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Abstract: Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and 
cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeu-
tic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective 
mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy 
is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is con-
sidered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the 
relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms 
that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In 
this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy 
in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well 
as their role as targets for the development of novel therapeutic approaches.
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will help to develop new drugs based on their abil-
ity to function as BH3 mimetics, a strategy to trigger 
autophagy-associated cell death in cells conferring 
resistance to apoptosis.20–23 While the suppression of 
apoptosis is linked to the induction of autophagy,2,24 
the inhibition of autophagy can cause apoptosis.2,25,26 
Thus, identifying the mechanisms thought to be 
involved in the regulation of the crosstalk between 
apoptosis- and autophagy-associated cell death is 
considered an important step for the development 
of optimal chemotherapeutic approaches for tumor 
treatment.

Apoptosis
Apoptosis is a form of cell death, also referred to 
as programmed cell death, in which a ‘suicide’ 
machinery is activated within the cell, leading to 
the fragmentation of DNA, shrinkage of the cyto-
plasm, membrane changes, and finally to cell death 
without any lysis or damage to neighboring cells.27 
Thus, apoptosis is a normal phenomenon occurring 
frequently in a multicellular organism, thereby play-
ing an essential role in organism survival. Apoptosis 
is considered a compelling aspect of various cellular 
processes. The regulation of apoptosis is mediated by 
an intracellular proteolytic cascade.1,2,28,29 The mecha-
nisms of this cascade are similar in all animal cells30,31 
and depend on a family of proteases that possess a 
cysteine at their active site with the ability to cleave 
their target proteins at specific aspartic acids.32–36 
Accordingly, their target proteins are referred as cas-
pases, which are synthesized in the cell in an inactive 
form (pro-caspases); their activation is mediated by 
the cleavage of aspartic acids by other caspases. This 
downstream activation pathway amplifies the intrac-
ellular proteolytic cascade. Some of these activated 
caspases can cleave other key proteins in the cell, 
such as the nuclear lamins that mediate irreversible 
breakdown of the nuclear lamina.28,29 Other caspases 
have been shown to cleave proteins that functionally 
govern the DNA-degrading enzyme, DNAase, in an 
inactive form, a cytoprotective mechanism to avoid 
DNA damage from freeing DNAase and subsequently 
prevent the initiation of apoptosis.37–39

Mechanisms of apoptosis
The pathways, which are involved in the regulation 
of apoptosis, are extremely complicated and appear 

Introduction
Both apoptosis and autophagy are highly conserved 
processes that in addition to their role in maintenance 
of organismal and cellular homeostasis are considered 
relevant therapeutic targets for tumor treatment.1–9 
Although apoptosis and autophagy play an important 
role in the modulation of tumor therapeutics, their 
molecular action can be counteracted by cancer pro-
tective mechanisms.10–12

Apoptosis is a tightly regulated set of cellular 
events which are associated with biochemical and 
morphological changes. However, these character-
istic changes of apoptosis present a set of potential 
targets for cell death and thereby are considered a 
prognostic marker for early assessment of the effi-
ciency of anticancer agents. Thus, in vivo, apoptosis 
has been reported to be a relevant detector for tumor 
resistance and response during the course of the treat-
ment with chemotherapeutics.13 Autophagy, which is 
known to be a catabolic pathway, can be activated by 
cellular stress in response to environmental changes, 
chemical agents, starvation, or infection.14 However, 
the promotion of autophagic process, in response to 
extra- and intracellular stress, leads to the regulation 
of different mechanisms that in turn mediate cellular 
events such as cellular adaptation, cell survival, and 
cell death.15,16 Therefore, understanding the molecular 
mechanisms implicated in the regulation of either cell 
survival or cell death will help to identify a relevant 
target for tumor prevention and treatment. As a tumor 
suppressive mechanism, autophagy has been dis-
cussed in several studies, in which the distribution of 
autophagic machinery was found to trigger both cel-
lular transformation and tumor progression.17,18 Addi-
tionally, pro- and anti-tumor functions of autophagy 
have been reported. In addition to its tumor suppressive 
actions, autophagy can enhance tumor progression of 
tumor cells exhibiting radio- and chemotherapeutic 
resistance.19 The resistance of cancer cells to available 
therapeutics is thought to be mediated mainly via the 
activation of autophagy-dependent pathways or via 
the suppression of apoptosis-dependent pathways.2 
Thus, functional analysis of the mechanisms of tumor 
resistance to apoptosis in the context of developing 
novel cancer therapeutics is thought to be an enor-
mous challenge for researchers and clinicians. Addi-
tionally, understanding the molecular mechanisms 
of the crosstalk between apoptosis and autophagy 
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to be both agent-dependent and tissues-specific.40–42 
Thus, based on the inducer and the effector, the 
apoptotic pathways are either extrinsic or intrinsic 
pathways.43–45 Besides the major apoptotic pathways, 
namely, a third apoptotic pathway has been reported. 
This pathway is specific to cytotoxic T lymphocytes 
and natural killer (NK) cells and is referred as the 
perforin/granzyme-A or B pathway.46,47 This perfo-
rin pathway is caspase-independent and is mediated 
through single-stranded DNA damage.48 Although 
the variation of their induction manner is great, both 
extrinsic and intrinsic pathways converge by apopto-
sis through the activation of caspase-3/7.49,50 An out-
line demonstrates the molecular mechanisms, which 
are responsible for the regulation of both extrinsic and 
intrinsic pathways of apoptosis, are shown (Fig. 1).

