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G-Quadruplex DNA and RNA

Danzhou Yang

Abstract

G-quadruplexes (G4s) have become one of the most exciting nucleic acid secondary structures. A nonca-
nonical, four-stranded structure formed in guanine-rich DNA and RNA sequences, G-quadruplexes can
readily form under physiologically relevant conditions and are globularly folded structures. DNA is widely
recognized as a double-helical structure essential in genetic information storage. However, only ~3% of the
human genome is expressed in protein; RNA and DNA may form noncanonical secondary structures that
are functionally important. G-quadruplexes are one such example which have gained considerable attention
for their formation and regulatory roles in biologically significant regions, such as human telomeres,
oncogene-promoter regions, replication initiation sites, and 50- and 30-untranslated region (UTR) of
mRNA. They are shown to be a regulatory motif in a number of critical cellular processes including gene
transcription, translation, replication, and genomic stability. G-quadruplexes are also found in nonhuman
genomes, particularly those of human pathogens. Therefore, G-quadruplexes have emerged as a new class
of molecular targets for drug development. In addition, there is considerable interest in the use of
G-quadruplexes for biomaterials, biosensors, and biocatalysts. The First International Meeting on Quad-
ruplex DNA was held in 2007, and the G-quadruplex field has been growing dramatically over the last
decade. The methods used to study G-quadruplexes have been essential to the rapid progress in our
understanding of this exciting nucleic acid secondary structure.
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1 G-Quadruplex Nucleic Acids

G-quadruplexes (G4s) are noncanonical four-stranded nucleic acid
structures formed in guanine-rich DNA and RNA sequences
(Fig. 1). They have emerged as one of the most exciting nucleic
acid secondary structures. DNA is widely recognized as a double-
helical structure essential in genetic information storage. Results
from the ENCODE project [1] indicate that only ~3% of the
human genome is expressed in protein and that RNA and DNA
may form noncanonical secondary structures that are functionally
important. G-quadruplexes are one such example which have
gained considerable attention for their formation and regulatory
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roles in biologically significant regions. G-quadruplexes are found
to be involved in a number of critical cellular processes, including
gene transcription, translation, DNA replication, and genomic sta-
bility. G-quadruplexes can readily form under physiologically rele-
vant conditions and are globularly folded structures. Many proteins
have been identified to interact with G-quadruplex DNA or RNA,

Fig. 1 (a) Schematic illustration of a G-tetrad, four guanine bases arranged in a square plane with Hoogsteen
hydrogen bonding. Monovalent cations (K+ or Na+, shown as blue spheres) are required to stabilize
G-quadruplexes by coordinating with the O6 atoms of the adjacent G-tetrad planes. (b) A schematic intermo-
lecular (tetrameric) G-quadruplex with three G-tetrads. (c) Examples of intramolecular G-quadruplexes with
different folding structures and loop conformations. The experimentally determined molecular structures are
shown as examples for parallel, hybrid, and basket G-quadruplexes. (d) Example NMR molecular structures of
ligand complexes with the c-MYC promoter G-quadruplex and the human telomeric G-quadruplex
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including G-quadruplex-stabilizing or destabilizing/unfolding
proteins (see reviews: [2–6]). As such, G-quadruplexes have
emerged as a new class of molecular targets for drug development.
In addition, there is considerable interest in the use of
G-quadruplexes for biomaterials [7, 8], biosensors [9, 10], and
biocatalysts [11].

First observed in 1910 [12], the G-tetrad structure was not
determined until 1962 [13]. The core structure of a G-quadruplex
consists of stacked guanine-tetrads (G-tetrads), a square planar
platform of four guanine bases that are held together by Hoogsteen
hydrogen bonds (Fig. 1a). G-quadruplex structures require
cations, particularly K+ or Na+, to stabilize stacked G-tetrads by
coordinating with tetrad-guanine O6 atoms [14–16]. The tetrad-
guanines can adopt anti or syn glycosidic conformation; tetrad-
guanines from G-strands with the same direction, i.e., parallel
strands, adopt the same glycosidic conformation, whereas those
from G-strands with the opposite direction, i.e., antiparallel
strands, adopt different glycosidic conformations [17].

