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Electroencephalography (EEG) alpha asymmetry is thought to reflect crucial brain
processes underlying executive control, motivation, and affect. It has been widely used
in psychopathology and, more recently, in novel neuromodulation studies. However,
inconsistencies remain in the field due to the lack of consensus in methodological
approaches employed and the recurrent use of small samples. Wearable technologies
ease the collection of large and diversified EEG datasets that better reflect the
general population, allow longitudinal monitoring of individuals, and facilitate real-
world experience sampling. We tested the feasibility of using a low-cost wearable
headset to collect a relatively large EEG database (N = 230, 22–80 years old, 64.3%
female), and an open-source automatic method to preprocess it. We then examined
associations between well-being levels and the alpha center of gravity (CoG) as well
as trait EEG asymmetries, in the frontal and temporoparietal (TP) areas. Robust linear
regression models did not reveal an association between well-being and alpha (8–
13 Hz) asymmetry in the frontal regions, nor with the CoG. However, well-being was
associated with alpha asymmetry in the TP areas (i.e., corresponding to relatively less
left than right TP cortical activity as well-being levels increased). This effect was driven by
oscillatory activity in lower alpha frequencies (8–10.5 Hz), reinforcing the importance of
dissociating sub-components of the alpha band when investigating alpha asymmetries.
Age was correlated with both well-being and alpha asymmetry scores, but gender was
not. Finally, EEG asymmetries in the other frequency bands were not associated with
well-being, supporting the specific role of alpha asymmetries with the brain mechanisms
underlying well-being levels. Interpretations, limitations, and recommendations for future
studies are discussed. This paper presents novel methodological, experimental, and
theoretical findings that help advance human neurophysiological monitoring techniques
using wearable neurotechnologies and increase the feasibility of their implementation
into real-world applications.

Keywords: wearable EEG, alpha asymmetry, frontal, temporoparietal, executive control, well-being, large sample
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INTRODUCTION

Well-Being
The question of what determines well-being has intrigued
humans throughout recorded history and to this day remains
a topic of significant interest and debate (Dodge et al., 2012;
Alexandrova, 2015). The hedonic view of well-being focuses on
the emotional dimension (i.e., positive and negative affect) to
address this question. The eudaimonic perspective focuses on the
sense of striving toward realizing one’s potential or goals, a life
purpose, and seeking personal growth (Ryan et al., 2008). Well-
being is now understood as a multidimensional and dynamic
construct encompassing both views and other new essential
components such as mental and physical health, autonomy,
social relationships, spirituality, self-acceptance (Keyes and
Waterman, 2003; Ryff and Singer, 2013). Well-being can be
mediated by numerous factors such as demographics (Keyes and
Waterman, 2003; Carstensen et al., 2011), genetic predisposition
(Keyes et al., 2010), personality traits (Lucas and Diener,
2008), income (Luhmann et al., 2011), exercise (Hassmén
et al., 2000; Svensson et al., 2021), mindfulness meditation
practice (Carmody and Baer, 2008), or connectedness with
nature (Howell et al., 2011; Russell et al., 2013). These
factors also shape the structure and function of our brains
throughout the lifespan, with important implications for well-
being levels. While progress has been made recently regarding
our understanding of the relationships between well-being
and the brain, much is still unknown (Dolcos et al., 2018).
By identifying the neural correlates of well-being, we may
better understand the mechanisms that underly higher levels
of well-being, and in turn, develop promising interventions
aiming at helping people live happier and more successful lives
(Dolcos et al., 2018).

Frontal Electroencephalographic
Asymmetry
Definition and Calculation
For decades, frontal electroencephalographic (EEG) asymmetry
has been a useful tool to study emotion-related states and
traits, motivation, temperament, cognitive control, and
psychopathologies (Coan and Allen, 2003, 2004; Allen et al., 2004;
Harmon-Jones et al., 2010; Scherer and Ekman, 2014; Allen and
Reznik, 2015; Smith et al., 2017). Frontal EEG asymmetry refers
to a relative difference in alpha power spectral activity (8–13 Hz)
between the left and right frontal regions of the brain. Because
alpha oscillations are known to functionally inhibit regional
cortical activity (Laufs et al., 2003, 2006; Oakes, 2004; Mathewson
et al., 2011; Scheeringa et al., 2012; Grimshaw and Carmel,
2014), authors have associated an increased alpha activity with a
decrease in brain activity or a decrease in allocation of cortical
resources in the same region (Davidson, 1988; Davidson et al.,
1990; Gevins et al., 1997; Cook et al., 1998; Allen et al., 2004).
Thus, positive asymmetry scores (i.e., greater alpha power in
the right frontal area relative to the left) are thought to reflect
relatively lower right than left frontal cortical activity, and vice
versa for a negative asymmetry score.

