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Melanocortin agonists are ancient neuropeptides that have steroidogenesis and

anti-inflammatory properties. They activate melanocortin receptors (MCR), a family

of five seven-transmembrane G-protein coupled receptors. MC1R and MC3R are

mainly involved in immunomodulatory effects. Adrenocorticotropin hormone (ACTH) and

alpha-Melanocortin stimulating hormone (α-MSH) reduce pro-inflammatory cytokines

in several pulmonary inflammatory disorders including asthma, sarcoidosis, and the

acute respiratory distress syndrome. They have also been shown to reduce fibrogenesis

in animal models with pulmonary fibrosis. By understanding the functions of MCR in

macrophages, T-helper cell type 1, and T-helper cell type 17, we may uncover the

mechanism of action of melanocortin agonists in sarcoidosis. Further translational and

clinical research is needed to define the role of ACTH and α-MSH in pulmonary diseases.
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INTRODUCTION

Melanocortin systems are well-known for their regulation of skin pigmentation and
steroidogenesis. Interest in melanocortin receptor agonists in pulmonary medicine stems from
their role as potential modifiers of inflammatory disease. In this review, we provide insight
into the structures and functionality of melanocortin receptors and their agonists in pulmonary
inflammatory and fibrotic diseases.

MELANOCORTIN PEPTIDES

Melanocortin signaling peptides (melanocortins), consisting of adrenocorticotropin hormone
(ACTH), α-melanocyte stimulating hormone (α-MSH), beta-melanocyte-stimulating hormone
(β-MSH), and gamma-melanocyte-stimulating hormone (γ-MSH), have been studied in numerous
physiologic and diseased states. All melanocortins are derived from the pro-opiomelanocortin
prohormone (POMC), which is post-translationally modified by pro-convertase 1 or 2 to generate
each peptide as shown in Figure 1 (3). When POMC is produced, it is uniquely cleaved in each
tissue allowing ACTH/MSH-derived peptides to act locally. The melanocortin peptides contain
the core amino acid sequence His-Phe-Arg-Trp, which is integral to their ability to bind their
receptors (4, 5).
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FIGURE 1 | Structure of POMC (Pre-Opiomelanocortin) gene and its post-translational processing and modification products in the anterior and intermediate pituitary

gland. Lys, Lysine; Arg, Arginine; Cys, Cystine; α-, β- and λ-MSH, α-, β- and λ-Melanocyte Stimulating Hormone; ACTH, Adrenocorticotropic Hormone; β- and λ-

LPH, β- and λ- Lipotrophin; N-POMC, N-Pro-Opiomelanocortin. The figure adapted from Bicknell (1) and Mulcahy and Nillni (2) works with modification.

ACTH is maybe best known for its actions on steroidogenesis
in the adrenal cortex. The adrenal cortex is divided into
three histologically distinct layers: the zona glomerulosa
(ZG), zona fasciculata (ZF), and zona reticularis (ZR).
The ZG is predominantly responsible for secretion of
aldosterone which is primarily regulated by renin. The ZF
and ZG secrete glucocorticoids and the androgen precursors,
dehydroepiandrosterone (DHEA), respectively, both of which
are controlled by ACTH secretion (6). While the bulk of research
has been on the adrenal actions of ACTH, recent studies have
begun to shed light on extra-adrenal functions. Those studies
have focused on the influence of adipocyte differentiation and
function as well as matrix synthesis in mesenchymal cells (7–9).
It has been proposed that ACTH increases intracellular calcium
in mesenchymal cells and initiate differentiations. (10) Other
roles of ACTH that are beginning to be explored are thymic
cell growth and differentiation, androgen production via direct
action on Leydig cells, a reno-protective effect in chronic kidney
disease, and influences on mood (6).

α-MSH is a 13 amino acid peptide most known for its
cutaneous response to ultraviolet light leading to increased skin
pigmentation (11). It has also been shown to possess anti-
inflammatory and anti-microbial effects all via melanocortin
receptor signaling (12–14). β-MSH and γ-MSH have been
studied considerably less than α-MSH or ACTH. β-MSH does
not exist in rodents due to lack of N-terminal cleavage site
(15). Therefore, there is little information on its functionality.
Recently, a mutation in β-MSH gene (Y5C-β-MSH) was
associated with obesity in children and highlighted the essential
role of β-MSH in the hypothalamic control of body weight in
humans (16).