G-quadruplexes can be intramolecular (monomeric) or
intermolecular (multimeric), which are formed with one or more
than one nucleic acid molecules, respectively. Tetramolecular
G-quadruplexes (Fig. 1b) are usually parallel-stranded with tetrad
guanines adopting anti glycosidic conformation. Most biologically
relevant G-quadruplexes are intramolecular G-quadruplexes, with
three-tetrad cores being the most common (Fig. 1c). In contrast to
tetramolecular structures, intramolecular G-quadruplexes form
quickly and exhibit great conformational diversity, such as in fold-
ing topology, loop conformation, and capping structures. Based on
G-strand directionality, a G-quadruplex can be parallel with all four
G-strands in the same direction, hybrid/mixed with both parallel
and antiparallel strands, or antiparallel with all adjacent G-strands
antiparallel to each other. G-strands in intramolecular
G-quadruplexes are connected by different types of loops, such as
propeller for connecting parallel strands, lateral for connecting
adjacent antiparallel strands, and diagonal for connecting antiparal-
lel strands across the G-tetrad core. Not only can different
sequences adopt distinct topologies, but a given sequence can also
fold into different conformations, as in the case of the human
telomeric DNA, or form multiple structures, as in the case of
human gene promoter sequences [18]. While a number of princi-
ples of G-quadruplex folding have been recognized, a
G-quadruplex conformation is difficult to predict and requires
experimental structure determination.
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2 G-Quadruplex Occurrence and Functions

G-quadruplexes have been found to form in specific human
guanine-rich sequences with functional significance, such as telo-
meres, oncogene-promoter regions, and 50- and 30-untranslated
region (UTR) of mRNA, as well as in nonhuman genomes.

2.1 G-Quadruplexes

in Telomeres

The first biologically relevant G-quadruplex was observed in telo-
meric DNA. Telomeres are specific DNA–protein complexes at the
ends of linear chromosomes, providing protection against gene
erosion from cell divisions, chromosomal nonhomologous
end-joinings, and nuclease attacks [19–21]. Telomeric
G-quadruplexes were first reported as novel intramolecular struc-
tures containing guanine–guanine base-pairs in single-stranded
telomeric sequences of several organisms [22], and as guanine-
tetrads between hairpin loops of the Tetrahymena telomeric DNA
[23]. The importance of monovalent cations in the stabilization of
G-quadruplex structures was revealed by Williamson, Cech in their
monovalent cation-induced square-planar G-quartet model using
the Oxytricha and Tetrahymena telomeric DNA [14]. Human tel-
omeres consist of tandem repeats of the hexanucleotide
d (TTAGGG)n 5–10 kb in length, which terminate in a single-
stranded 30-overhang of 35–600 bases [24]. Telomeres of cancer
cells do not shorten upon replication, mainly due to the activation
of a reverse transcriptase, telomerase, that extends the telomeric
sequence at the chromosome ends [25]. Telomerase is activated in
80–85% of human cancer cells to maintain telomere length and
malignant phenotype [25–27]. The G-quadruplex formation can
inhibit the activity of telomerase [28], making it an attractive target
for cancer therapeutic intervention. In addition to the formation at
the telomere end, which most likely involves intramolecular
G-quadruplex structures, intermolecular G-quadruplex formation
may also be involved in the T-loop invasion complex
[29, 30]. Recently, telomeric repeat-containing RNA (TERRA)
G-quadruplex was identified and found to inhibit telomerase
[31, 32].