The Main Models
Decades of work using the alpha asymmetry metric have led to
emotional valence and motivation models (Allen et al., 2004;
Harmon-Jones et al., 2010). These models highlight that approach
motivation emotional processes are associated with relatively
greater cortical activity in the left frontal area compared to
the right, which in turn, is inversely correlated with alpha
power (i.e., greater right than left alpha power in these areas).
Inversely, emotional processes related to avoidance motivation
and a negative valence are associated with relatively greater right
than left frontal cortical activity (corresponding to greater left
than right frontal alpha power). Extreme approach-oriented traits
and behaviors include for example positive urgency (i.e., the
tendency toward rash action in response to extreme positive
emotional states (Tomarken and Davidson, 1994), sensation-
seeking (Santesso et al., 2008), and high reward sensitivity
(Pizzagalli et al., 2005), whereas avoidance-related traits and
behaviors include depression and anxiety (Thibodeau et al.,
2006), shy temperament (Fox et al., 1995), negative dispositional
affect (Tomarken and Davidson, 1994), and poor regulation of
negative emotions (Jackson et al., 2003). These models align with
the clinical literature showing that lesions in the left frontal area
are associated with depression symptoms (Robinson and Price,
1982; Harmon-Jones et al., 2010).

The Underlying Brain Networks and Systems
Going one step further beyond these descriptive models,
investigators using EEG source-localization techniques (Laufs
et al., 2003; Pizzagalli et al., 2005; Mantini et al., 2007; Koslov
et al., 2011; Gable et al., 2015; Smith et al., 2018) found that frontal
asymmetries originate from the dorsal frontoparietal network
(dFPN), the inferior frontal gyrus, and the right dorsolateral
prefrontal cortex (dlPFC; which is part of the dFPN). These
results led them to suspect that frontal asymmetries reflect
the integrity of the supervisory system, which is theorized
to generate effortful constraint and self-control (Sutton and
Davidson, 1997; Cacioppo et al., 2007; Gable et al., 2015). Gable
et al. (2015) suspected that the alpha asymmetry is driven
by the activity of this supervisory control system, supposedly
located in the right frontal area (Gable et al., 2015). Frontal
asymmetries may also reflect other associated executive control
mechanisms, which play an essential role in allocating attention
toward a goal and inhibiting interference from distractors
(Corbetta et al., 2008; Vossel et al., 2013; Grimshaw and
Carmel, 2014; Gable et al., 2015). In this view, termed the
asymmetric inhibition model, mechanisms in the left frontal
cortex would inhibit negative distractors, whereas mechanisms
in the right frontal cortex would inhibit positive distractors.
Consequently, asymmetric aberrations in these systems result
in bottom-up and top-down dysfunction, such as the difficulty
in disengaging attention from negative/avoidance-motivation
information AS in depression and anxiety (Eysenck et al., 2007;
Shackman et al., 2009; Cisler and Koster, 2010; De Raedt
and Koster, 2010; Engels et al., 2010; Gotlib and Joormann,
2010; Kim et al., 2012; Gable et al., 2015), whereas difficulty
in inhibiting positive/approach-motivation distractors results
in addiction and positive urgency behaviors (Bechara, 2005;
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Garavan and Hester, 2007; Goldstein and Volkow, 2011). Thus,
multiple lines of research demonstrate that the mechanisms
underlying alpha asymmetry measurements are highly implicated
in processes that contribute to well-being (positive/negative
affect, capacity to fulfill one’s potential and life goals, etc.).

