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Technical Brief

Introduction

Foam emergence is a commonly observed phenomenon in 
bioprocess upstream applications.1 Foam, which is mainly 
provoked by the combination of gassing needed to support 
the cell culture and the release of lipids and proteins from 
cells, has an adverse effect on the operation of the bioreac-
tor and the cell culture productivity.2 Loss of cell viability 
leading to cell rupture and foaming can then occur due to 
lack of specific nutrients or mechanical stresses from burst-
ing gas bubbles and agitation. The generated foam can then 
rapidly develop, in some cases during the course of min-
utes, and block exhaust gas filters, resulting in reactor over-
pressure, reduced sterility integrity, and ultimately batch 
failure, stressing the need to detect and prevent foam 
emergence.3

Established strategies to prevent and eliminate foaming 
within a bioprocess rely predominantly on chemical meth-
ods, but mechanical and physical methods are used as well. 
Mechanical and physical methods are only able to destroy 
existing foam, whereas chemical methods are capable of 
preventing the emergence of foam as well as eliminating 
present foam.4 Typical mechanical strategies to break foam 
include liquid sprayers, centrifugal foam breakers, or orifice 
foam breakers, while physical strategies include the applica-
tion of ultrasonic or thermal probes to break existing foam.4–6 
Chemical strategies rely on the addition of so-called anti-
foam agents to the cell culture broth. These antifoam agents 

are surface active substances, which influence the surface 
properties of the medium toward a decreased foaming abil-
ity, including commonly used agents such as silicone oils, 
polypropylene glycol, and glycerol esters.7 Due to being 
relatively inexpensive and easy to handle and add into bio-
processing equipment, chemical foam prevention and elimi-
nation strategies are most often used. Nevertheless, antifoam 
agents influence mass transport and high concentrations 
may negatively affect the volumetric mass oxygen transfer 
coefficient as well as the dissolved oxygen concentration, 
which are important parameters for aerobic cell culture  
processes.8 This can result in decreased cell growth and 
reduced product titers.9,10 Furthermore, antifoam agents may 
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cause fouling of filters and membranes in subsequent down-
stream processing applications and therefore accelerate 
material fatigue and decrease purification efficiency.11,12 
This underlines the need for a well-considered antifoam 
agent feeding strategy based on reliable sensor data. 
Established foam sensors in bioprocessing include conduc-
tivity or capacitance probes placed within the bioreactor. 
The disadvantages of these contact-based sensing strategies 
are the fouling and coating of probes, which typically results 
in false-positive signals.4 The outcome of this is high main-
tenance costs and possible overaddition of chemical anti-
foams, which can ultimately lead to batch failure. Contactless 
foam sensing can be reached via ultrasound sensors, but is 
prone to temperature shifts, humidity, and false-positive sig-
nals from splashing caused by agitation.13

As foam is a key bioprocess parameter that can be visu-
ally identified, machine vision-based approaches are prom-
ising candidates to detect foam emergence. Traditional 
machine vision workflows rely on extensive feature engi-
neering, where complex algorithms are hand-engineered to 
achieve the task at hand.14,15 Achieving good predictive per-
formance from such a system is difficult, and they suffer 
from low robustness to changes in imaging conditions. 
However, in the past decade deep convolutional neural net-
works (CNNs) as well as openly available large-scale anno-
tated data sets have contributed to exceptional progress in 
machine vision.16 By training CNNs end to end on large 
data sets, CNN-based machine vision has outperformed tra-
ditional methods for a wide variety of vision tasks and now 
completely dominates the field.17

In this study, we present a machine vision-based strategy 
to detect foam within a small-scale (250 mL), single-use 
bioreactor setup (Fig. 1). This concept was implemented 

using off-the-shelf hardware components and open-source 
machine learning software libraries. The established system 
showed high accuracy in both binary foam detection and 
fine-grained classification and has been identified as a 
promising approach to overcome the drawbacks of conven-
tional foam sensor systems like fouling and coating, as well 
as limited single-level functionalities. The noninvasive sys-
tem shows proof of concept for the application to bioreactor 
formats for both single-use and stainless steel formats.