Human telomeric DNA is structurally polymorphic and may
adopt different intramolecular G-quadruplex conformations,
including two equilibrating hybrid-type structures [33–39] and a
2-tetrad structure [40–42] in K+ solution, a parallel structure in the
crystalline form in the presence of K+ [43], and a basket-type
structure in Na+ solution [44]. The hybrid-type structures can
effectively form packed multimers at the telomere ends
[33, 45]. Although different human telomeric G-quadruplexes
appear to have small energy differences relative to each other,
interconversion between them is kinetically slow, indicating a
high-energy intermediate (s) [33, 41, 46–48]. The structure
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polymorphism appears to be an intrinsic property of the highly
conserved telomeric sequence in higher eukaryotes, particularly
the TTA loop sequence [49]. On the other hand, telomeric
repeat-containing RNA was shown to adopt parallel-stranded
G-quadruplexes [50–52].

2.2 G-Quadruplexes

in Gene Promoters

More recently, DNA G-quadruplexes were found to form in the
gene promoter regions and function as transcriptional regulators
[53, 54], which has been the most active area for G-quadruplex
DNA in the past decade. The first experiments that suggested the
existence of unusual forms of DNA associated with runs of gua-
nines in gene promoters were reported in 1982 for the chicken
β-globulin gene based upon the nuclease hypersensitivity of pro-
moter elements [55–57]. Since then, the occurrence of these ele-
ments in the human gene promoters has been reported, including
in those of insulin [58], c-MYC [54, 59], VEGF [60, 61], HIF-1α
[62], BCL-2 [63–65], MtCK [66], K-RAS [67, 68], c-KIT
[69, 70], RET [71], PDGF-A [72], c-MYB [73], hTERT [74],
and PDGF-Rβ [75, 76], in addition to mouse α7 integrin [77]. The
potential occurrence of DNA G-quadruplexes has been discovered
in the promoter regions of human genes involved in growth and
proliferation [53, 78, 79]; these genes all contain G-rich/C-rich
tracts in the proximal regions of promoters and are mostly TATA-
less. In addition, the potential for quadruplex formation is higher
within oncogenes as compared to tumor suppressor genes
[80]. Computational analyses showed significant enrichment of
G-quadruplex-forming sequences in the promoter regions of
human genes near transcription start sites (TSS) [81]. The driving
force of the formation of promoter G-quadruplexes appears to be
the transcription-induced dynamic negative superhelicity [82–85].
The c-MYC gene promoter is the most extensively studied system
for the promoter G-quadruplex [54, 86]. A highly conserved
G-rich nuclease hypersensitivity element III1 in the proximal region
of the c-MYC promoter controls 80–90% of the transcriptional
activity regardless of whether the P1 or P2 promoter is used
[87–90]. This element in the c-MYC promoter is highly dynamic
in its conformation [91], and can form G-quadruplex structures,
which function as a transcriptional silencer [54, 59].

In contrast to the repeating tandems in the telomeric sequence,
the promoter G-quadruplex-forming sequences are each unique in
their number and length of G-tracts and intervening bases. The
promoter G-rich sequences often contain more than four G-tracts
with unequal numbers of guanines and can form multiple
G-quadruplexes through utilizing varying combinations of
G-tracts or different loop isomers through utilizing varying gua-
nines on one G-tract [18]. Parallel structures are common to the
promoter G-quadruplexes, usually with a three-tetrad core. Struc-
tural studies showed that each promoter G-quadruplex adopts
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unique capping and loop structures determined by its specific
sequence, such as c-MYC [92–95], BCL-2 [63, 65, 96, 97],
KRAS [98], c-KIT [99–101], VEGF [102], and PDGFR-β
[103, 104]. A notable feature in the promoter G-quadruplexes is
the prevalence of the G3NG3 motif, a robust parallel-stranded
structural motif with a 1-nt propeller loop. This motif was first
observed in the major G-quadruplex structure formed in the
c-MYC promoter, which showed that the 1-nt propeller loop con-
formation is highly favored [94]. By having two such motifs, paral-
lel promoter G-quadruplexes can have a long and variable middle
loop [65, 97, 105]. In addition, parallel G-quadruplexes exist in
variant forms, such as with broken-strand [99, 103], end-insertion
[104], or even with an additional hairpin loop conformations
[65, 74]. Furthermore, certain promoter sequences can form mul-
tiple G-quadruplexes on one overlapping region or on separate
regions. For example, the BCL-2 proximal promoter contains two
G-quadruplex-forming regions that are separated by 13 nt (Pu39
and P1G4), with two competing G4s, i.e., a hybrid structure
[63, 96] and a parallel structure [97], formed in Pu39, and two
equilibrating parallel G4s formed in P1G4 [65]. Similar phenome-
non was observed in the promoters of KRAS [67, 68, 106–108],
c-KIT [69, 70, 99–101], PDGFR-β [75, 76, 103, 104], and
hTERT [74, 109–111]. The variations in promoter
G-quadruplexes give rise to different overall structure properties
that could be specifically recognized by proteins or small-molecule
ligands for transcriptional regulation. Moreover, inherent polymor-
phism and equilibrium between different conformations may pro-
vide an additional layer of transcriptional modulation.