Limitations in Electroencephalographic
Asymmetry Research
While the literature on EEG asymmetry is sizable and robust, it is
important to note that there have also been failed replications and
contradictory results (Gotlib, 1998; Reid et al., 1998; Hagemann
et al., 1999; Müller et al., 1999; Coan et al., 2001; Gale et al., 2001;
Papousek and Schulter, 2002; Dennis and Solomon, 2010; Stewart
et al., 2010; Kop et al., 2011; Koslov et al., 2011; Quinn et al.,
2014; Meyer et al., 2015; Arns et al., 2016; Palmiero and Piccardi,
2017; van der Vinne et al., 2017). These inconsistencies can be
explained by the heterogeneity in the experimental designs, EEG
preprocessing techniques, and statistical approaches employed
across investigators over the years (Allen et al., 2004; Smith et al.,
2017). A summary of the main limitations of EEG asymmetry
research and proposed solutions that were implemented in this
study are now described.

Trait Versus State
One limitation is that EEG asymmetry can reflect trait or
state aspects and thus, designing experiments to highlight one
over the other depending on the research question is essential.
When measured during rest, EEG asymmetry is considered a
trait variable related to various psychological constructs and
predictive of future emotional behavior or psychopathology
(Wheeler et al., 1993; Davidson, 1994; Sutton and Davidson,
1997; Stewart et al., 2010; Nusslock et al., 2011; Papousek
et al., 2012). When measured as an event-related response, it
is considered a state variable reflecting the person’s current
emotional state (Coan et al., 2001; Harmon-Jones and Sigelman,
2001; Harmon-Jones, 2004). Some authors estimate that 60%
of the variance in asymmetry measure within a resting session
is due to trait influence, and the 40% to state influences
(Hagemann et al., 2002). Hence, the first approach aims to
reduce the state influence during rest, whereas the second one
aims to increase it using emotion-elicitation perturbations (Coan
et al., 2006). In this study, we focus on the trait variable and
hypothesize that trait frontal alpha asymmetry will be associated
with multidimensional well-being (since well-being is driven by
both emotional valence and motivational components).

Sample Characteristics
The second limitation to EEG asymmetry research is that sample-
specific characteristics (e.g., age, gender) have been shown to
significantly influence EEG findings because of functional and
anatomical differences (Klimesch, 1999; Sowell et al., 2007;
Hagemann et al., 2008; Finley et al., 2020). Many EEG asymmetry
studies include participants of one gender to reduce this bias
(Tomarken et al., 1990; Wheeler et al., 1993; Jacobs and Snyder,
1996; Reid et al., 1998; Gale et al., 2001; Dennis and Solomon,
2010; Mikolajczak et al., 2010; Koslov et al., 2011). However,
this prevents investigators from examining gender as a potential

mediator or moderator of asymmetry findings (MacKinnon et al.,
2013). There is a lack of consensus regarding the role gender plays
in EEG asymmetry in the limited studies that have addressed
this question (Veldhuizen et al., 1993; Carrier et al., 2001; Miller
et al., 2002; Otero et al., 2003; Morgan et al., 2005; Gasbarri et al.,
2006, 2007; Stewart et al., 2010; Kovacevic et al., 2015; Müller
et al., 2015; Hashemi et al., 2016). Similarly, the role age plays
in EEG asymmetry is also not very well known. One solution to
the lack of understanding of if and how demographic variables
influence EEG asymmetry and well-being is to collect large and
diversified datasets that better reflect the general population.
A few studies with large samples found that age and gender
mediate frontal asymmetry but that ethnicity or socioeconomic
status did not (Stewart et al., 2010; Gable et al., 2015; Arns
et al., 2016). However, these studies are rare and hard to replicate
because of the time and cost involved in recording EEG data on a
large number of subjects with conventional systems (equipment
cost, EEG preparations time, participants compensation for their
time, equipment cleaning, etc.).

