte leakage in WT and MdCPK1a-OX tobacco plants; Significant differences between the WT and transgenic

plants are indicated by asterisks (�p< 0.05, ��p< 0.01).

https://doi.org/10.1371/journal.pone.0242139.g005
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act as important signal molecules and also are toxic by-products leading to oxidative damage

[48]. To reduce the damage of excessive production of ROS, plants have developed a scaveng-

ing mechanism allowed them to overcome ROS toxicity. To know whether MdCPK1a regu-

lates ROS levels in cold response, we compared with the ROS levels in the overexpressing

tobacco lines and WT plants after suffering cold stress. NBT and DAB staining were used to

detect the accumulation of O2
-. or H2O2 in leaves, respectively. Before the cold treatment, the

leaves had similar dyeing degree in the transgenic plants and WT, indicating O2
-. or H2O2

accumulation was similar in both plants. However, lower dyeing degree was detected in the

transgenic plants whether by NBT (Fig 6A and 6C) or DAB (Fig 6B and 6D) staining under

cold stress, suggesting less ROS accumulated in the transgenic plants than that in WT. Further-

more, compared with WT, the enzyme activities of CAT, POD and SOD of the transgenic

lines were higher before treatment and significantly higher after 48h cold treatment. POD

activity was still significantly higher in the transgenic plants while there was no significant dif-

ference in CAT and SOD activities after 72 h cold treatment (Fig 7).

Expression analysis of the stress related genes in transgenic N. benthamiana
The transcriptional levels of stress-responsive and ROS-related genes (NtSOD, NtGPX,

NtCAT, and one ROS-producing NADPH oxidase gene, NtrbohD) were analyzed by qPCR in

Fig 6. The accumulation of reactive oxygen species (ROS) in WT and MdCPK1a-OX plants by histochemical staining. (a) Representative photographs

show in situ accumulation of H2O2 in the leaves before (upper panel) and after the cold treatment via nitro blue tetrazolium (NBT) staining. (b) in situ

accumulation of O2- in WT and MdCPK1a-OX plants before and after the cold stress by 3,3’-diaminobenzidine (DAB). (c) Evaluation of DAB staining in

the leaves of plants before and after cold stress. (d) Evaluation of NBT staining in the leaves of plants before and after cold stress. The relative staining

intensities were calculated based on the staining intensity of WT plants. Error bars indicate the SEM (n = 4); �P< 0.05.

https://doi.org/10.1371/journal.pone.0242139.g006
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WT and the transgenic plants before and after cold treatments. The gene transcriptional levels

of NtSOD, NtGPX and NtCAT were remarkably higher in transgenic tobacco whether under

normal condition or cold stress, except NtrbohD which was lower under normal condition

and significantly lower after cold stress in the transgenic tobacco. The mRNA levels of cold-

responsive genes (NtLEA5, NtSPS, NtDREB3, except NtERD10C) were higher in the transgenic

tobacco plants than those of WT plants under normal and cold stress condition. The expres-

sion of NtERD10C in the transgenic tobacco plants was similar with that in WT under normal

condition, but higher under cold stress (Fig 8).

Discussion

Calcium-dependent protein kinases respond to abiotic stress and play important roles in cal-

cium signaling pathways. In apple, CDPKs are encoded by a multigene family consisting of 37

genes [9], however, the biological functions of which mostly remain unclear. In this study,

MdCPK1a was identified in apple and characterized in transgenic tobacco. The sequence

alignment of MdCPK1a with different plant CDPKs shows high similarity with stress-respon-

sive CDPK genes such as AtCPK1 [47, 49], OsCDPK7 [46] and ZmCPK1 [50]. It suggests that

MdCPK1a might be involved in stress tolerance.

Apple MdCPK1a protein localization

CDPK function is dependent on specific subcellular localization. Previous research has

shown that CDPK proteins are found in cytoplasm, nucleus, the plasma membrane, oil bod-

ies, mitochondrial outer membrane, peroxisome, and endoplasmic reticulum [6], suggest-

ing their different functions. The N-terminal domain of CDPKs is important to subcellular

localization. It is reported that membrane association is mediated by N-terminal acylation.