Intrinsic pathway
The intrinsic pathway is a non-receptor mediated 
pathway and functions only via mitochondria associ-
ated mechanisms.51 This pathway mediates the intra-
cellular signals that act directly on targets, within 
the cell, or on those associated with the mitochon-
drial dysregulation.52 The activation of the intrinsic 
pathway can act in two opposing patterns.53,54 One of 
these patterns is mediated by the suppression of the 
inhibitors of death programs such as growth factors, 
hormones, and cytokines. However, the other pattern 
is mediated by direct exposure to several environmen-
tal changes such as irradiation, toxins, hypoxia, and 
viral infections.54,55 In contrast, apoptosis mediated by 
the intrinsic pathway is characterized by alterations 
of the inner mitochondrial membrane, that in turn 
leads to the loss of mitochondrial membrane poten-
tial (Δψm).1–4,54 The loss of Δψm leads to the release 
of the pro-apoptotic proteins, which are characteristic 
of mitochondrial damage; these molecules include 
cytochrome c (cyt c), Smac/DIABLO, and the serine 
protease HtrA2/Omi56,57 apoptosis inducing factors 
(AIF) endonuclease G and caspase-activated deoxy-
ribonuclease (CAD).54 However, the release of these 
proteins leads to the activation of caspases such as 
caspase-9 and caspase-3, whose activation is associ-
ated with the loss of Δψm;1,2 the mechanism by which 
the released cyt c mediates apoptosis is regulated by 
its binding to both Apaf-1 and pro-caspase-9 to form 
a protein complex known as the apoptosome.58,59 
Through apoptosome formation, caspase-9 becomes 

active to subsequently mediate the activation of 
caspase-3, leading to PARP cleavage and finally to 
apoptosis. The mechanism by which Smac/DIABLO 
and HtrA2/Omi triggers apoptosis is mediated by the 
inhibition of inhibitor of apoptosis (IAP) activity.60–62

However, the appearance of AIF, endonuclease G, 
and CAD proteins is associated with late apoptosis 
after the cell has decided to die.54 In this case, trans-
location of AIF to the nucleus leads to DNA frag-
mentation and subsequently to peripheral chromatin 
condensation,54,63 a process referred to as “stage I” 
condensation.64 Additionally, translocation of endo-
nuclease G to the nucleus results in nuclear chro-
matin cleavage to produce oligonucleosomal DNA 
fragments.65 In addition, after release from the mito-
chondria and subsequent cleavage by caspase-3, CAD 
can translocate into the nucleus where it mediates the 
fragmentation of the oligonucleosomal DNA,66 a pro-
cess known as “stage II” condensation.54,66 The control 
and regulation of mitochondrial dysregulation occur 
through Bcl-2 family of proteins, which are known to 
be responsible for mitochondrial integrity and subse-
quent caspase activation, which in turn leads to apop-
totic cell death.67 In this context, the tumor suppressor 
protein p53 has been widely reported to play a critical 
role in the regulation of Bcl-2 proteins.68 Bcl-2 pro-
teins include both pro-apoptotic and anti-apoptotic 
mediators.69 These anti-apoptotic mediators include 
Bcl-2, Bcl-x, Bcl-XL, Bcl-XS, Bcl-w, BAG, Mcl-1, 
whereas the pro-apoptotic mediators include Bcl-10, 
Bax, Bak, Bid, Bad, Bim, Bik, and Blk. Thus, the cel-
lular decision to live or to die is controlled by the bal-
ance between both pro- and anti-apoptotic mediators, 
which can regulate the mitochondrial outer membrane 
permeabilization (MOMP) and subsequently the reg-
ulation of cyt c release from the mitochondria into the 
cytoplasm.49

The role of Bax and Bak in the regulation of 
mitochondrial damage has been documented in 
several studies.1,3 Although the molecular mecha-
nism of both BAK and BAX activation is not well-
characterized, the role of Bax has been reported.69–73 
However, phosphorylation of both BAK and BAX 
serves to facilitate their homo-oligomerization and 
subsequently their localization into mitochondria, 
leading cyt c release.74,75 However, the involvement 
of caspase-8 in the activation of Bid-induced activa-
tion of Bax as observed in Fas-induced apoptosis76,77 
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Figure 1. Simplified outline showing key proteins within the extrinsic and intrinsic apoptotic pathways in response to extra- and intracellular stress. Gener-
ally, death domain-containing receptors including CD95 (APO-1/Fas) can be activated in response to external signals (such as Fas ligand), which triggers 
the activity of the extrinsic apoptosis pathway through the Fas-associated death domain (FADD). This pathway is mediated by recruitment and activation 
of caspase-8 (Pro-casp 8), an initiator caspase, in the death-inducing signaling complex followed by direct cleavage of downstream effector caspases such 
as caspase-3 (casp 3). Thus, casp 8 is an important pro-apoptotic protein for the extrinsic apoptotic pathway. Initiation of the intrinsic apoptosis pathway 
results from intracellular stress, leading to mitochondrial damage that is characterized by the loss of mitochondrial membrane potential (Δψm) and cyto-
chrome c (cyt c) release. This triggers activation of initiator caspase-9 (casp 9) and ultimately results in activation of effector caspases, such as caspase 3 
(casp 3), that mediates the cleavage of poly(ADP-ribose) polymerase (PARP) and finally leads to apoptosis. Additionally, endoplasmic reticulum stress that 
can be mediated by oxidative stress elevates intracellular calcium (Ca2+) release that subsequently mediates calpain cleavage, leading to the activation of 
caspase-4 (casp 4), which mediates the cleavage of casp 9, casp 3, and PARP, and finally leads to apoptosis.

