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Antimicrobial resistant strains of infection are afflicting clinical settings, driving the search for novel 
antimicrobial compounds. naturally sourced bioactives, for instance those from seaweeds, have 
the potential to ameliorate this issue. As such, solvent extracts from the edible irish seaweeds Fucus 
serratus and Fucus vesiculosus were screened for antimicrobial activity against 28 clinically isolated 
strains of MRSA, including one GiSA (glycopeptide intermediate S. aureus) and two mecc gene 
containing strains. the water extract of F. vesiculosus was the most promising extract went on to be 
tested for biofilm prevention and disruption activity. The disk diffusion method was used to investigate 
the inhibition of the bacterial pathogens tested while MIC, MBC and biofilm disruption and prevention 
analyses were performed spectroscopically and by plate counts, respectively. Solvent extracts were 
found to have a wide array of antimicrobial activity against the strains tested, with the water extract 
from Fucus vesiculosus being the most promising. this extract was also found to both prevent and 
disrupt MRSA biofilms indicating the potential extract as new antimicrobials, and raising the possibility 
of their possible use in therapeutics.

Seaweeds, benthic marine macro algae which can typically be found at various levels of beach and sea depth, have 
come under scrutiny for the bioactive compounds which they are known to possess. They have been used for 
millennia by people to aid numerous dietary and medicinal needs1. Due to their autotrophic nature2, seaweeds 
have evolved to produce an assortment of bioactive compounds; from the simple resources found in the marine 
environment to compounds used for the purpose of self-preservation in harsh competitive environments3. These 
bioactives can potentially be extracted from seaweeds and utilised for a range of applications; from supplements 
to pharmaceuticals, with the industrial potential for bioactives of natural origin being vast4–11.

As bacteria have evolved to reject various established antibiotics, infections are becoming more serious lead-
ing to increased treatment cost and a higher risk of complications associated with the treatment of once trivial 
infections. Antimicrobial resistant (AMR) infections have inspired a plethora of research into finding novel anti-
biotics to which AMR strains of infections are susceptible. A 2016 review commissioned by the British Prime 
Minister David Cameron projected that by 2050 AMR will result in 10 million deaths per annum12. Findings 
such as this have encouraged scientists to look for potentially novel antimicrobial activity from natural products.

Many of the bioactive natural products generated by organisms involve complex and poorly understood 
mechanisms of action. These compounds may be novel and as such have a greater chance of a novel activity 
against the more dangerous strains of infection. Antimicrobials from natural products could have the ability to 
revolutionise the treatment of modern multi-resistant infections.

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug resistant strain of the common 
Staphylococcus aureus. S. aureus exists parasitically on the skin of most healthy individuals. However, at some point 
in its life cycle, infection can occur in immuno-compromised people. Resistant strains of S. aureus were noted 
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after just a decade subsequent to the introduction of penicillin in the 1940’s with the first methicillin-resistant 
strain emerging at the end of the 1960’s13. The label of MRSA as a β-lactum antibiotic resistant strain has stuck 
since its emergence, regardless of the fact that oxacillin and/or cefoxitin are now used as susceptibility markers for 
penicillin based antibiotics14. More recently, MRSA strains with resistance to a variety of antibiotics with a range 
of modes of action (such as the clinical strains tested as part of this paper) have become widespread.

Further to the problems arising from AMR, MRSA is also a producer of biofilms which are a polymeric matrix 
excreted by bacteria that aggregate for their inhabitation and their improved adherence to surfaces. Bacteria 
produce biofilms for a myriad of reasons, however, this optimisation of their environment can make bacterial 
infections difficult to treat15. Their ability to make infections more resilient against mechanical debridement16 and 
tolerant to antimicrobials17 make biofilm producing pathogens more challenging to treat.

This study tested extracts from the brown seaweeds Fucus serratus and Fucus vesiculosus found on the coast of 
Wexford, Ireland against 28 clinically isolated MRSA samples found in a hospital environment during 2016. The 
most promising of these samples underwent minimum inhibitory concentration (MIC) and minimum bacteri-
cidal concentration (MBC) assays in addition to assays for biofilm prevention and disruption activity.