2.3 G-Quadruplexes

in Other Regions

of Genome and in RNA

G-quadruplexes have been found in other regions of the human
genome, such as immunoglobulin class switch regions [112–114],
ribosomal DNA [115], mitochondrial DNA [116–119], replica-
tion initiation regions [120], the LINE-1 retrotransposon
[121–123], DNA:RNA hybrid-G-quadruplexes in transcription
[124], as well as in the extended repeat sequences in neurodegen-
erative diseases at both DNA and RNA levels, such as the (CGG)n
repeat in the 50-UTR of the FMR1 gene in the Fragile X syndrome
(FXS) [125–127] and the hexanucleotide repeat expansion (HRE)
(GGGGCC)n in C9orf72 of amyotrophic lateral sclerosis (ALS)
and frontotemporal dementia (FTD) [128]. In addition,
G-quadruplexes have been found to form in RNA.
G-quadruplexes formed in 50-UTR have been shown to inhibit
translation [129, 130], such as NRAS [131], Zic-1 [132], TRF2
[133], Yin Yang 1 [134], or in internal ribosomal entry sites
(IRESs) to initiate cap-independent translation, such as VEGF
[135]. In addition, G-quadruplexes are found in 30-UTRs
[136–138] as well as in RNA introns to regulate the alternative
splicing, such as TP53 [139] and Bcl-XL [140].
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Notably, DNA G-quadruplex structures are recently shown to
be involved in genomic instability and DNA damage [141–143].

2.4 G-Quadruplexes

in Nonhuman Genomes

G-quadruplexes have been identified in nonhuman genomes. As in
the human genome, these G-quadruplexes predominantly occur in
regions of regulatory importance. Particularly, G-quadruplexes are
found in genomes of human pathogens [144]. Many examples of
G-quadruplexes were identified in viruses [145, 146], including
human immunodeficiency virus (HIV) [147–150], multiple species
of herpes virus [151–155], human papillomavirus (HPV) [156],
hepatitis C [157], Zika [158], Ebola [159], and a G-quadruplex-
binding protein was found in severe acute respiratory syndrome
(SARS) coronavirus [160]. In bacteria, G-quadruplexes are found
in Escherichia coli [161], Neisseria gonorrhoeae [162], Neisseria
meningitidis [163], Mycobacterium tuberculosis [164], and Deino-
coccus radiodurans [165]. G-quadruplexes were also found in cili-
ates [14], malaria parasites [166, 167], and yeasts
[168, 169]. Notably, helicases that resolve G-quadruplex struc-
tures, such as RecQ [170, 171] and Pif1 [142] families, were
found in both nonhuman and human systems. Most recently, the
presence of G-quadruplexes in plant genomes has also
emerged [172].