provides an evidence for the “crosstalk” between the 
death-receptor (extrinsic) pathway and the mitochon-
drial (intrinsic) pathway.4,50,76 Additionally, the role 
of Bad in the promotion of mitochondrial dysregu-
lation has been reported. Thus, phosphorylation of 
Bad on the serine residue enhances the ability of the 

14-3-3 protein, a member of a family of multifunc-
tional phosphoserine binding molecules, to capture 
Bad in the cytosol where it is sequestered.78 However, 
dephosphorylation of Bad or even its native form 
can translocate into the mitochondria to cause cyt c 
release.78 Heterodimerization of Bad with Bcl-Xl or 
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corresponding receptor, cytoplasmic adapter proteins 
can exhibit the corresponding death domains. Ligation 
of Fas ligand to the Fas receptor mediates its binding 
to FAS-associated death domain (FADD), whereas 
ligation of the TNF ligand to the corresponding TNF 
receptor mediates its binding to TNF-receptor associ-
ated death domain (TRADD), which in turn leads to 
recruitment of FADD and receptor-interacting protein 
(RIP).92,93 The interaction of FADD with pro-caspase-8 
through its death effector domain leads to formation 
of a death-inducing signaling complex (DISC) that 
mediates the activation of caspase-8.94 Following cas-
pase-8 activation, death receptor-mediated apoptosis 
can be initiated.

Execution phase
Both extrinsic and intrinsic pathways lead to the final 
pathway of apoptosis.49 The execution phase includes 
activation of execution caspases, which are character-
istic of the final phase of apoptosis that is associated 
with the activation of cytoplasmic endonucleases and 
proteases. This leads to the degradation of nuclear 
materials and cytoskeletal proteins.

Both morphological and biochemical changes 
characteristic of apoptotic cells are mediated by 
effector “executioner” caspases such as caspase-3, 
caspase-6, and caspase-7. Activation of these cas-
pases results in cleavage of various substrates such as 
cytokeratins, PARP, plasma membrane cytoskeletal 
protein alpha fodrin, and nuclear mitotic apparatus 
protein (NuMA).95

Caspase-3 is known to be the most important cas-
pase among the executioner caspases and its activation 
is mediated by initiator caspases such as caspase-8, 
caspase- 9, or caspase-10.77 In apoptotic cells, activa-
tion of caspase-3 mediates activation of various sub-
strates such as endonuclease caspase-activated DNase 
(CAD), whose activation promotes protein degrada-
tion that subsequently causes chromatin condensation 
in apoptotic cells.96 Additionally, activation of keratin 
18 by caspase-3 mediates formation of apoptotic bod-
ies during the course of apoptosis.97 These reports, 
however, describe the mechanisms responsible for 
caspase-3-mediated disruption of the cytoskeleton 
during apoptosis. Moreover, caspase-cleaved gelsolin 
functions as actin filaments in vitro in a Ca2+-indepen-
dent manner.98 Expression of the gelsolin cleavage 
product in multiple cell types triggers the cells to 

Bcl-2 can lead to enhanced apoptosis by a mechanism 
that includes neutralizing of the protective effect of 
both Bcl-Xl or Bcl-2.79 The main function of both 
Bcl-2 and Bcl-Xl is to inhibit the release of cyt c 
from the mitochondria and protect the mitochondria 
from the localization of pro-apoptotic mediators is 
not well-characterized. However, the mechanism by 
which both Bcl-2 and Bcl-XL mediate the inhibition 
of apoptosis is regulated by the activation of caspase 
proteases.80,81

Both Puma and Noxa are two members of the Bcl-2 
family, which are also involved in the promotion of 
apoptosis in different cell types including melanoma 
cells.2,82 Puma plays an important role in p53-mediated 
apoptosis, and its overexpression, in vitro, is correlated 
with increased expression, conformational change, 
and translocation of Bax to the mitochondria, that in 
turn, lead to the loss of Δψm and subsequently the 
release of cyt c.2,4,82,83 Noxa has also been reported to 
be a mediator of p53-induced apoptosis and has been 
shown to localize to both mitochondria and the endo-
plasmic reticulum (ER);82 its interaction with anti-
apoptotic Bcl-2 family members mediates caspase-9 
activation.84 Additionally, the regulation of both Puma 
and Noxa expression by p53 suggests a potential role 
for both proteins in modulating apoptosis associated 
with DNA damage.49 Moreover, the potential role of 
the proto-oncoprotein Myc in modulating apoptosis 
via p53-dependent and independent mechanisms has 
been reported.85 Therefore, further elucidation of these 
pathways should provide new insight into the course 
of tumorigenesis and tumor therapy.

Extrinsic pathway
The extrinsic pathway is one of the two major apop-
totic pathways whose activation is initiated by trans-
membrane receptor(s) through the ligation to the 
corresponding ligand(s) or agonist(s) of interest. These 
receptors include FasL/FasR, TNF-α/TNFR1, Apo3L/
DR3, Apo2L/DR4, and Apo2L/DR5.86–91 However, 
one of the most well-characterized receptors includes 
the member of the tumor necrosis factor (TNF) recep-
tor gene superfamily.87 These family members share 
similar cysteine-rich extracellular domains in addition 
to a cytoplasmic death domain.87 The main function of 
the death domain is to transmit the external death sig-
nal from the cell’s surface to the intracellular signal-
ing pathways. Following binding of the ligand to the 
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etiopathogenesis of many important human diseases, 
including metabolic disorders and cancer, has been 
reported.112 Autophagy has been demonstrated to 
function as an important cell survival mechanism, 
particularly when cells are under stress conditions 
such as oxidative stress and starvation.113–115 Addi-
tionally, the involvement of autophagy in regulating 
cell death processes, in apoptosis,2,116,117 necrotic cell 
death,118,119 or even autophagic cell death, has been 
reported.120–122 Thus, the function of autophagy as cell 
death machinery in different tissue types appears to 
be established. However, the factors responsible for 
regulating this mechanism are not well-understood. 
Although the natural and cellular stress-induced 
autophagy is crucial processes, the factors responsi-
ble in determining whether autophagy mediates cell 
survival or cell death remain unknown.