Results
Solvent extraction yields from the seaweeds f. serratus and f. vesiculosus. The yield of extracts 
generated from the seaweeds F. serratus and F. vesiculosus harvested in September 2015 from different solvents at 
a ratio of 1:100 are displayed in Table 1.

These extractions found that the quantity of crude extract from the seaweed increased with an increase in 
solvent polarity. This is not an unexpected result as carbohydrates, which are polar, account for approximately 
20–50% of dried seaweeds18. Proteins (3–11% dry mass19) and lipids (1–6% dry mass20) can also have varying 
degrees of polarity, as such, some can be solubilised by polar solvents while the remainder will be either solubi-
lised by non-polar solvents or be completely insoluble.

Antimicrobial activity of crude seaweed extracts. The eight crude seaweed extracts were tested for 
antimicrobial activity against a range of MRSA strains donated by University Hospital Waterford in order to 
establish the extract with the best inhibition against clinical MRSA strains. The results of the anti-MRSA screen 
are displayed in Tables 2 and 3.

The crude solvent extracts for Fucus vesiculosus can be seen to contain more anti-MRSA activity than those 
of Fucus serratus. Activity was also found to increase with an increase in solvent polarity for most of the extracts, 
indicating that the compound(s) responsible for anti-MRSA activity are on the polar side of the spectrum.

Fucus vesiculosus extracts displayed a wide array of activity against the clinical MRSA strains used in this 
experiment. The ethyl acetate extracts displayed the least amount of activity, with no inhibition at all for two of the 
25 mecA strains, the GISA and neither of the two mecC strains. Acetone, methanol and water extracts all inhib-
ited every one of the mecA strains with water showing the best inhibition. This, in addition to the water extracts 
being active against both the GISA and the two mecC strains of MRSA, resulted in the water extract from Fucus 
vesiculosus being deemed the most promising.

While crude water extracts for Fucus serratus demonstrated the most potent activity, the methanol and ace-
tone extracts also exhibited antimicrobial activity against the various strains of MRSA. Between the acetone, 
methanol and water extracts for Fucus serratus, there was some degree of inhibition for all the strains of MRSA. 
Water extracts of Fucus serratus presented with antimicrobial activity against both the GISA and the mecC strains 
of MRSA (687–689 strains), indicating potential for this extract to be used as an antimicrobial against these par-
ticularly troublesome strains.

Minimum inhibitory concentration (MIC), minimum bactericidal concentration(MBC), biofilm 
prevention and biofilm disruption analysis. The concentrations of the water extract from Fucus vesic-
ulosus required for MIC, MBC, biofilm prevention and biofilm disruption by both cell viability and the crystal 
violet assay are outlined in Table 4 and further in Figs. 1 & 2. These concentrations were found to inhibit/disrupt 
at least 80% of MRSA (676) which was used as an indicator in this experiment.

The crystal violet assay for biofilm disruption and prevention determined that a concentration of 12.25 and 
3.125 mg/mL respectively was required to inhibit >80% of the biofilm.

The cell viability assay however, established that a dose of 25 mg/mL of water extract from Fucus vesiculosus 
will result in the disruption of a biofilm formed by an overnight culture of MRSA (676) adjusted to an opti-
cal density (625 nm) equivalent to 0.5 McFarland Standard or 107–108 cfu/mL. Similarly, 25 mg/mL will have a 

% of Extract

Water Methanol Acetone Ethyl. Acetate

Polarity Index 10.2 5.1 5.1 4.4

Fucus serratus 32.51 ± 1.57a 13.15 ± 1.70b 5.59 ± 0.74c 3.96 ± 0.28d

Fucus vesiculosus 28.31 ± 1.54e 12.93 ± 1.21b 5.81 ± 0.55c 3.96 ± 0.39d

Table 1. Percentage of crude extract yields for solvents of decreasing polarity (n = 3). Data (n = 3) are presented 
as the mean ± SD; Data that do not share a common superscript are statistically different (ρ < 0.05; One-way 
ANOVA followed by post-hoc analysis using Tukey’s multiple comparison test).
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bactericidal effect on the adjusted culture indicating that this dose is sufficient to completely kill the bacteria. The 
MIC was found to be 3.125 mg/mL. This concentration of extract will inhibit at least 80% of the culture.