γ-MSH was named for homology to alpha and beta but
without known melanotropic activity (17). γ-MSH has 2
cleavage products gamma-1 and gamma-3, both with a critical

N-terminal lysine residue. The work that has been done on
Lys-gamma3-MSH has shown that it functions both in vitro and
in vivo to potentiate the steroidogenic effects of ACTH on the rat
adrenal. Specifically, it was demonstrated that they act together
to increase the activity of hormone sensitive lipase (18).

MELANOCORTIN RECEPTORS

The melanocortin receptors are a family of five seven-
transmembrane G-protein coupled receptors (GPCRs) and are
the smallest GPCRs known. Their transmembrane domains are
alpha-helical with the conserved motif of aspartic acid-arginine-
tyrosine at the junction of the TM3 domain and contain cysteine
at the C terminus (19). Human melanocortin receptor genes
are located on single exons within autosomes. In humans,
MC1R is found on chromosome 16, MC3R is on chromosome
20, while MC2R, MC4R, and MC5R are on chromosome 18
(20). Sequence homologies among the receptors range from
38 to 60%, with MC2R demonstrating the least homology
with the other receptors (21). Each receptor is coupled to
adenylate cyclase, triggering formation of cAMP and activating
protein kinase C. This leads to influx of extracellular calcium
resulting in IP3 activation. IP3 then activates the MAPK, and
JAK-STAT pathways (as shown in Figures 2, 3) (23). The
receptors are widespread throughout the body, exhibiting myriad
ligand affinities, tissue and cell distribution, and downstream
effects (24).

MC1R was first cloned in 1992 and has been studied
extensively for its role in regulation of human integumentary
pigmentation. It contains 317 amino acids and was originally
referred to as α-MSH receptor, the name of its major ligand
(25). MC1R is formed from 7 trans-cytoplasmic membrane
segments and an extramembrane domain contains 37 AA as
shown in magnification circle in Figure 4 (27). Video 1 shows
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FIGURE 2 | Downstream effects of Melanocortin-1 receptor stimulation in melanocytes: On stimulation of the receptor, Adenyl cyclase is activated and cAMP is

generated activating multiple downstream mediators involved in melanogenesis and melanocyte proliferation. Adapted from Joshi et al. (22) work with modification.

FIGURE 3 | Role of Melanocortin-1 receptor on macrophages in inhibiting inflammation. MC1R activates adenyl cyclase and generates cAMP, activating protein

kinase-C. This leads to influx of extracellular calcium and activation IP3. IP3 then activates MAPK and JAK-STAT pathways which inhibit the degradation of IκB and

activate CREB. CREB is involved in downstream anti-inflammatory effects. Adapted from Zhang et al. (23) work with modification.

a 3D secondary molecular structure of MC1R. MC1R has equal
affinity for α-MSH, ACTH, and β-MSH, but less to γ-MSH (24).
MC1R on human melanocytes is stimulated by its ligands to
enhance melanocyte proliferation and melanogenesis as shown
in Figure 2. This receptor is highly polymorphic and its variants
have been associated with increasing risk of melanoma and non-
melanoma skin cancers (22). MC1R is expressed on endothelial
cells, monocytes, macrophages, lymphocytes, neutrophils, mast
cells, intestinal epithelia, as well as, in testicular, ovarian,
placental, lung, and liver tissue (28). Mutations in theMC1R gene
may modify the immune response in the setting of inflammation.
Seaton and co-workers reviewed 1,246 subjects with blunt injury
and found that those who carried a polymorphism at the

rs885479 location of MC1R gene had a lower risk (OR = 0.45,
P = 0.006) of complicated sepsis (29).

The MC2R gene is located on chromosome 18 and contains
325 amino acids (30). MC2R is predominantly expressed in the
adrenal cortex, where it mediates the effects of ACTH. It is
believed to bind ACTH exclusively, which is crucial in regulating
steroidogenesis (31). Mutations affecting the normal function
of MC2R are implicated in familial glucocorticoid deficiency,
including polymorphism on S74I, R146H/560delT, and 579-
581delTGT (32).

MC3R, a 361 amino acids-long peptide coded on chromosome
20, is the least selective of the melanocortin receptors, binding
the four melanocortins with equal affinity (33). MC3R expresses
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FIGURE 4 | Model of the MC1R secondary structure with 7 core domains and

a rich tail. Modeling was performed by using Swiss-Model (26).

on macrophages and intestinal epithelial cells. It is also found in
lymphocytes, brain, heart, and placental tissues, as well as skeletal
muscles (28, 34).