Mechanisms of autophagy
Despite its role in maintaining intracellular integrity,123 
autophagy is a tightly regulated process that is regu-
lated by distinct cellular mechanisms. One of these 
mechanisms is the target of rapamycin (TOR) kinase 
that serves as a control point downstream of signal-
ing responsible for different cellular events such cell 
growth, metabolism such as growth factor receptor 
signaling, and insulin signaling.124,125 It was previously 
shown that activation of TOR kinase is mediated by 
Akt kinase, PI3-kinase, and growth factor receptor 
signaling in response to the availability of nutrients to 
promote growth via induction of ribosomal protein at 
both transcriptional and translational levels.126 Thus, 
under cell growth conditions, the TOR pathway can 
mediate the inhibition of autophagy by suppressing 
Atg1 kinase activity.127 Additionally, under low lev-
els of adenosine-5′-monophosphate (AMP) or under 
hypoxia conditions, TOR kinase can be repressed, 
which blocks the activity of the tumor suppressor 
proteinsTsc1/Tsc2 as mediated via Rheb, a small 
GTase required for mTOR activity.126,128 Reduction of 
Akt activity through inhibition of growth factor recep-
tor or by rapamycin are thought to be possible mech-
anisms, which are responsible for the repression of 
TOR kinase.129 Therefore, inhibiting the TOR kinase 
that is mainly involved in regulating autophagy in 
response to altered physiological conditions is medi-
ated by the inhibition of growth factor receptors or 
by inhibitors, leading to increased catabolism, which 

become round, detach from the plate, and undergo 
nuclear fragmentation,99 suggesting an important role 
for activated caspase-3-induced cleavage of gelsolin 
in apoptosis regulation.

After the execution phase is complete, unwanted 
cellular components should be removed. Therefore, 
the last step of apoptotic process involves phagocytic 
uptake of apoptotic cells.49 Phospholipid asymme-
try and externalization of phosphatidylserine on the 
surface of apoptotic cells and membrane fragmen-
tation are characteristic of the execution phase.49 
Although the mechanisms responsible for regulat-
ing phosphatidylserine translocation to the outer 
leaflet of the cell has not been described in detail, 
translocation of phosphatidylserine to the outer side 
is thought to be mediated by the loss of aminophos-
pholipid translocase activity and nonspecific flip-flop 
of phospholipids of various classes.100 Accord-
ingly, the roles of Fas, caspase-8, and caspase-3  
in regulating phosphatidylserine externalization has 
been demonstrated.101,102 Although caspase-indepen-
dent phosphatidylserine exposure was reported to 
occur during apoptosis of primary T-lymphocytes,101 
phosphatidylserine externalization in response to 
oxidative stress has been reported in erythrocytes.102 
Moreover, externalization of phosphatidylserine in 
the execution phase appears to be an essential cel-
lular mechanism for removing apoptotic cells since 
the appearance of phosphotidylserine on the outer 
leaflet of apoptotic cells may facilitate non-inflam-
matory phagocytic recognition, thereby allowing 
their early uptake and finally their removal.103

Autophagy
Autophagy is a highly conserved degradation path-
way that discards damaged cellular components and 
is morphologically characterized by the formation 
of double membrane autophagosomes.2,51 Seques-
tration of impaired organelles or unwanted cellular 
components by autophagy facilitates their delivery 
to lysosomes for degradation and recycling.104–106 In 
addition to eliminating damaged cellular components, 
autophagy has been implicated in several physi-
ological and pathological processes, including cell 
survival and cell death.107 Additionally, the involve-
ment of autophagy in cellular homeostasis and cell 
and tissue renovation has been reported.108–111 More 
importantly, the participation of autophagy in the 
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Crosstalk Between Apoptosis  
and Autophagy
Based on their central role in cell survival and cell 
death, mitochondria have been shown to play an essen-
tial role in the regulation of apoptosis in response to 
extensive cellular stress leading to the loss of Δψm, 
and to the subsequent release of pro-apoptotic mol-
ecules such as cyt c,2–4 and AIF.1 The accumulation of 
both cyt c and AIF in the cytoplasm results in the acti-
vation of caspases and, finally, apoptotic cell death.1,2 
However, if the loss of Δψm is limited to only a subset 
of mitochondria, selective autophagosomal machinery 
will eliminate the limited subset of depolarized mito-
chondria, a cellular function that serves as cytoprotec-
tive mechanism to prevent mitochondrial damage.144