It was determined that a lower concentration of 6.25 mg/mL was required to prevent the formation of a biofilm 
with MRSA (676).

Discussion
The high level of activity displayed by extracts and compounds from Fucus vesiculosus has been documented 
in previous studies21–23. For example a polyhydroxylated fucophloroethol extract from Fucus vesiculosus was 
found to inhibit the growth of S. aureus24 among other strains, which shows potential for its’ use against MRSA. 
Fucoidan, which can be extracted from Fucus vesiculosus, has been shown to have antimicrobial effects against 
oral bacteria including S. aureus21 and has also been proven to have a synergistic effect against MRSA when 
administered with the antibiotics oxacillin or ampicillin, increasing the efficacy of treatments by more than four 
times25. There is little evidence of the antimicrobial nature of extracts of Fucus serratus. One study noted no inhi-
bition of either Fucus serratus or vesiculosus against S. aureus or E.coli, however this study was performed on the 
seaweed itself and not on an extract26. There is evidence that bacteria found on the surface of these seaweeds can 
produce compounds with a microbial antagonistic effect27,28, however the method of preparation of these extracts, 
as well as autoclave studies not detailed here, rule out the possibility of activity from marine-associated bacteria.

From an exhaustive search of literature for activity using extracts from natural sources against GISA strains, it 
was found that one other study by Haste et al. investigated and noted the efficiency of marinopyrrole; a bioactive 
marine natural product which is not reported as present in the Fucus species, against GISA strains29. GISA strains 
refer to S. aureus with reduced susceptibility to glycopeptides such as vancomycin, whose mode of action relies 
on the disruption of peptidoglycan synthesis by binding to the d-alanyl-d-alanine at the free carboxyl end of the 
peptidoglycan stem peptide30,31. GISA strains have been reported more frequently in recent times. A 2001 study 

MRSA Strain Ethyl Acetate Acetone Methanol Water

618 + ++ ++ +

619 + ++ ++ ++

620 ++ ++ + +

621 ++ ++ + +

666 +++ +++ +++ ++++

667 +++ +++ + ++++

668 +++ ++++ ++++ +++++

669 +++ ++++ ++++ +++++

670 ++ +++ +++ ++++

671 ++ +++ ++++ ++++

672 +++ +++ ++ +++

673 +++ +++ +++ +++++

674 ++ +++ +++ ++++

675 ++ ++ ++ +++

676 ++++ +++++ ++++ +++++

677 ++ ++ + ++

678 ++ ++ ++ ++++

679 +++ +++ +++ +++++

680 +++ ++ ++ ++

681 ++ +++ +++ +++++

682 ++++ +++++ ++++ +++++

683 +++ +++ +++++ +++++

684 − + + ++

685 − ++ ++ ++

686 +++ +++ +++ ++++

687 − + − ++

688 − − + ++

689 − ++ ++ +++

Positive controla ++++ ++++ ++++ ++++

Negative controlb − − − −

Table 2. Antimicrobial activity of 5 mg crude extracts of F. vesiculosus against various MRSA strains using 
the disk diffusion method.(n = 3). aChloramphenicol antibiotic disk - 10 µg/disk. bNegative control - 50 µL 
of specific solvent. Inhibition zone reported as diameter of clear inhibition (including 6 mm disk) in mm; 
- indicates no inhibition, + indicates inhibition zone of 6 mm–9.9 mm, ++ indicates inhibition zone of 
10 mm–14.9 mm, +++ indicates inhibition zone of 15 mm–19.9 mm, ++++ indicates inhibition zone of 
20 mm–24.9 mm, +++++ indicates inhibition zone of >25 mm.
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by J. Liñares reported just 10 cases of GISA infection worldwide32. A more recent 2016 survey of S. aureus strains 
isolated from burn wound patients in Bangladesh reported that 28% of the 40 isolates tested were vancomycin 
resistant33. As such, the susceptibility of the GISA strain of MRSA (689) to the water and acetone extract of both 
Fucus serratus and Fucus vesiculosus and the methanol extract of Fucus vesisucosus, detailed in Tables 3 and 4, 
implicates the potential of these extracts for use against AMR infections. The MIC of 3.125 mg/mL for the water 
extract of F. vesiculosus is not as potent as other natural product extracts such as divaricatic acid from Evernia 
mesomorpha which had an MIC of 32 µg/mL34. However, it should be noted that the water extract from F. vesicu-
losus is crude, and potency could improve on purification.