3 G-Quadruplex Detection In Vivo

There has been significant progress in the detection of
G-quadruplexes structures in vivo [173]. The first direct evidence
of the in vivo existence of G-quadruplexes was established by using
G-quadruplex-specific single chain variable fragment (scFv) of an
antibody to detect G-quadruplexes formed at telomeres in macro-
nuclei of the ciliate Stylonychia lemnae, which was shown to be cell
cycle-dependent [174] and controlled by telomere end-binding
proteins TEBPα and TEBPβ phosphorylation [175]. More
recently, using a G-quadruplex-specific antibodies BG4 (scFv)
[176] and 1H6 (monoclonal antibody) [177], G-quadruplex struc-
tures were visualized in human cells at both telomeric and
non-telomeric sites on chromosomes, and G4-loci number
increased after exposure of live cells to G-quadruplex ligands
[176] or in the absence of FANCJ, a G-quadruplex DNA-specific
helicase [177]. Using BG4 to map endogenous G-quadruplex
structures by G4 ChIP-seq in human cells, ~10,000 endogenous
G-quadruplex structures were detected in immortalized precancer-
ous HaCaT cells, 10 times higher than in normal human NHEK
cells [178]. G-quadruplex structures were found to be enriched in
nucleosome-depleted regulatory regions including the promoters,
such as c-MYC, and 50 UTRs, of highly transcribed genes. The
detected G-quadruplexes in cells account for less than 1% of the
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genomic G4-sites identified by G4-seq [179] or predicted by G4
algorithms [81], suggesting the in vivo formation of G-quadruplex
is highly context-dependent. In addition, the endogenous potential
G4 sites were detected in live human cells by chemical footprinting
combined with high-throughput sequencing and were found to
enrich in regions involving chromatin reorganization and gene
transcription [180]. G-quadruplex formation in vivo was also
detected by small molecules probes, such as the radiolabeled G-
quadruplex-ligands 360A [181], and fluorescent G-quadruplex-
ligands BMVC [182, 183] and DAOTA-M2 [184].

4 G-Quadruplex-Interactive Small Molecules

Recognition of the biological significance of G-quadruplexes has
promoted research and development of G-quadruplex-interactive
small molecule ligands (G4-ligands). The identification of genomic
G-quadruplex structures in regions of functional importance, such
as human telomeres and oncogene promoters, has created the
opportunity to selectively target these globular DNA structures
for cancer-specific drug development [17, 185–190]. The thera-
peutic possibilities of targeting telomeric G-quadruplexes to inhibit
telomerase were first reported in 1997 [191] and have been actively
pursued [185–188]. G-quadruplex-ligands were also shown to
inhibit the alternative lengthening of telomeres (ALT) pathway
which maintains telomere stability in a telomerase-independent
manner in ~15% of cancer cells [192–195]. The discovery of the
perylene derivative PIPER to inhibit helicase Sgs1-mediated
G-quadruplex unfolding suggested the existence of a broader
mechanism for G-quadruplex-ligands [196]. In 2002, a small mol-
ecule that stabilizes the G-quadruplex formed in the c-MYC pro-
moter was shown to inhibit c-MYC expression, suggesting
therapeutic opportunity of targeting promoter G-quadruplexes
for transcriptional modulation [54, 197]. Different groups of com-
pounds, such as quindolines and ellipticines, were reported to
suppress c-MYC transcription by stabilization of the c-MYC pro-
moter G-quadruplex [198–201]. Subsequently, transcriptional
repression of other oncogenes was shown by compounds stabiliz-
ing promoter G-quadruplexes, such as c-KIT [202], BCL-2 [203],
KRAS [204–206]. More recently, G-quadruplex-stabilizing com-
pounds were shown to cause DNA damage and genomic instability
and exhibit synergistic effect with inhibitors or deficiency of
DNA-repair mechanisms [207–211]. Specifically, G-quadruplex-
stabilizing compounds were shown to induce selective lethality in
BRCA-deficient cancers by targeting the inherent DNA double-
strand break (DSB) repair deficiency [212, 213].