The membrane localized CDPKs harbour a predicted N-myristoylation site and cysteine

residues which would allow further palmtoylation in their N-terminus [51]. A recent study

Fig 7. Analysis of antioxidant enzyme activities in the WT and MdCPK1a-OX plants before and after cold

treatment. (a–c) Activities of SOD, POD and CAT, respectively. Data represent the means ± SE of at least three

replicates. The significant differences between WT and MdCPK1a-OX plants are indicated by asterisks (�p< 0.05,
��p< 0.01).

https://doi.org/10.1371/journal.pone.0242139.g007
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Fig 8. The expression of the ROS-related and cold-responsive genes in WT and MdCPK1a-OX plants. Data

represent the means ± SE of at least three replicates. The significant differences between the WT and MdCPK1a-OX

plants are indicated by asterisks (�p< 0.05, ��p< 0.01).

https://doi.org/10.1371/journal.pone.0242139.g008
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revealed that OsCPK17 has five alternative splicing (AS) forms with different subcellular

localization [52]. In our experiment, MdCPK1a protein has been proved to be localized in

the plasma membrane and nucleus, which is conformity with the prediction that MdCPK1a

is putatively myristoylated and palmitoylated at its N-terminal (Fig 1). It indicates the post-

translational modifications might allow targeting MdCPK1a protein to the plasma mem-

brane. The location of MdCPK1a protein suggests it might participate in early signaling

pathways of environmental stress by phosphorylation and activation of downstream genes

[53]. The plasma membrane- or nucleus- localized CDPKs involved in abiotic stress

response were also reported in other plants, such as ZoCDPK1 in Zingiber officinale [54],

SiCDPK24 [29] in Setaria italica response to drought stress. Our results further indicate

that CDPKs might have multiple subcellular localizations and involved in multiple signal

transduction pathways.

Apple MdCPK1a involves in response to abiotic stresses

To further understand MdCPK1a function, the T2 plants of MdCPK1a overexpressing tobacco

were used to study their responses to abiotic stresses. After 200 mM NaCl treatment, trans-

genic tobacco A4 and A36 lines showed more tolerant to salt stress, while the dry weight of

shoots and roots of the transgenic lines A2 was comparable to that of the wild type, indicating

that the tolerance of transgenic lines to salt stress is positive correlated to the ectopic expres-

sion levels of MdCPK1a in tobacco (Figs 3 and S2).

One of early responses to low temperature or other abiotic stresses in plant cell is a tran-

sient increase in cytosolic Ca2+ derived from influx from the apoplastic space and release

from internal stores [55]. Ca2+ binding proteins can sense the transient increases of cyto-

solic Ca2+, and then transmit signals to its target protein. CDPKs are the main responders

in combining calcium signal with particular protein phosphorylation cascades. Although

some studies showed that several CDPK mRNA are responsive to cold stress [8, 56–58],

only a few of them were made further functional identification. In plants, as far as we know,

OsCPK7, OsCPK13, OsCPK17 and OsCPK24 in rice and AtCPK1 in Arabidopsis have been

reported that participated in the response to cold stress [46, 59–62]. Furthermore, the trans-

genic Arabidopsis plants overexpressing VaCPK20, a CDPK from Vitis amurensis and

PeCPK10 from Populus euphratica improved freezing resistance [63, 64], while in Zea
mays, ZmCPK1 negatively regulate cold tolerance [33]. In our research, ectopic expression

of MdCPK1a improved tobacco cold tolerance and also exhibit slightly increased salt toler-

ance, but no obvious improvement of drought tolerance. The cold-responsive genes, such as

NtDREB3(dehydration-responsive element binding protein), NtERD10C (early response to

dehydration 10C), NtLEA5 (late embryogenesis abundant protein) and NtSPS (Suc-P

synthase) were significantly up-regulated in the overexpressing MdCPK1a transgenic

tobacco plants compared with the WT plants. It is known that DREBs are important tran-

scription factors by regulating the expression of stress-responsive genes, including ERD10C,

LEA and SPS, and so on [65, 66]. Overexpression of MdCPK1a increased cold-responsive

genes in tobacco suggest that MdCPK1a may function upstream of DREBs as a positive reg-

ulator participated in the response to cold stress. Additionally, the root length of transgenic

plants A4 and A36 is longer than that of WT when the seedlings of them cultured at 25˚C

for 10 d on MS medium (Fig 5A). The aerial part of WT plants is little lower than that of the

transgenic plants under normal condition (Fig 4). We speculated that MdCPK1a might also

participate in the regulation of plant development. Our previous research showed that