Apart from their molecular authenticity and induc-
tion manner, the involvement of several proteins 
that regulate both apoptosis and autophagy has been  
reported.145 Accordingly, the anti-apoptotic protein 
Bcl-2 has been shown to play an essential role in 
regulating both autophagy and apoptosis as mediated 
by the binding of the pro-autophagic protein Beclin1 
with pro-apoptotic proteins such as Bax. Thus, exten-
sive cellular stress can lead to the loss of Δψm that 
mainly results in the release of mitochondrial pro-
teins such as cyt c and AIF and subsequently initi-
ates apoptosis.1,146,147 Additionally, the depletion of 
nutrients leads first to the release of Beclin1, that in 
turn induces activation of PI3K and subsequently the 
induction of autophagy.148,149 The extension of nutri-
ent deprivation can lead to release of the pro-apoptotic 
protein Bax from Bcl-2, which mediates the loss 
of Δψm and subsequently initiates the apoptotic 
machinary.116,150 Thus, the molecular coupling of both 
autophagy and apoptosis is determined by the type 
and longevity of cellular stress.151,152 Additionally, the 
pattern and fashion of the subcellular localizations of 
Bcl-2 at the ER and/or to mitochondria is thought to 
be the main factor that determines the switch between 
autophagy and apoptosis.153,154 However, the role of 
Beclin-1 in regulating autophagy is mediated by the 
by localization of Bcl-2 at the ER.155,156 The regulation 
of apoptosis can be mediated through the localization 
of Bcl-2 to mitochondria.157 Accordingly, the cellular 
outcome between autophagy or apoptosis appears to 
depend on the entity of the mitochondria rather than 
the molecular mechanism induced.1,2 Therefore, mito-
chondrial damage can overpower the pro-survival 

is considered to be a therapeutic strategy for tumor 
treatment.

Accordingly, rapamycin and its derivatives, which 
are known to inhibit mTOR function through a 
kinase-independent mechanism, have been tested in 
clinical trials in several tumor types.130,133 However, 
the action of this inhibitor is mediated by a kinase-
independent mechanism that inhibits tumor growth 
via suppression of protein translation machinery and 
induction of autophagy.130 In addition to its role in 
regulating tumor progression and autophagy, TOR 
has been reported to function as the catalytic com-
ponent of two distinct complexes, including TORC1 
and TORC2.131 Hypoxia can also activate autophagy 
by hypoxia inducing factor (HIF)-dependent132 or 
independent mechanisms. However, these mecha-
nisms are regulated via the inhibition of TOR medi-
ated by adenosine monophosphate kinase (AMPK), 
REDD1, and Tsc1/Tsc2.129,133 Moreover, the most 
specific targets of autophagy include BNIP3 and 
BNIP3L; the BNIP3 subfamily of BH3-only proteins 
can form stable homodimerization complexes that 
localize to the outer membrane of the mitochondria 
after cellular stress.134,135 Although these proteins are 
linked to cell death, their main function is impli-
cated in the regulation of autophagy.134,135 Thus, the 
main role of BNIP3L/NIX in autophagy is to medi-
ate mitochondrial clearance during the maturation of 
reticulocytes.136–139 Although the functional role of 
BNIP3 and BNIP3L in regulating both autophagy and 
cell death is not well-characterized in detail, various 
models have been proposed to explain the functional 
role of BNIP3/BNIP3L in autophagy.140 One of these 
models describes the role of BNIP3 in deregulation 
of Beclin-1 by disrupting its interaction with Bcl-2,141  
whereas other models of the interaction between 
BNIP3 and Rheb have been discussed in the context 
of hypoxia-induced autophagy.142

Besides its role in death and cell survival, 
autophagy is also involved in regulating cell cycle 
arrest. However, the mechanism responsible for mod-
ulating autophagy-induced cell cycle arrest is thought 
to be regulated by inhibition of the TOR pathway 
in response to nutrient deprivation by inhibiting the 
translation machinery of key cell cycle genes, such 
as cyclin D1.143 The possible mechanisms, which are 
responsible for the regulation of autophagy in mam-
malian cells, are outlined in Figure 2.
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Figure 2. Possible mechanisms of autophagy in mammalian cells. The formation of autophagosomes is mediated by a conserved pathway in all mamma-
lian cells in response to variable cellular stresses. Cellular stress that results from the availability of nutrients (starvation) or from the exposure to growth 
factors such as endothelial growth factor (EGF) lead to activation of PI3K-I/Akt and MAPK/ERK signaling, respectively. ULK-Atg13-FIP200 complexes 
mediate mTOR signaling downstream of the autophagy machinery. Starvation or growth factor treatment suppresses mTOR-mediated phosphorylation of 
ULK and Atg13 resulting in ULK-mediated phosphorylations of Atg13, FIP200, and ULK itself, and subsequently to membrane nucleation. Downstream 
of the TOR-suppressive signaling pathway, Atg proteins function to form the autophagosome. The PI3 kinase complex (class III) including Beclin-1/Atg6 
is required to initiate autophagosome formation. Elongation of the isolation membrane requires Atg12 and Atg8 (LC3) ubiquitin-like modification systems.  
A ubiquitin-like protein, Atg12, is conjugated with Atg5 and forms a large complex with Atg16L1. LC3, a ubiquitin-like protein, associates with both the 
isolation membrane and the completed autophagosome as a conjugate with phosphatidylethanolamine.

autophagic pathway, leading to apoptosis via a mech-
anism mediated by the release of pro-apoptotic pro-
teins such as Bax from anti-apoptotic proteins such as 
Bcl-2. Moreover, the involvement of a number of pro-
teins in regulating the crosstalk between autophagy 
and apoptosis has been reported. These include the 

autophagy-regulating proteins Beclin1, the class III 
PI3K, and ATG4D.158–160 Thus, the cleavage of these 
proteins by caspases facilitates their localization to 
mitochondria where they serve new functions such as 
promoting mitochondria-mediated apoptosis. There-
fore, the destruction of autophagic function of Beclin-1 
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of the pro-apoptotic Bcl-2 proteins.167,168 Otherwise, 
these BH3-only proteins exert their function by the 
direct interaction with the multi-domain of pro-apop-
totic proteins and thereby block their pro-apoptotic 
function.169,170