Materials and Methods

Experimental Setup

All bioreactor experiments were performed using an 
Ambr250 high-throughput multiparallel bioreactor system 
that has become the biotech/biopharma industry state of the 
art for bioprocessing research and development (The 
Automation Partnership [Cambridge] Ltd., Cambridge, 
UK, part of the Sartorius Stedim Biotech Group).18 The sys-
tem comprises 12 or 24 disposable vessels (250 mL each) 
integrated into a liquid handling system for fully automated 
bioprocessing operation. The system is housed inside a bio-
safety cabinet to enable aseptic automated sample removal 
and collection. Two different camera modules have been 
placed in front of the Ambr250 system and were used to 
acquire the image material for the model development. A 
smartphone (Google Pixel 3a XL, Google LLC, Menlo 
Park, CA), as well as an action camera (apeman A79, 
Apeman International Co., Ltd., Shenzhen, China), were 
used for image data acquisition. An additional light-emitting 
diode (LED) light source (Godox LED64 LED, GODOX 
Photo Equipment Co., Ltd., Shenzhen, China) was used to 

Figure 1. Schematic diagram depicting the implemented machine vision-based foam detection in a single-use bioreactor setup. 
First, an image is acquired by a camera module, which is then classified by a CNN. The classification can be performed by either the 
implemented binary classification model or the developed fine-grained classification model.
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introduce lighting varieties to the image data set during 
image data acquisition, in addition to the standard Ambr250 
clean bench lighting modifications (clean bench light of 
biosafety cabinet on/off) (see Table 1 for performed experi-
ments). Each device was fixated on the clean bench window 
using a dedicated suction cup holder (Fig. 2A).

To include and identify important process and environ-
mental parameters with respect to model quality, a design of 
experiments (DoE) using the Software MODDE (Sartorius 
Stedim Data Analytics AB, Umeå, Sweden) was performed. 
The experimental plan is shown in Table 1 and was gener-
ated by using a full-factorial design (FFD) with two levels 
for each factor. The “Volume (mL)” entry within the experi-
mental plan corresponds to the filling volume of the cultiva-
tion vessel (200 mL/240 mL). The “Dye addition” entry 
indicates if 50 µL of food dye (Orange Red, Suchuangyi 
Technology Co., Ltd., Shenzhen, China) were added to the 
media or not (yes/no). The “Clean bench light” entry speci-
fies if the clean bench light (which is part of the safety cabi-
net in which the Ambr250 system is placed) was turned on 
or off (on/off). To prevent any experimenter bias, the order 
of execution was assigned at random (“Run order” row). In 
addition, the external light source (“LED light”) (Fig. 2A) 

was arbitrarily turned on and off to further introduce diver-
sity into the acquired image material. To provoke variously 
strong characteristics of foam levels, different levels of air 
supply (5–50 mL/min) and different additions (100 µL to  
1 mL) of a 0.5 g/mL bovine serum albumin (BSA) solution 
(BSA acquired from Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany) have been added to the used medium (4Cell 
XtraCHO Stock & Adaptation, Sartorius Stedim Cellca 
GmbH, Ulm, Germany). Furthermore, stirrer speed adjust-
ments were performed during the image acquisition phase 
(500–1500 rpm). Video material was initially recorded, and 
the video frames were subsequently extracted. A video of 
every experiment was recorded for 20 to 25 min to collect a 
diverse data set of different foam quantities. The resolution 
of the acquired images was 1920 × 1080 pixels for the 
smartphone camera and 1520 × 2688 pixels for the action 
camera, respectively.

Model Training

After image material acquisition, regions of interest (ROIs) 
were manually annotated using the cloud-based image 
annotation platform Dataloop (Dataloop AI, Herzliya, 

Table 1. Experimental Plan, Which Resulted from a Full-Factorial Design DoE with 2 Levels for Each Factor (Volume, Dye Addition, 
Clean Bench Light).

Experiment No. 1 2 3 4 5 6 7 8
Run order 2 6 3 7 4 1 5 8
Volume (mL) 200 240 200 240 200 240 200 240
Dye addition No No Yes Yes No No Yes Yes
Clean bench light of 

biosafety cabinet
Off Off Off Off On On On On

Figure 2. (A) Experimental setup used for image acquisition. A smartphone, an action camera, and an LED light source have been 
mounted on a clean bench glass in front of a multiparallel small-scale bioreactor system via suction cup holders. (B) Performed six-
step workflow to acquire a CNN, which is able to distinguish between different levels of foam in single-use, small-scale, bioreactors. 
The shown workflow is an example for the fine-grained classification model.
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Israel). The ROIs that contain the bioreactor vessel from a 
side view were cropped out, rescaled to 250 × 250 pixels, 
and assigned to a class (no foam, low foam, medium foam, 
high foam) by a single subject matter expert trained in bio-
processing scenarios to reduce the risk of introducing 
inconsistent labels (see Supplemental Material for example 
images and their assigned classes). The resulting data set, 
which formed the foundation for model generation and vali-
dation, is specified in Table 2.

The generated data shown in Table 2 comprise the anno-
tated image material generated by the action camera, which 
took an image every 10 s, and the annotated image material 
originating from the smartphone camera video, with an 
image every 90th frame (corresponding to one image every 
3 s, downsampled from original acquisition at 30 frames per 
second). For experiments on binary classification, which 
distinguishes between no foam and foam, the classes low 
foam, medium foam, and high foam were combined into the 
single class foam, whereas as all classes were used for fine-
grained classification.