Wearable EEG technologies make the collection of large
datasets of diversified and under-represented populations more
feasible and offer promising new applications for both clinicians
and researchers in the long term (Cannard et al., 2020). These
applications include brain monitoring in naturalistic settings and
in real-time (Hu et al., 2015; Jebelli et al., 2017), brain-computer
interfaces (BCI; Park et al., 2020), neurofeedback interventions
(Angelakis et al., 2007; Quaedflieg et al., 2016; Brandmeyer and
Delorme, 2020a), neuromarketing (Cartocci et al., 2018; Ramsøy
et al., 2018), or neuroaesthetics research (i.e., the science studying
the biological underpinnings of aesthetic experience; Cheung
et al., 2019; Cartocci et al., 2021). While these EEG systems can
have inferior hardware capacities than conventional ones, recent
technological and algorithmic advancements make the detection
and measurement of mental states increasingly reliable (Wu et al.,
2017), with as few as a single EEG channel (Umar Saeed et al.,
2018; Arpaia et al., 2020; Mahmoodi et al., 2021). Additionally,
these systems can easily combine other physiological measures
such as electrocardiography (ECG) or galvanic skin response
(GSR) to improve the efficacy of mental states detection (e.g., Ahn
et al., 2019). Wearable EEG systems have been used extensively
over the past few years to measure frontal asymmetry (Peng et al.,
2011; Hu et al., 2015; Hashemi et al., 2016; Jebelli et al., 2017,
2018; Wu et al., 2017; Zhao et al., 2017; Hwang et al., 2018;
Umar Saeed et al., 2018; Cao et al., 2019; Arpaia et al., 2020;
Park et al., 2020; Saeed et al., 2020) and were used in this present
study to enable the collection of a large dataset. Hence, in this
study, we aim to evaluate the potential relationship between well-
being, alpha asymmetry, and individual characteristics (namely
age and gender) in a large sample, collected using a low-cost
wearable EEG headset.

Alpha Frequencies and Bounds
The third main limitation in EEG asymmetry research is the
handling of alpha-band frequencies and bounds. The alpha
band is dominantly considered as a single phenomenon in EEG
asymmetry studies. However, previous evidence suggested that it
should not. For instance, measuring alpha power spectral density
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(PSD) on the traditionally a priori-defined bandwidth 8-13 Hz
does not account well for interindividual differences because
parts of the alpha power distribution fall outside this range
for some individuals (Klimesch et al., 1990; Klimesch, 1997).
Furthermore, differential changes in opposing directions within
the same dataset have been observed between lower (8–10.5 Hz)
and upper (11–13 Hz) alpha oscillations, as well as between local
and global properties (Klimesch, 1999; Nunez et al., 2001; Nunez
and Srinivasan, 2006).

The individual alpha frequency (IAF) refers to the dominant
frequency within the alpha power distribution and is thought
to reflect the dominant neural circuits that generate alpha
oscillations. Because it varies within and across individuals,
measuring alpha power on each individual’s IAF better accounts
for inter-individual variability (Klimesch, 1999; Haegens et al.,
2014; Mierau et al., 2017). Individual alpha frequency estimates
are considered a trait-like characteristic of the human EEG
(Grandy et al., 2013), have high heritability (Smit et al., 2006),
decrease with age (Klimesch, 1997; Corcoran et al., 2017; Finley
et al., 2020), and have good test-retest reliability (Näpflin et al.,
2007). Few studies have investigated EEG asymmetry using IAF
estimates to our knowledge (Klimesch et al., 1998; Angelakis
et al., 2004a; Vecchiato et al., 2012; Quaedflieg et al., 2015, 2016;
Di Flumeri et al., 2016).

The first approach to estimate IAF is to use the peak alpha
frequency (PAF; frequency within the alpha band with the highest
power). While this technique has been extensively used for the
study of cognition (Klimesch, 1999; Angelakis et al., 2004b;
Rathee et al., 2020), it does not perform well with a portion of the
population that have ambiguous alpha peaks, “split peaks” (i.e.,
several peaks within the alpha band), or no peak at all (Anokhin
and Vogel, 1996; Chiang et al., 2008, 2011). A second approach
called the alpha center of gravity (CoG) considers the shape of the
alpha PSD distribution and is thought to provide a more accurate
summary of the underlying alpha activity. Initial techniques to
estimate IAFs relied on visual and manual inspection (Klimesch
et al., 1990) or cross-frequency assumptions (Doppelmayr et al.,
1998; Klimesch, 1999; Posthuma et al., 2001; Goljahani et al.,
2012). These methods were very time-consuming and prone
to subjective judgment error. Novel automated methods have
now been developed to avoid these limitations. While the
channel-based method (CRB; Goljahani et al., 2012, 2014) is
better suited for event-related EEG asymmetry, other statistical
curve-fitting and clustering techniques are particularly promising
for IAF-estimation of resting EEG data (Chiang et al., 2008,
2011; Lodder and van Putten, 2011, 2013; Van Albada and
Robinson, 2013; Corcoran et al., 2017). Corcoran et al. (2017)
have implemented these algorithms into a fast, reliable, open-
source toolbox operating in MATLAB and Python (Corcoran
et al., 2017). This method seems suitable for large datasets with
a relatively low signal-to-noise ratio (SNR) acquired with a
wearable dry EEG system.