Human MC4R was cloned by Gantz et al. (33), who traced
it to chromosome 18 as a gene encoding a protein with 333
amino acids in length (35). MC4R is expressed throughout
the central nervous system (36). It has similar affinity to
ACTH, α-MSH, and β-MSH, and to a much lesser extent to
γ-MSH. MC4R is involved with energy homeostasis, sexual
behavior, nociception, inflammation, and neuroprotection (37,
38). Inhibition of MC4R in mice results in obesity secondary to a
hyperphagic, hyperinsulinemic, and hyperglcyemic state (39).

MC5R was the last of the melanocortin gene family to be
cloned by homology screening from human genomic DNA in
1993 and subsequently in the mouse genome the following
year (40).

The MC5R has a similar ligand recognition affinity as MC1R
andMC4R in which it binds most avidly to α-MSH and to a lesser
extent ACTH. It does not bind to γ-MSH (41). MC5R expresses
in numerous tissue types including the adrenal glands, fat cells,
as well as kidney, thymus, skin, testicular, ovarian, uterine,
esophageal, duodenal, liver, and lung tissue. It is also found in
lymph nodes, bone marrow, skeletal muscle, and exocrine glands
(42). The presence of MC5R on both B- and T- lymphocytes
suggests it may play a role in regulation of the immune
system and inflammatory response (42). MC5R has a role in
exocrine gland function and thermoregulation. In the MC5R
knockout mouse model, water repulsion and thermoregulation
are impaired as a result of decreased production of sebaceous
lipids (43). Recently, Trotta et al. proposed that stimulation of
MC5R with α-MSH reduced risk of high glucose-induced cardiac
hypertrophy (44).

ASSOCIATION OF MELANOCORTIN
RECEPTORS TO INFLAMMATORY
DISEASES

MC1R and MC3R are the most studied members of the
melanocortin system family with respect to inflammation. They
may be potentially significant in the context of pulmonary
diseases. Evidence of the anti-inflammatory properties of the
melanocortin system are described in dermatologic, central
nervous system, and pulmonary disorders.

DERMATITIS

Chen et al. investigated the immunoregulatory effects of MC1R.
They found that MC1R inhibited the inflammatory response
in Raw 264.7 cells and atopic dermatitis (AD) mice model
(45). AD is a chronic allergic disease with severe irritation
and inflammation of the skin (46). An AD model in mice was
developed by using contact allergens. It was shown that α-MSH
suppressed dermatitis in these AD mice (45). Interestingly, it has
been shown that the agonists ofMC1R andMC5R have inhibitory
effects on IgE-mediated allergic inflammation (46).

FEVER AND CNS INFLAMMATION

Early into the investigation of α-MSH, it was shown that it acted
as an antipyretic in the setting of experimental fever (47). Glyn
and Lipton induced fever by injection of either endogenous or
exogenous pyrogens. The pyogenic response was significantly
reduced regardless of bacterial endotoxin or PGE2 injection
(47). Their findings were later validated by others in rabbit and
monkey models (48, 49).

Han et al. studied the effect of α-MSH on nerve repair. They
developed a mice autoimmune encephalitis model and suggested
that α-MSH promoted the restoration of injured nerves on the
spinal cord. Furthermore, α-MSH has an inhibitory effect on
the secretion of pro-inflammatory cytokines including IL-2 and
IFN-γ (50).
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RESPIRATORY INFLAMMATORY
DISEASES

The presence of MC1R and MC3R were detected on wild type
mice alveolar macrophages (51). Getting et al. showed that
melanocortin peptides inhibit leukocyte accumulation in a mice
model of pulmonary allergic and non-allergic inflammation.
They found that this protective effect is associated with the
activation of MC3R on alveolar macrophages (51).

Allergic airway disease is characterized by exaggerated airway
response to agents in the environment. Raap et al. developed
a mice model for asthma by three intraperitoneal injections
and inhalations of 10 µg of ovalbumin (52). To understand
the role of melanocortin signaling in asthma, they injected 1
mg/kg of α-MSH into the tail of mice before sensitization.
They found a significant reduction in eosinophil counts in
bronchoalveolar lavage (BAL) (P < 0.001) and a significant
decrease in serum levels of IgE (p < 0.001) IL-4 and IL-5 (both p
< 0.001) among asthmatic mice in comparison to controls. Their
study suggests melanocortin receptor agonists have anti-Th2
T-cells activity.