In addition its function as interacting partner of 
Bcl-2, Beclin-1 has been reported to play an impor-
tant role in antiviral host defense in some studies,165 
whereas in another study it was shown to function as a 
tumor suppressor protein.171 In other studies, Beclin-1 
has been reported to function as an ortholog of the 
yeast autophagy protein Atg6 and thereby is implicated 
in the regulation of autophagic formation in mamma-
lian cells.172 Accordingly, the expression of Beclin-1 
was found to be essential for promoting autophagic 
formation in Atg6-deficient yeast.172 Additionally, 
reduction of the tumorigenicity of Beclin-1- express-
ing cells confirmed further the antitumor function 
of Beclin-1.172 Functional analysis of Beclin-1 sug-
gested a molecular mechanism whereby Beclin-1 ini-
tiates autophagy.173,174 These mechanisms appear to 
be mediated through the interaction of Atg6/Beclin-1 
with the phosphoinositide 3-kinase (PI3K).173,174

However, the identification of Beclin-1 as a Bcl-2 
binding partner revealed that the interaction between 
Bcl-2 and Beclin-1 is involved in the formation of 
a complex that is thought to play a central role in 
modulating the crosstalk between signaling pathways 
of apoptosis and autophagy.175,176 As with other BH3-
only proteins, Beclin-1 was shown to interact with 
Bcl-2, Bcl-xL, and Mcl-1 through the BH3 domain; 
evidence for this is the inhibition of the observed 
interaction in response to mutations in BH3 domain 
or even in the receptor domain in anti-apoptotic Bcl-2 
family members.175–176

More importantly, the interaction between Beclin-1 
and the BH3 domain of anti-apoptotic Bcl-2 family 
members is thought to be the primary mechanism 
responsible for the inhibition of Beclin-1- medi-
ated induction of autophagy under nutrient-adequate 
conditions.177,178 Although the Bcl-2, Bcl-xL, and Mcl-1 
proteins are mainly localized to the mitochondria as 
a protective mechanism for mitochondria, the local-
ization of Bcl-2 family members to the ER has been 
shown to inhibit starvation-induced autophagy.177,178 
Although extensive studies on the role of Bcl-2 family 
members have examined inhibition of the autophagic 
function of Beclin-1, the precise role of Beclin-1 in the 

and PI3K through caspase-dependent cleavage is con-
sidered to be an alternative strategy for tumor treat-
ment. The autophagy-regulating protein 5 (ATG5) 
is a member of autophagy-regulating protein fam-
ily. This protein is characterized by its ability to link 
apoptosis and autophagy.161 Upon autophagy induc-
tion, ATG5 becomes active and subsequently initiates 
autophagosomic formation.161 Additionally, cleavage 
of ATG5 by calpain in response to cellular stress pro-
motes localization of cleaved ATG5 products to the 
mitochondria, where they bind to Bcl-XL, leading to 
the loss of Δψm, and finally to apoptosis.162–164 Thus, 
unlike cleaved Beclin1, class III PI3K, or ATG4D, 
cleaved ATG5 appears to functionally trigger apopto-
sis without any additional apoptotic mediators.

Although the functional role of Beclin-1 as Bcl-2- 
interacting protein, in addition to be an initiator fac-
tor for the development of autophagic formation,165 
its precise role in regulating the crosstalk between 
autophagy and apoptosis has not completely charac-
terized. The anti-apoptotic protein Bcl-2 is the most 
thoroughly described prototypic member of the Bcl-2 
family of apoptosis-regulating proteins,165 in addi-
tion to being characteristic for their Bcl-2 homol-
ogy (BH) domains.165 Thus, based on the number 
of functions of these BH domains, three groups are 
recognized. One of these groups includes the multi-
domain anti-apoptotic Bcl-2 family proteins such as 
Bcl-2, Bcl-xL, Bcl-w, A1, and Mcl-1, the second one 
includes the multi-domain pro-apoptotic Bcl-2 fam-
ily proteins such as Bax, Bak, and Bok, and the third 
group includes pro-apoptotic Bcl-2 family members 
that possess only the BH3 domain and are therefore 
referred to as BH3-only proteins such as Bim, Bid, 
Bad, Bmf, Puma, Noxa, Bik, Hrk, and Mule. The main 
function of these multidomain pro-apoptotic Bcl-2 
family members (Bax and Bak) is to induce the loss 
of Δψm that subsequently leads to the release of cyt 
c and, in turn, the activation of downstream caspases 
such as caspase-3 and 9.1–3,76,82 Anti-apoptotic Bcl-2 
family members serve mainly to inhibit pro-apoptotic 
proteins, such as Bax and Bak.166 Despite the simi-
larity of their pattern and their function, the manner 
and function of the BH3-only proteins in modulating 
their anti-apoptotic function is different. Some BH3-
only proteins exert their function by their binding to 
the anti-apoptotic Bcl-2 family members, and thereby 
block their function as repressor for the multi-domain 
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Although the essential role of Beclin-1 in the link 
between autophagy and apoptosis has been reported in 
several studies, complex formation of Beclin-1/Vps34 
is not necessary for the modulation of autophagic for-
mation in all cell types.191–194