Marine ecosystems such as seaweed are a novel source of biofilm disrupting and prevention compounds35. The 
antibiofilm nature of the water extract from F. vesiculosus found as part of this study has been noted in several stud-
ies. Further antifouling effects of F. vesiculosus extracts (of which antibiofilm is included as anti-settlement) have 
been established36,37 indicating that these results are in line with other studies. Interestingly, fucoidan (which can be 
extracted from F. vesiculosus) at a concentration of 250 µg/mL was found to completely suppress the growth of plank-
tonic bacteria and biofilm formation of some orally sourced Gram positive bacteria21. Again, this could indicate the 
potential of seaweed extracts to be used as a complimentary therapy in conjunction with established antibiotics.

MRSA Strain Ethyl Acetate Acetone Methanol Water

618 − + − −

619 − + − ++

620 − + + −

621 − − + −

666 − − + +

667 − − − +

668 + +++ +++ +++

669 − ++ +++ ++

670 − − − +

671 − + − +

672 − + − +

673 − ++ ++ ++

674 − + ++ +

675 − − ++ +

6v76 − +++ ++ +++

677 − − − +

678 − − + +

679 − ++ ++ +++

680 − − − +

681 − − ++ ++

682 − ++ ++ +++

683 − ++ ++ +++

684 − − + +

685 − − ++ ++

686 − + + +

687 − − − +

6−88 − − − +

689 − + − ++

Positive controla ++++ ++++ ++++ ++++

Negative controlb − − − −

Table 3. Antimicrobial activity of 5 mg crude extracts of F. serratus against various MRSA strains using the disk 
diffusion method. (n = 3). aChloramphenicol antibiotic disk - 10 µg/disk. bNegative control - 50 µL of specific 
solvent. Inhibition zone reported as diameter of clear inhibition (including 6 mm disk) in mm; - indicates no 
inhibition, + indicates inhibition zone of 6 mm–9.9 mm, ++ indicates inhibition zone of 10 mm–14.9 mm, 
+++ indicates inhibition zone of 15 mm–19.9 mm, ++++ indicates inhibition zone of 20 mm −24.9 mm, 
+++++ indicates inhibition zone of >25 mm.

Concentration (mg/mL) Disruption Prevention MIC MBC

Cell viability assay 25 ± 1.06 6.25 ± 0.31 3.125 ± 0.21 25

Crystal violet assay 12.25 ± 0.47 3.125 ± 3.14 — —

Table 4. Concentrations (mg/mL) of water extract from Fucus vesiculosus required to inhibit 100% growth for 
MBC and >80% of MRSA (676) for biofilm disruption, prevention and MIC (n = 18) (±standard error).
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Both the crystal violet assay and the cell viability assay were used to determine the biofilm preventative and 
disruptive action of the water extract from F. vesiculosus. Both of these methods were used as, although cell via-
bility is a more accurate measure of antimicrobial activity, this method lacks the specificity to distinguish between 
biofilm encapsulated bacteria and attached bacteria. As was demonstrated in Table 4, the crystal violet assay 
determined that a lower dose was required to inhibition >80% of the biofilm, indicating that the cell viability 
assay is indeed less specific.

The biofilm disrupting and preventing nature of the water extract from F. vesiculosus could potentially be 
an indication of the mode of action of the antimicrobial present in the seaweed, as biofilm producing bacteria 
are notoriously more difficult to treat using antibiotics38. This could pave the way for a potential application of 
F. vesiulosus extracts in tandem with a lower dose of antibiotics. This and the susceptibility of AMR strains of S. 
aureus, coupled with the safe use of seaweed edibles for millennia1, make these extracts particularly promising in 
terms of therapeutics.