Colombo et al. recently conducted an animal study to discover
the potential therapeutic effects of α-MSH on acute lung injury
(ALI). They developed an ALI rat model by injecting a 1mg
bleomycin instillation into the trachea. They injected 100 µg
of α-MSH immediately after bleomycin and harvested lungs
8, and 24 h later in case and control groups. They found
α-MSH significantly prevented lung edema (lung weight in
control vs. α-MSH group, 5.8 ± 0.5 vs. 3.9 ± 0.1, respectively,
p < 0.05 respectively), and reduced circulatory NO (nitrite)
concentrations in the case group. Several genes associated with
inflammation including Cdkn1a, Hmox1, and Hspa1a were
upregulated in mice with ALI that had normalized in the
mice injected with α-MSH. Their findings support potential
therapeutic properties of α-MSH in ALI (53).

Jiangping et al. discovered the therapeutic effects of α-MSH
in ALI by using a mouse model of ALI. They caused bilateral
renal ischemia for 40min in mice to develop ALI. The mice were
then given 25mg of α-MSH or saline in case and control groups
before the clamps were removed. The treatment with α-MSHwas
repeated at 8 and 16 h post ischemia. The leukocyte numbers
and injury score in lung specimens demonstrated significant
reduction in the α-MSH group in comparison with saline control
group. The α-MSH group had significantly lower expressions
of TNF-α and intracellular adhesion moelcul-1 (ICAM-1) genes
after renal ischemia (54).

Kristensen et al. investigated the role of α-MSH in the
systemic inflammatory response syndrome (SIRS). This study
employed the use of AP214 which is an analog of α-MSH
with six lysine residues at the N-terminus of native α-MSH,
resulting in a higher binding affinity to its receptors. They
developed a porcine model for SIRS with intravascular infusion
of lipopolysaccharide (LPS from Escherichia coli endotoxin).
Animals were then randomized to receive either AP214 or saline
injections. When the porcine is exposed to LPS, it shows a dose
dependent increase in pulmonary vascular resistance, a well-
known pathophysiologic change in acute respiratory distress

syndrome (ARDS) which is also observed in sepsis. ARDS in
the setting of sepsis is triggered in part by endothelial damage
as a result of the inflammatory process. Remarkably, the peak
pulmonary pressures and pulmonary vascular resistance were
significantly (∼33%) reduced in the AP214 group (55).

The mechanism of action of α-MSH to inhibit inflammation
is not well-known. It is suggested that α-MSH exhibits its
effect in attenuating the inflammatory response by down
regulating nuclear factor kappa B (NFκB) (56). NFκB is a
nuclear transcription factor that plays a key role in the cytokine
production. In the absence of inflammatory signals, NFκB
is inactive as a heterodimeric molecule, which is composed
mainly of two subunits, p65 (RelA), and p50 (NF-κB4) (57).
Furthermore, a regulatory protein of NFκB, IκB acts as a
molecular off switch. When inflammatory signals are present,
IκB undergoes phosphorylation, ubiquitination, and proteolytic
degradation allowing for the activation of NFκB, in particular
the p65 subunit (57). Authors believe that the cAMP response
element binding protein (CREB) activation has a central role in
reducing levels of a few pro-inflammatory cytokines such as IFN-
γ and IL-7 as shown in Figure 2.

ORGAN FIBROSIS

Fibrotic and sclerotic conditions consist of a heterogeneous
group of disorders including hypertrophic scars, keloids,
scleroderma, systemic sclerosis, cirrhosis of the liver, and
interstitial lung fibrosis.

Extracellular matrix (ECM) remodeling is the common
denominator in every fibrotic and sclerotic disease regardless of
etiology (58). One of the most common models to study fibrosis
is the bleomycin model (BLM). Kokot et al. developed a mice
model of scleroderma by subcutaneously injecting bleomycin
10 µg per day for 21 days. Mice were treated with α-MSH (5
µg subcutaneously per day) for 3 weeks. Treatment with α-
MSH suppressed BLM-induced expression of type I and type
III collagen an effect which was cAMP-dependent (59). Luo
et al. recently conducted a study asking whether melanocortin
signaling is altered in keloid formation. Normal and keloid
human fibroblasts were cultured to compare melanocortin
receptor expression. In keloid-derived fibroblasts, MC1R gene
expression was significantly reduced by less than half compared
to normal fibroblasts using RT-PCR (60).