Besides the ability of Bcl-2 family proteins to regu-
late autophagy through the interaction with Beclin-1, 
caspases have been shown to inhibit autophagy via a 
mechanism mediated by the cleavage of autophagy-
related proteins.2,195 Accordingly, the role of apoptosis- 
associated proteases in the regulation of the bal-
ance between apoptosis and autophagy has been 
reported.164 Additionally, the detection of N-terminal 
cleavage products of Atg5 in multiple cell types and 
its translocation to the mitochondria leads to mito-
chondrial dysregulation and subsequently induction 
of cyt c release164 suggests an essential role for cas-
pases in the inhibition of autophagy. More impor-
tantly, the promotion of apoptosis by overexpression 
of N-terminal Atg5 cleavage products is considered 
evidence for the ability of the cleaved Atg5 to trigger 
apoptosis.164 Although N-terminal cleavage products 
of Atg5 are unable to promote autophagy,164 the pro-
apoptotic function of Atg5 seems to be limited and 
can perhaps sensitize only tumor cells to anti-cancer 
agents-induced apoptosis.164 Moreover, overexpres-
sion of LC3 did not appear to exert any effect on 
apoptosis since the enhanced sensitivity to apoptosis 
observed in cells expressing cleaved Atg5 is linked 
to the pro-apoptotic function of the N-terminal Atg5 
fragment164 rather than to enhanced autophagy.

In addition to the ability of apoptosis-associated 
proteases in regulating the balance between apoptosis 
and autophagy, a link between the upstream signals 
that induce apoptosis through the extrinsic pathway 
has been reported.196 Extrinsic apoptosis is initiated 
by the ligation of death receptors with their cognate 
ligands, which results in formation of a death-induc-
ing signaling complex (DISC) from Fas-associated 
protein with the death domain (FADD) and the initia-
tor caspase, pro-caspase-8. Formation of this complex 
results in the cleavage of pro-caspase 8 and subse-
quently the release of active caspase 8, which cleaves 
and activates downstream targets, including effector 
caspases.197,198 Thus, in addition to its roles in regu-
lating apoptosis, a key component of DISC has been 
also reported in several studies to be involved in mod-
ulating autophagy.199–201 Additionally, the deficiency 

processes of autophagic formation is not fully under-
stood. However, the identification of the novel Bcl-2 
interacting partner, nutrient-deprivation autophagy 
factor-1 (NAF-1),179 provided insight into the mecha-
nism of the interaction of Bcl-2 with Beclin-1. This 
provided insight into the role of Beclin-1 in the process 
of autophagic formation. Accordingly, the function of 
NAF-1 appears to be implicated in the stabilization 
of the Bcl-2-Beclin-1 complex at the ER;179 therefore, 
the loss of NAF-1 is responsible for disrupting the 
Bcl-2-Beclin-1 complex and subsequently induc-
ing autophagy, which is evidence for the inhibitory 
role of Bcl-2 family members in Beclin-1-mediated 
autophagy.179

The mechanism by which Beclin-1 mediates the 
induction of autophagy under starvation or stress 
conditions is thought to be regulated by the release 
of Bcl-2 and Bcl-XL from the formed complex with 
Beclin-1.178,180 Therefore, the dissociation of Bcl-2/
Bcl-XL-Beclin-1 has been reported to be regulated 
by c-Jun-N-terminal kinase-mediated phosphoryla-
tion of Bcl-2181–184 death-associated protein kinase 
(DAPK)-mediated phosphorylation of Beclin-1,188–190 
translocation of the nuclear protein high-mobility 
group box 1 (HMGB1) to the cytosol,188,189 or com-
petition with other BH3-only proteins for Bcl-2 
binding.180,185,186,188–190

Induction of mitogen activated protein kinase 
(MAPK), c-Jun-N-terminal kinase (JNK), in response 
to cellular stress results in the phosphorylation of the 
three residues in the regulatory loop of Bcl-2, leading 
to disruption of its binding to Beclin-1,180 an essential 
step in the induction of autophagy in nutrient-shortage  
conditions. Thus, cells with either mutations in the 
phosphorylation sites of the regulatory loop of Bcl-2 
or even deficiency in JNK activation appear to be 
unable to undergo starvation-induced autophagy.180 
Therefore, the constitutive activation of JNK can 
induce autophagy under nutrient-sufficient conditions 
in Bcl-2-expressing cells.180 The involvement of JNK 
in modulation of autophagy in response to ER stress, 
oxidative stress, cancer drugs, and stimulation also 
occurs through the death receptor Fas.181–184

In addition, the disruption of Bcl-2-Beclin-1 
complex is thought to be a target for pro-apoptotic 
BH3-only proteins such as Bad and Bax, which can 
mediate the inhibition of Beclin-1-mediated induc-
tion of autophagy.187,190
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skeleton of Mycobacterium bovis Bacillus Calmette 
Guerin.217 Additionally, other autophagic regulators 
such as phenethyl isothiocyanate, the celecoxib deriv-
ative OSU03012 and kringle domains of plasminogen 
(endostatin kringle 5, K5) have emerged as promising 
cancer chemopreventive agents based on their ability 
to induce autophagic cell death.213 Moreover, several 
cancer therapies, including DNA-damaging chemo-
therapeutic temozolomide218 and radiation219 have 
been shown to induce autophagy both in vitro and in 
vivo.220 However, this induced autophagy has been 
shown to serve as a protective mechanism against 
the toxicity of the applied anticancer agents.221 Addi-
tionally, radiation therapy has been reported to pro-
mote autophagy by a mechanism mediated through 
the upregulation of autophagy mediators including 
Beclin-1, ATG3, ATG4, ATG5, and ATG12.219,220 
Furthermore, some chemotherapeutic agents such as 
histone deacetylase inhibitors221 and cisplatin222 have 
been shown to induce autophagy through the accu-
mulation of reactive oxygen species in mitochondria. 
Preclincal studies have also addressed a powerful 
therapeutic potential for curcumin in tumor treat-
ment; however, the therapeutic potential of curcumin 
due the ability of curcumin to trigger both apopto-
sis223 and autophagy.224