Water, being a ‘green’ solvent results in no toxic waste or expensive disposals and is, as such, a desirable solvent 
to industries such as the pharmaceutical industry. The display of bioactivity exhibited by the water extracts of 
both F. vesiculosus and F. serratus in this study shows promise for these extracts to be used as a drug or supple-
ment in a drug delivery system.

Due to the increased risk of infection, active wound dressings containing an antimicrobial may decrease the 
overall treatment time and cost of burn wound victims. The merit of the tested extracts’ antibiofilm activity in 
conjunction with its’ antimicrobial effects, could further aide in the treatment of wounds by protecting them 
against biofilm formation. This could establish an increased vulnerability of the infection to antimicrobial treat-
ment in addition to possibly preventing the uncomfortable debridement of the wound.

Materials and Methods
Harvesting and preparation of seaweeds. The two seaweed species Fucus vesiculosus and Fucus serra-
tus were harvested at Fethard-on-Sea, Co. Wexford, Ireland (52°11′53,68″N, 6°49′34,64″W) in September 2015, 
these seaweeds were chosen based on antimicrobial activity previously noted for these seaweeds from the same 
beach39. The seaweeds were rinsed and cleaned of any epiphytes and debris. The cleaned seaweeds were then 
rinsed in distilled deionised water (SG Water Germany) before blot drying excess water from the surface of the 

Figure 1. Biofilm prevention and disruption (%) of MRSA (676) by water extract of Fucus vesiculosus over a 
series of twofold dilutions in concentration (mg/mL) using the crystal violet assay (n = 9). Data points which do 
not share a letter are significantly different (ρ ≤ 0.05, using Tukey one-way analysis).

Figure 2. Inhibition (%) of MRSA (676) by water extract of Fucus vesiculosus over a series of twofold dilutions 
in concentration (mg/mL) (n = 18). Data points which do not share a letter are significantly different (ρ ≤ 0.05, 
using Tukey one-way analysis).
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seaweeds. Seaweeds were freeze dried (VirTis, SP Scientific, PA, USA) and stored in a sample bag under nitrogen 
before being processed by blending and sieving until the particle size was less than 850 µm. The seaweed powder 
was placed in a sample bag under nitrogen and kept at −20 °C for storage until further analysis. This method was 
established by work previously carried out in WIT39–41.

production of crude seaweed extracts. Seaweed powder was extracted into various solvents by solvent 
extraction using a shaking incubator at room temperature (19 °C) for 2 h at a speed of 200 rpm at a ratio of 1:100 
(sample:solvent, w/v). The solvents used were deionised water, methanol (analytical grade), ethyl acetate (99.5% 
HPLC grade) and acetone (99.8% HPLC grade). All the solvents used were purchased from Fisher Scientific, 
Dublin, except deionised water (SG Water, Germany). Extracts were then filtered using Whatman No. 1 filter 
paper (Whatman, Kent, UK.). The filtrate was rotary evaporated to dryness at 25 °C (Bibby heated water bath, 
Heidolph Laborota 4000 motor unit condenser, Vacuubrand vacuum pump, Heidolph, Nurenberg, Germany). 
Dried extracts were stored under nitrogen at −20 °C before being analysed.

Water extracts were separated from their respective seaweed powders by centrifugation at 4500 rpm for 4 min 
due to sample viscosity. The supernatant was then frozen at −20 °C and freeze dried as before. Solid water extracts 
were stored under nitrogen at −20 °C.

A time study was carried out in water by extracting the seaweed powder according to the above method for 1, 
2, 12, and 24 h. The 2 h crude water extract of the seaweed was also autoclaved at 121 °C for 15 min and tested for 
antimicrobial activity using the disk diffusion method.