MdCPK1a was also induced by biotic stress [9]. These results suggest that apple MdCPK1a
like CDPK genes in other species has overlapping functions [33, 67, 68].
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Overexpressing MdCPK1a enhanced tolerance to cold stress in the

transgenic tobacco by scavenging ROS

Plants produced less ROS in organelles under optimal growth conditions, but under abotic

stress, the rate of ROS production is significantly elevated. ROS was produced by two major

sources under abiotic stress: one is as a consequence of disruptions in metabolic activity and

another is as signaling ROS which produced by NADPH oxidase [69]. ROS accumulation is a

double-edged sword for plants response to abiotic stress: on the one hand, they are signaling

molecules of the abiotic stress–response signal transduction network [70], on the other hand,

they are also toxic byproducts that can cause oxidative destruction of cell [48, 71]. In general,

CDPKs seem to function as positive regulators of ROS production in biotic stress signaling

[49, 72–75], while some researches showed that CDPKs decrease ROS accumulation in abiotic

stress by increasing the expression of ROS scavenging enzymes such as ascorbate peroxidase

(APX), superoxide dismutase(SOD), catalase(CAT), and glutathione peroxidase(GPX) [76,

77]. For example, overexpression of the constitutively active form of oilseed rape BnaCPK2
induces ROS accumulation and cell death through interacting with NADPH oxidase-like

respiratory burst oxidase homolog D (RbohD) [78]. However, overexpression OsCPK12
decreases ROS accumulation by increasing the expression of OsAPx2, OsAPx8 and OsrbohI
and confers increased tolerance to salt stress in rice [25]. Overexpression of OsCPK4 in rice

confers salt and drought tolerance by preventing cellular membranes from stress-induced oxi-

dative damage [26]. In this study, overexpression of MdCPK1a in tobacco promoted the toler-

ance to cold stress by decreasing the expression of NtrbohD and increasing the expression of

NtSOD, NtCAT and NtGPX. Compared with WT plants, the enzyme activities of CAT, POD,

and SOD is higher and the accumulation of ROS was less in transgenic tobacco plants under

cold stress. Collectively, these results suggest that MdCPK1a plays roles in abiotic stresses, and

ectopic expression of MdCPK1a gene in tobacco enhances the tolerance to cold stress, which

contributes to increasing the transcription levels of stress-relative genes and regulating the

expression of APX, CAT, SOD and rbohD to reduce the damage to plants caused by ROS

accumulation.

Conclusion

In this research, a CDPK gene MdCPK1a from apple was characterized. MdCPK1a protein

was found to localize the plasma membrane and the nucleus. Overexpression MdCPK1a in

tobacco plants showed significantly improved their cold and salt stress tolerance than the wild

type. Furthermore, Tobacco plants transfected with MdCPK1a showed increased resistance to

cold stress by scavenging ROS accumulation and modulating the expression of stress-related

genes. These results will be useful to further explore the function of MdCPK1a in apple.

Supporting information

S1 Table. Primer sequences used for cloning, subcellular localization, vector construction,

transgenic confirmation and expression analysis.

(TIF)

S1 Fig. Phylogenetic relationship between MdCPK1a and other CDPK proteins. The

unrooted tree was generated using MEGA 6.0 program (http://www.megasoftware.net/) by the

neighbor-joining method. Bootstrap supports from 500 replicates are indicated at each

branch.

(TIF)
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S2 Fig. The identification of transgenic tobacco. (a) Schematic representations of the vector

constructs of pYH455-MdCPK1a. (b) Ten T1 lines of transgenic tobacco were confirmed by

PCR with specific primers (PST1). (c) Six T1 lines of transgenic tobacco were confirmed by

RT-PCR with specific primers (PST1). (d) Three T2 lines of transgenic tobacco were con-

firmed by RT-PCR with specific primers. (e) Quantification the expression of MdCPK1a
mRNAs in the transgenic tobacco plants performed by real-time RT-PCR. RNA was extracted

from the leaves of WT and MdCPK1a-transformed tobacco plant lines (A4, A36, and A2).

Transcript abundance was normalized against the Nttubulin gene expression level. Data repre-

sent means and standard errors of three replicates. Significant differences between the WT

and transgenic plants are indicated by asterisks(�p< 0.05, ��p< 0.01).

(TIF)

S1 Raw images.
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