The annotation data and the cropped raw image data 
were exported and used to train CNN models for image 
classification, using the Python programming language 
(version 3.6) and the deep learning framework PyTorch 
(version 1.4) (Facebook Research, Menlo Park, CA). For 
both binary foam detection and fine-grained classification, 
a ResNet-18 model neural network was used.19 ResNet 
variants are widely used for image classification, and 
ResNet-18 is the smallest model in this family.

Both the binary and fine-grained models where trained 
with cross-entropy loss for 30 epochs, a batch size of 50 
images (largest batch size fitting on the graphics processing 
unit [GPU] used for training), a learning rate of 1.2e–5 (cho-
sen after pilot experiments evaluating the learning rate 
influence on model convergence on the validation set), the 
Adam optimizer,20 and random horizontal flips for data  
augmentation. For each training, the model with lowest 
validation loss was saved and used for evaluation (see 
Supplemental Material for corresponding loss plots). The 
validation data were created by taking 10% of the training 
data at random and using that split for all models doing the 
same task (binary or fine-grained classification). Due to 
class imbalance, because of more foam than no-foam 

images present, class weights of 0.4, corresponding to the 
ratio of foam and no-foam images, were introduced for the 
images having foam in them when training the binary clas-
sifier but not the fine-grained one.

Model Validation

To validate the models, a subset of the images was excluded 
from model training and only used to evaluate models’ clas-
sification performance as a test set. For the binary classifier, 
all images from one smartphone video capture were 
excluded to constitute a test set of 672 images, where 477 
images contained foam and 195 did not. Due to the low 
number of high-foam images in any given video capture, 
another test set with 512 images was designed and used for 
the fine-grained model containing 98 no-foam, 218 low-
foam, 154 medium-foam, and 386 high-foam images. Since 
the classes are imbalanced, evaluation accuracy as com-
monly defined, that is, the ratio of correct classifications, 
will be biased toward the class with the most labels. Instead, 
the classification performance was evaluated by calculating 
the F1 score, defined as

 

Precision
TP

TP FP
=

+( )  

(1)

 

Recall
TP

TP FN
=

+( )  

(2)

 

F
Precision Recall

Precision Recall
1=

( )
+( )
*

 
(3)

Here, the TP, TN, FN, and FP values depict the true- 
positive/true-negative and false-negative/false-positive pre-
dictions, respectively. “Precision” indicates, out of how 
many images that were classified as containing foam, what 
ratio was correctly predicted. Recall indicates the ratio of 
all images containing foam that were correctly classified as 
containing foam. The F1 score is the harmonic mean of the 
precision, and recall and is widely used to provide a single 
evaluation metric for classification models when classes are 
imbalanced.

To qualitatively validate the models’ predictions, the 
locations where the models attend for predictions were visu-
alized using the GradCAM++ method.21,22 GradCAM++ 
uses a weighted combination of the positive partial deriva-
tives of the last CNN layer to produce a heat map over the 
image highlighting regions the model pays much attention to 
when making its prediction. Although GradCAM++ does 
not provide a full explanation behind the prediction, the heat 
maps provide intuition whether the model predictions are 
based on sensible information.

Table 2. Acquired Image Data Set and Manually Annotated 
Classes.

Data Set Whole Data Set Action Camera Smartphone

No foam 982 17 965
Low foam 2183 142 2041
Medium foam 1542 124 1418
High foam 428 61 367
Total 5135 344 4791
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Results and Discussion

Two foam classification models were generated following a 
six-step workflow (Fig. 2B). One of the resulting models is 
a binary model, which is able to distinguish between foam 
and no foam. The second model is a fine-grained model, 
which is able to classify foam-containing bioreactor images 
into the classes no foam, low foam, medium foam, and high 
foam.

The developed binary foam classification model showed 
strong performance, with an F1 score higher than 97% on 
an independent test set (Table 3), indicating that the 
machine vision system reliably detects foam buildup. The 
fine-grained classifier showed promising results with 
around a 76% F1 score on the considerably more difficult 
task of fine-grained classification. Inspecting the confusion 
matrix for the fine-grained classifier shows that the main 
source of error is high-foam images mistaken as medium-
foam ones and, to slightly lower degree, medium-foam 
images mistaken as low-foam ones (Fig. 3B). The models’ 
predictions were visualized using the GradCAM++ 
method21 (Fig. 4). This method provides a heat map repre-
sentation that indicates regions of high decision-making 
allowing qualitative investigation of the models’ predic-
tions. For the binary classifier, the model correctly focuses 

on to the liquid–gas interface when making a correct predic-
tion, but focuses on other parts of the vessel when making 
incorrect predictions (Fig. 4A). A similar behavior can be 
observed for the fine-grained classification model (Fig. 4B). 
Here, too, the model focuses on the foam area for correct 
predictions and other parts of the vessel environment for 
incorrect predictions.