Antimicrobial activity of crude seaweed extracts against wound pathogens. The anti-MRSA 
activity of the extracts of the seaweeds Fucus vesiculosus and Fucus serratus were assessed using the CLSI stand-
ardised disk diffusion assay42 against clinically isolated pathogens donated by University Hospital Waterford. 
Among the clinical strains, there were two strains of MRSA (687, 688) containing the mecC gene that are reported 
to be present in Irish hospitals in very low levels. There was also a glycopeptide intermediate S. aureus (GISA) 
strain (689). The remainder of the strains were clinical mecA MRSA strains with varying antibiotic profiles. Dried 
extracts were aseptically dissolved in the solvent of their extraction at a concentration of 100 mg/mL. Disks were 
loaded with five 10 µL aliquots of this solution (5 mg/disc), allowing the disks to dry fully between loads. Negative 
control disks were loaded with 50 µL of the extraction solvent. 10 µg Chloramphenicol disks (Oxoid, Basingstoke, 
UK) were used as the positive control throughout this assay. A preliminary investigation comparing the dose to 
be used was undertaken by loading 1 mg, 3 mg and 5 mg on disks and comparing the data.

Strains were characterised by the National Methicillin - Resistant Staphylococcus aureus Reference 
Laboratory43. These strains were previously stocked in a 60:40 solution of sterile broth:glycerol and stored at − 
20 °C. For antimicrobial testing, the bacterial strains were inoculated aseptically from their glycerine stocks at a 
concentration of 1:100 in Brain Heart Infusion broth (BHI, Oxoid Basingstoke, UK). The inoculated broth was 
allowed to incubate overnight at 37 °C.

After incubation, 1 mL of cultured broth was centrifuged at 13,000 rpm for 2 min to generate a cell pellet, the 
supernatant was discarded and the pellet re-suspended in 1 mL of sterile maximum recovery diluent (MRD). This 
was repeated a further two times to ensure that the cells were clean from metabolic waste before the adjustment 
of the bacteria to an optical density (OD625) of 0.10–0.12 (equivalent to 0.5 McFarland Standard or 107–108 colony 
forming units, cfu/mL).

A sterile swab was used to spread adjusted bacteria onto Mueller Hinton agar (MHA, Oxoid Basingstoke, UK) 
plates by swabbing the surface of the plates with culture within 15 min of adjustment, then rotating the plate 60 °C 
and spreading the bacteria before rotating a further 60 °C and spreading the bacteria again. The 5 mg disks pre-
pared as per the disk diffusion method44, including the positive and negative controls, were transferred aseptically 
to the swabbed plates and allowed to chill in a refrigerator at 4 °C for 5 h to allow for diffusion of the extract on 
the disks into the agar. The plates were then incubated in the inverted position at the same temperature that the 
bacteria was originally grown as specified in Table 2.

Minimum inhibitory concentration and minimum bactericidal concentration. The minimum 
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts were tested 
using the CLSI standard broth dilution method44, with the modification that the plates would be read at 620 nm 
due to the limitations of the microtitre plate reader.

Dried extracts were dissolved to a starting concentration of 50 mg/mL in Mueller Hinton Broth (MHB). 
100 µL of this solution was then added in triplicate wells of a 96 well microtitre plate, serial twofold dilutions were 
then carried out on these samples. A row of control samples were also prepared for each of the dilutions. Other 
control samples included three wells of 100 µL of 10 µg/mL chloramphenicol as a positive control, six wells of 
100 µL MHB, three wells as a media only control and three wells as negative controls.

A 1% inoculation of MRSA (676) was prepared in BHI and allowed to incubate overnight at 37 °C. MRSA 
(676) was used as it was the most promising strain tested using the disk diffusion assay. The subsequent cells were 
then washed in triplicate with MRD and adjusted to a McFarland standard of 107–108 colony forming units per 
mL as described in section 2.2.4. The adjusted solution was then diluted 1:100 in MHB and 100 µL was loaded into 
each of the three rows of sample wells, the three positive control wells and the three negative control wells. 100 µL 
of sterile MHB was spiked into the remaining wells (sample controls, media only controls).