A G-quadruplex targeting drug, Quarfloxin (CX-3543) [115],
based on the fluoroquinolone compounds developed by Laurence
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Hurley [214, 215] showed excellent in vivo activity in various solid
tumors and had reached Phase II clinical trials. Its second-
generation compound, CX-5461, is currently in clinical trials for
BRCA1/2 deficient tumors (Canadian trial, NCT02719977)
[213]. Diverse families of other small molecule compounds that
interact with G-quadruplexes were developed and studied. For
example, TMPyP4, a tetra-(N-methyl-4-pyridyl)-porphyrin, is a
structure-based designed compound that exhibits significant selec-
tivity for quadruplex DNA over duplex DNA and inhibits telome-
rase and ALT [216, 217]. Its positional isomer TMPyP2 is a poor
G-quadruplex-interactive compound and can be used as a negative
control of TMPyP4 [218]. Later studies revealed that TMPyP4
interacts with the c-MYC promoter G-quadruplex and downregu-
lates c-MYC [54, 197]. TMPyP4 and TMPyP2 have been one of
the most widely used molecules in G-quadruplex research.
Telomestatin is a natural product isolated from Streptomyces anula-
tus 3533-SV4 to be a highly potent inhibitor of telomerase [219]
and active against human cancers by stabilizing telomeric
G-quadruplex and inhibit telomere-protein binding [220–223].
BRACO19 is a rationally designed trisubstituted acridine to
directly target telomeric G-quadruplex [224] and was shown to
inhibit telomerase and induce telomere uncapping in human cancer
cells [195] and have high in vivo activity against different cancer
xenograft models [225, 226]. 12459 is a triazine G4-ligand that
exhibits anti-telomerase activity but also appears to involve BCL-2
and hTERT splicing [192, 227, 228]. Closely related pyridine
dicarboxamide derivatives 360A/307A and bisquinolinium com-
pounds Phen-DC(3)/Phen-DC(6) are highly selective G-quadru-
plex ligands and were shown to be active against both telomeric and
c-MYC G-quadruplex and inhibit c-MYC gene transcription in
tumor cells, as well as bind to a G-quadruplex formed in the
50-UTR of TRF2 mRNA to repress translation [133, 229–232].
Phen-DC was also shown to trigger genetic instability in Saccharo-
myces cerevisiae [207]. PDS is a pyridostatin compound which
shows potent G-quadruplex-stabilization and has been widely
used to study G-quadruplex functions and G-quadruplex-induced
DNA damage [176, 210–212, 233]. In addition, G-quadruplex
DNA was also shown to be potential cancer therapeutics. AS1411
(Antisoma, London, UK) is an unmodified 26-nt G-quadruplex
forming oligonucleotide that has been in Phase II trials for treat-
ment of renal cancer and acute myeloid leukemia [234].

G-quadruplex-interactive compounds have contributed
immensely to understanding G-quadruplex functions and potential
as a therapeutic target. Different G-quadruplex-ligands show vari-
ous levels of selectivity, between G-quadruplex structures over
other forms of DNA and between different G-quadruplexes, and
this selectivity is likely to be related to their biological activity.
Conventional and in silico screening methods as well as structure-
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based rational drug design were actively pursued in the develop-
ment of G-quadruplex-targeting small molecules. A common fea-
ture among the G-quadruplex-ligands is the presence of a fused
ring system that is capable of stacking with the terminal G-tetrads.
In addition, a crescent-shaped asymmetric pharmacophore that can
recruit a DNA base and cationic side chain substituents that have
the propensity to interact with G-quadruplex grooves can give rise
to specific interactions (Fig. 1d) [235, 236]. Structural data of
G-quadruplex-ligand complexes has been playing an important
role in the understanding of small molecule recognition of
G-quadruplexes and the design of G-quadruplex-ligands
[18, 237]. This includes a handful NMR solution structures of
intramolecular G-quadruplex-ligand complexes, including c-MYC
G-quadruplex-ligand complexes [235, 238–240] and telomeric
G-quadruplex-ligand complexes [236, 241–243], and X-ray crys-
tallographic structures of intramolecular and intermolecular telo-
meric G-quadruplex-ligand complexes [43, 237, 244–250].