These visualizations allow interpretation of the CNN 
classifiers’ behavior and indicate that the developed models 
are capable of recognizing the foam region within the vessel 
area and using it for the classification tasks. Incorrect clas-
sifications have been observed, which are the result of the 
CNNs not focusing on the foam area of the vessel or edge 
cases introduced by the manual annotation of images. 
However, these failures may be avoided by averaging the 
predictions over time-consecutive sequences of images, 
instead of relying on only a single image, to receive a more 
robust signal. For example, the frame rate of video acquisi-
tion is 30 frames per second, and the worst-case wrong pre-
diction with the binary foam detection is every 48 frames, 
on average, assuming uniformly randomly distributed fail-
ures over time. In this case, averaging the prediction over 
30 frames per second may drastically reduce the impact of 
the misclassifications. This approach is applicable to actual 
cultivation setups, where foam emergence usually takes 
several seconds to minutes.

Concluding Remarks and Outlook

Conventional foam sensor probes show several disadvan-
tages, as they are prone to fouling and coating, and sensitive 

Table 3. CNN Classification Performance on Foam Detection.

Model Precision (%) Recall (%) F1 Score (%)

Binary 97.95 96.95 97.45
Fine-grained 76.35 78.68 75.58

Figure 3. Confusion matrices of the developed classification models. (A) Confusion matrix for the binary classifier mode. (B) 
Confusion matrix for the fine-grained classifier model. Each row indicates the true image labels; columns indicate the respective 
model’s prediction. Figures indicate the proportion of model predictions for images of the labels within each row.
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to reactor conditions such as humidity, agitation splashing, 
and temperature. This can result in false-negative sensing 
and overdosing of antifoam, leading to batch failure. 
Furthermore, the expensive cost and the lack of robustness 
do not justify their application in single-use bioprocessing 
setups. The proposed combination of commodity camera 
modules and the developed CNN approach for real-time 
foam identification and quantification overcome these 
drawbacks. The initialized models can be implemented into 
real-life setups either by hardcoding the ROI into the image 
acquisition modules or, in the case of flexible module/
equipment positions, via preceding object detection tasks 
that deliver the appropriate ROI, such as deep cropping 
approaches.23 The developed algorithm demonstrated high 
performance regarding foam identification (binary classifi-
cation, foam/no foam) with an F1 score of 98% on an inde-
pendent test set. Furthermore, fine-grained classification of 
foam levels (no foam, low foam, medium foam, high foam) 
showed good results; the model achieved an F1 score of 
76% over all classes, indicating great promise for image-
based foam quantification. The main source of error here 

was distinguishing between medium-foam and high-foam 
images, a task difficult even for a subject matter expert if no 
metric scale for orientation is provided. Furthermore, the 
foam height is usually not distributed equally along the 
foam surface, which adds further complexity to this machine 
vision task. However, it has been shown that the established 
system provides an inexpensive, accurate, and flexible 
alternative to traditional foam-sensing systems.

Going forward, implementing an antifoam agent feed 
strategy based on the resulting fine-grained sensor signal to 
ensure an antifoam agent addition based on demand would 
minimize negative effects on bioprocessing equipment fea-
tures as well as cell behavior. A resulting reduction of batch 
failures based on antifoam overdosing would improve the 
efficiency of process development as well as manufacturing 
processes. Other useful additions to the concept system 
include implementation of outlier detection capabilities to 
reduce the impact of process artifacts, for example, the acci-
dental blocking of the camera view to the bioreactor with an 
object or operator hand during routine operation. Potentially, 
further accuracy could be added to the model by introducing 

Figure 4. Exemplary GradCAM++ visualizations of the developed classification models. (A) Visualizations of the binary classification 
model. (B) Visualizations of the fine-grained classification model. Image boxes from left to right: Raw input image; respective 
GradCAM++ heat map, where blue means low attention and red means high; and the input image with the corresponding heat map 
overlay.
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exact foam metrics (via surface or volume measurements) as 
annotation data. Additionally, to further reduce the risk of 
biased or inconsistent labels, a diverse data set labeled by 
multiple subject matter experts whose assessments are then 
aggregated, for instance by majority voting, is preferrable, 
especially in difficult-to-judge edge cases. Furthermore, 
both models presented in this work can definitely be opti-
mized for higher performance by tuning the model architec-
ture, learning rate, loss function, and so on, which is 
something we leave for future work.

To conclude, the presented concept results show great 
promise for the application of machine vision to implement 
cheap, flexible, and robust monitoring for foam control for 
upstream bioprocessing. It is anticipated that this machine 
vision methodology will be further expanded to other areas 
of bioprocessing.
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