The reliability of proteasome inhibitors alone or 
in combination with other drugs has been reported 
to induce apoptosis as well as autophagy in different 
tumor types including melanoma.2,225–227 However, 
the induction of apoptosis by proteasome inhibi-
tors is linked to the suppression of transcription of 
anti-apoptotic factors228–230 and is associated with the 
upregulation of pro-apoptotic proteins.2,225–227 While 
induction of autophagy by proteasome inhibitor regu-
lated by the stabilization of anti-apoptotic proteins 
including the protein Mcl-1, as shown in melanoma 
cells.2

Based on previous and current findings, autophagy 
and apoptosis appear to play opposing roles in can-
cer cells since the inhibition of autophagy by chlo-
roquine was found to sensitize tumor resistance to 
anti-cancer agents-induced apoptosis.231–234 Addi-
tionally, the role of autophagy in the resistance of 
tumor cells to the pro-apoptotic effects of TRAIL 
has been reported in several studies.234–236 Unlike 
most superfamily members, TRAIL as a cancer 
therapeutic possesses pro-apoptotic effects that is 

or even the inhibition of caspase-8 was found to 
result in excessive autophagic formation in differ-
ent cell types.199 Moreover, mutations in FADD were 
found to prevent its interaction with pro-caspase-8, 
resulting in the inhibition of apoptosis and a switch to 
autophagy.200,201

Although Atg5 has been shown to interact with 
FADD through its death domain (DD), the deficiency 
of FADD does not appear to influence autophagic for-
mation.202 In contrast, the loss of FADD was found 
to recover the increased caspase-dependent cell death 
induced by overexpression of Atg5, evidence for the 
important role of the Atg5-FADD interaction in regu-
lating apoptosis rather than autophagy.202

Interestingly, the induction of autophagy in cells 
by the inhibition of extrinsic apoptotic pathways is 
thought to be associated mostly with an increased 
induction of cell death.202,203,205 Although the role of 
Atg5 is essential for both autophagosomic forma-
tion and cell death by exposure to IFN-γ, the abil-
ity of N-terminal cleavage product of Atg5 to induce 
apoptosis indicates that Atg5-mediated cell death is 
not associated with the loss of the autophagic func-
tion of Atg5.164,202 The possible pathways, which are 
thought to be involved in the modulation of the cross 
talk between apoptosis and autophagy, are outlined in 
Figure 3.

Therapeutic Strategies
Based on intensive studies focusing mainly on the 
modulation of autophagy through apoptotic signal-
ing pathways, it is becoming clear that autophagy is 
involved in the regulation of apoptosis. Thus, the inhi-
bition of apoptosis by autophagy has been shown to be 
regulated by the degradation of pro-apoptotic proteins 
including caspases.203 More important, autophagy is 
involved in regulating cancer development and pro-
gression in addition to being a key factor for determin-
ing tumor cell sensitivity to anticancer therapy.204,205 
Accordingly, several conventional and experimental 
antitumor strategies have been reported as relevant 
strategies for tumor therapy. These strategies include 
the combination of conventional therapies with auto
phagy regulators.204,205 These autophagic regulators 
include rapamycin,206,207 arsenic trioxide,208,209 temo
zolomide,210,211 kringle domains of plasminogen,212 
phenethyl isothiocyanate,213 OSU03012 (derivative 
of celecoxib),214 NVPBEZ235,215,216 and cell wall 
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Figure 3. Outline of the molecular mechanisms thought to be involved in the regulation of the cross-talk between apoptosis and autophagy. Some extracel-
lular stress can trigger both apoptosis and autophagy via receptor-dependent and independent mechanisms. One of these mechanism includes the induc-
tion of Beclin-1 that triggers autophagy, that in turn inhibits apoptosis by a mechanism mediated by the inhibition of caspase-8 cleavage, and subsequently 
blocks the cleavage of Bid. Another mechanism includes the activation of death receptor, leading to cleavage of caspase-8 via the Fas-associated death 
domain. The cleavage of caspase-8 leads to cleavage of Bid, which triggers the loss of mitochondrial membrane potential characterized by cyt c release, 
caspase-9, caspase-3, and PARP cleavage, the hallmark of apoptosis. Cleavage of caspase-3 triggers cleavage of ATG40, leading to the inhibition of 
autophagy, whereas the cleavage of ATG5 by caspase-3 results in induction of autophagy. Additionally, accumulation of phosphorylated Bax triggers cleav-
age of Beclin-1 into Beclin-1N and Beclin-1c. Accumulation of Beclin-1N leads to inhibition of induced autophagy.

specific to tumor cells.237,238 However, the advantage 
of TRAIL as a tumor therapeutic agent becomes 
unattractive based on the development of TRAIL 
resistance in many tumors.239 Therefore, intensive 
studies on the tumor resistance mechanisms of 

TRAIL revealed that the failure of TRAIL to trigger 
apoptosis of tumor cells is associated with the cyto-
protective effects of autophagy. Correspondingly, 
c-FLIP-expression is resistant to TRAIL-induced 
apoptosis and is characterized by the increase of 
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