The plate was incubated overnight at 37 °C and subsequently read at 620 nm on a plate reader. This method 
was repeated in triplicate on different days. Minimum bactericidal concentration (MBC) was performed by 
spreading 50 µL from each well with the MIC reading onto MHA plates. The MBC is the lowest concentration 
which results in no growth after overnight incubation at 37 °C.
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Biofilm prevention cell viability analysis. Dried extracts were dissolved to a starting concentration of 
50 mg/mL in Mueller Hinton Broth (MHB). 100 µL of this solution was then added in triplicate wells to a 96 
well microtitre plate. Serial twofold dilutions were then carried out on these samples. A row of control samples 
were also prepared for each of the dilutions. Other control samples included three wells of 100 µL of 10 µg/mL 
chloramphenicol as a positive control, six wells of 100 µL of MHB, three as a media only control and three as a 
negative control.

A 1% inoculation of MRSA (676) was prepared in BHI and allowed to incubate overnight at 37 °C. The sub-
sequent cells were then washed in triplicate with MRD and adjusted to a McFarland standard of 107–108 colony 
forming units per mL.The adjusted solution was then diluted 1:100 in MHB and was spiked 100 µL into each of 
the three rows of sample wells, the three positive control wells and the three negative control wells. 100 µL of ster-
ile MHB was spiked into the remaining wells (sample controls, media only controls).

After overnight incubation at 37 °C, the supernatants were transferred to a separate plate. Each well of the 
original plate was washed in triplicate using sterile PBS and then spiked with 110 µL of MRD. The bottom of bac-
teria containing wells were carefully scraped into the MRD solution using 20–200 µL pipette tips. The resulting 
suspension was then carefully aspirated and transferred to a separate 96 well plate. Serial tenfold dilutions were 
made on bacteria containing samples and controls in MRD and then plated neat-10−7 to achieve plate counts. 
Positive and media only controls were plated neat only.

Plate counts were achieved for the supernatants using the same method. Biofilm prevention can then be cal-
culated as a percentage against the negative controls. This method was repeated in triplicate on different days, 
agreement between results was taken that biofilms were scraped from the wells in a reproducible manner.

Biofilm disruption cell viability analysis. A 1% inoculation of MRSA (676) was prepared as for the bio-
film prevention cell viability assay. Subsequent to incubation for 48 h, treatments and controls were prepared for 
the wells as per the biofilm prevention cell viability assay. 100 µL of samples and controls then left to incubate for 
a further 18–20 h at 37 °C.

After overnight incubation at 37 °C, each well was washed in triplicate using sterile PBS and then spiked with 
110 µL of MRD. Bacteria containing wells were carefully scraped into the MRD solution using 20–200 µL pipette 
tips. The resulting suspension was then carefully aspirated and transferred to a separate 96 well plate. Serial 
tenfold dilutions were made on bacteria containing samples and controls in MRD and then plated neat-10−7 
to achieve plate counts. Positive and media only controls were plated neat only. Biofilm disruption can then be 
calculated as a percentage against the negative controls. This method was repeated in triplicate on different days.

Crystal violet assay for biofilm disruption and prevention. The crystal violet assay performed was 
modified from Stepanovc et al.45. MRSA 676 was prepared and incubated as per the cell viability assays for both 
biofilm prevention and disruption,alternatively however, the cells were stained using crystal violet solution 
(Scichem, Cork, Ireland). The seaweed extract solution in the wells was then carefully removed and 200 µL of 
methanol (Sigma-Aldrich) was added to fix the biofilms. 100 µL of 1% crystal violet solution was added subse-
quent to removal of methanol and washing in PBS. The wells were then emptied and washed in triplicate using 
sterile water before the addition of 96% ethanol (Sigma-Aldrich) to solubilised the crystal violet. Finally, the plates 
were analysed using a microtitre plate reader at 570 nm.

conclusions
Extracts of Fucus serratus and Fucus vesiculosus were found to have a range of antimicrobial activity against clin-
ically isolated MRSA including GISA and mecC strains. Fucus vesisuclosus water extracts also exhibited biofilm 
prevention and disruption activity, indicating a promising multitude of bioactivity which could potentially be 
utilized in therapeutics. Particularly, the combination of antibiofilm and antimicrobial activity was speculated to 
have potential value for use in a bioactive wound dressing setting.
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