5 Methods to Study G-Quadruplexes

A wide variety of experimental tools and methods have been uti-
lized or developed for studying G-quadruplex DNA and RNA.
These methods play a pivotal role in enabling researchers to gain
an understanding of G-quadruplex structures, properties, and func-
tions. The methods commonly used for studying G-quadruplexes
include biophysical, biochemical, molecular biology, and cellular
methods, as described in this book.

Biophysical methods are widely used to study physical proper-
ties of G-quadruplex such as structures, stability, and binding inter-
actions with ligands and proteins. Circular dichroism (CD) is
widely used to study G-quadruplex conformations and stability.
Isothermal titration calorimetry (ITC) can directly measure bind-
ing enthalpies and provide thermodynamic characterization of
G-quadruplex-ligand interactions. Biosensor-surface plasmon res-
onance (SPR) is a quantitative approach for the study of small
molecule and protein ligand-quadruplex nucleic acid interactions
in real time. Analytical ultracentrifugation (AUC) method can be
used to characterize G-quadruplex formation and to monitor
ligand binding. Mass spectroscopy can also be used to characterize
G-quadruplex structures and ligand binding. Differential scanning
calorimetry (DSC) can be used to obtain thermodynamic and
sometimes kinetic parameters of G-quadruplexes. X-ray crystallog-
raphy and solution NMR spectroscopy provide structural informa-
tion of G-quadruplexes and ligand complexes, while molecular
dynamics simulation can also be used to study G-quadruplex struc-
tures and small molecule binding.
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Biochemical and molecular biology methods are used to study
G-quadruplex formation, functions, and protein interactions. Elec-
trophoretic mobility shift assay (EMSA), dimethyl sulfate (DMS)
footprinting, and DNA polymerase stop (Pol-stop) assay are widely
used to study G-quadruplex formation, protein complexes, and
ligand interactions. Chromatin immunoprecipitation (ChIP) assays
are used to probe protein interactions with G-quadruplex-forming
DNA sequences. A combination of biochemical and biophysical
methods can be used to monitor co-transcriptional formation of
G-quadruplexes (transcription assay) and to quantitatively analyze
the effects of G-quadruplex formation on DNA replication (repli-
cation assay). Single-molecule methods such as optical and mag-
netic tweezers, atomic-force microscopy (AFM), and single-
molecule fluorescence resonance energy transfer (FRET) micros-
copy can be used to investigate G-quadruplex conformations,
ligand interactions, and protein interactions. In addition, methods
are used to discover and develop G-quadruplex-targeting mole-
cules, such as FRET-based high-throughput screening of small
molecule ligands, and peptide nucleic acid (PNA) oligomers that
are designed to bind to G-quadruplexes. G-quadruplexes are also
used in nanoparticle-based assays, and as biocatalysts such as
G-quadruplex DNAzymes.

More recent and exciting developments include in-cell meth-
ods to study the G-quadruplex formation in vivo, such as in vivo
chemical footprinting, G-quadruplex detection and visualization,
and in-cell NMR. Chemical probing for G-quadruplex formation
inside living cells combined with high-throughput sequencing can
provide a snapshot of the DNA conformation over the whole
genome in vivo. G4-specific antibodies and fluorescence probes
are used to detect and visualize G-quadruplexes in cells. NMR
spectroscopy is used to study G-quadruplex structures inside living
Xenopus laevis oocytes, while 19F NMR can be used to study
G-quadruplex conformation in vitro and in living cells.

In conclusion, it is our hope that the protocols described herein
will be found both informative and useful.
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