Liver fibrosis results from a progressive accumulation of
fibrillar ECM in the liver as a consequence of repeated liver
damage. Lee and co-workers developed a liver fibrosis model
with injection of carbon tetrachloride (CCl4) 1ml/kg body weight
twice a week for 10 weeks (61). Mice were electrotransferred with
the ACTH 1-17 gene after fibrosis development. Histopathology
and measurement of collagen contents of the livers showed that
transfected mice significantly reversed CCL4 liver fibrosis in
comparison to controls (liver collagen content in α-MSH group
was 23.7± 4.7 vs. 59.7± 5.0 µm/mg in control group, p < 0.01).

The effects of α-MSH on attenuating fibrosis is due to
a reduction in pro-inflammatory cytokine production and
attenuation of procollagen synthesis (62).
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Xu et al. investigated effects of an α-MSH analog on a
bleomycin pulmonary fibrosis mice model. They found that an
α-MSH analog reduced the mRNA expression of type I and III
procollagen and production of hydroxyproline in the bleomycin
treated mice. They also demonstrated that lung production of
TNF-α, IL-6, macrophage inflammatory protein 2, and TGF-β1
was significantly reduced in the α-MSH analog treated group in
comparison to controls (63).

MELANOCORTINS AND SARCOIDOSIS

Sarcoidosis is a complex, multisystem disorder characterized
by non-caseating granulomatous inflammation (64). The
presentation of sarcoidosis ranges greatly from asymptomatic
with incidental findings on imaging, to significant morbidity
and potential mortality secondary to mainly pulmonary
insufficiency and cardiac arrhythmia (65). Though there are
myriad manifestations of the disease, the lungs and thoracic
lymph nodes are almost always involved, causing cough,
dyspnea, or a decline in lung function (66). Immunosuppression
is the mainstay of treatment as the disease is believed to be
mediated largely via immune system dysregulation (67).

Prednisone and ACTH with 39 amino acid (repository
corticotropin, a long acting corticotropin) are the only two
medications currently approved by The Food and Drug
Administration (FDA) for the treatment of sarcoidosis (68,
69). ACTH binds with MCRs and attenuates pro-inflammatory
cytokines that play a central role in sarcoidosis. Baughman
et al. used high dose repository corticotropin (80 IU) twice per
week for 47 subjects with advanced sarcoidosis (70). Twenty
seven out of 29 subjects who finished 6 months of treatment
showed improvement or stability of disease. Reduction of the oral
corticosteroid dose was recorded in 27 subjects. Eighteen subjects
were treated for <3 months due to side effects, death, or cost.
The observed effect of repository corticotropin in this study could
be beyond the effect of steroidogenesis in the adrenal glands.
Repository corticotropin may also impart anti-inflammatory
properties on immune cells via MCR agonist effects (71).

It has been shown that the granulomatous inflammation of
sarcoidosis is regulated by T helper 1 (Th1) activating cytokines
including IFN-γ, interleukin-12. There is also a decreased
expression of the T helper 2 (Th2) cytokines IL-4 and IL-5 (72).
Of note, IL-12 has been shown to be the key regulator of the
Th1 immune response and is upregulated in lungs of sarcoidosis.
It has been shown that α-MSH inhibits the release of pro-
inflammatory Th1 cytokines from alveolar macrophages. When
macrophages are treated with an inflammatory endotoxin, there
is increased secretion of IL-12 and IFN-γ compared to controls.

When these alveolar macrophages are exposed to α-MSH, the
production of those Th1 cytokines is significantly decreased (73).

FUTURE PERSPECTIVES

Although α-MSH has been studied for decades, the field
of melanocortin agonists in pulmonary disease is in its
infancy. The new studies, particularly those targeting the effects
of melanocortin agonists in pulmonary diseases should be
integrated with genomics and proteomics to gain a complete
picture of biologic and cellular processes. The role of MC1R on
the lung immune system should be studied more. The effect of
MC1R agonists including a-MSH may improve inflammatory
lung diseases including sarcoidosis. Our team developed a set of
experiments to study the anti-inflammatory properties of α-MSH
in sarcoidosis by using an in-vitro and mice model.

Validation via large multicentric studies should be done to
confirm the therapeutic properties of melanocortin agonists in
sarcoidosis, ILD, and airway diseases.
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