Hence, calculating alpha asymmetry scores on PSD estimated
on the predefined alpha band (8–13 Hz), the lower (8–10.5 Hz)
and upper (11–13 Hz) alpha sub-bands, and the CoG may help
us understand more about the underlying mechanisms of alpha
asymmetry. The present study incorporates these metrics to

evaluate differences in these measures and their relationship to
well-being. We expect well-being to be positively correlated with
CoG values, differently correlated with lower and upper alpha (no
specific direction is hypothesized), and positively correlated with
CoG-asymmetry (and we expect this association to be stronger
than that with the traditional whole alpha band asymmetry, by
better accounting for interindividual differences).

Limiting Electroencephalographic Asymmetry to the
Frontal Areas
The fourth limitation is the reduction of the study of EEG
asymmetry phenomenon to only the frontal areas. It has been
expressed for a long time that both anterior and posterior
cortical regions show asymmetric activity patterns (Davidson,
1988, 1992). This is also reflected by studies showing that FAA
obtained on data referenced with the current-source density
(CSD) transformation (i.e., reflective of alpha power from local
frontal sources only) correspond to a marker for depression risk,
whereas FAA obtained on data referenced to mastoids or average
(i.e., containing alpha power from distal, posterior cortical
regions) correspond to a better marker of current depression
severity (Stewart et al., 2010). Furthermore, expanding the
analysis of alpha asymmetry to the temporoparietal (TP) regions
seems particularly relevant since alpha asymmetries were source-
localized to the frontoparietal network (FPN), which includes
brain structures in both the frontal and the TP regions (see
above; Vossel et al., 2013). Furthermore, different subtypes of
anxiety disorders are differently associated with asymmetric
activity in frontal and TP regions (Heller et al., 1997; Engels
et al., 2007; Mathersul et al., 2008; Müller et al., 2015). Together,
these findings suggest that anxious arousal (physiological arousal
and hyper-reactivity under conditions of panic) is associated
with relatively greater right than left frontal activation, whereas
anxious apprehension (involving worry and verbal ruminations;
i.e., trait anxiety and generalized anxiety disorder) is linked to
the opposite asymmetry in frontal area and asymmetry in the
same direction in the TP area. However, other findings suggested
that TP asymmetry was less stable over time compared to frontal
asymmetry (Müller et al., 2015) and sometimes not associated
with self-reported measures of affect and motivation (Davidson
et al., 1990). In this study, we examine the relationship between
well-being and asymmetry in both frontal and TP regions
and hypothesize that alpha asymmetry in both regions will be
associated with well-being (with potentially a different direction).

Limiting Electroencephalographic Asymmetry to the
Alpha Oscillations
The Fifth and last main limitation in EEG asymmetry research is
the need to expand analyses to other frequency bands. Coherence
in both alpha and theta oscillations has been highlighted during
both relaxation and mental calculation (Nunez and Srinivasan,
2006). This widespread (global) phase coherence phenomenon
increases in the upper frequencies of both alpha and theta
bands while it simultaneously decreases in the lower frequencies
(Wingeier, 2000; Nunez and Srinivasan, 2006). These findings
go along with other findings indicating that global alpha and
theta rhythms functionally interact during both relaxation and
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attentional tasks (Klimesch, 1999; Buzsáki, 2006; Laufs et al.,
2006). Furthermore, theta power has been used to predict
response to depression treatment in several studies (Knott et al.,
1996, 2000; Cook and Leuchter, 2001; Cook et al., 2002; Bares
et al., 2008; Iosifescu et al., 2009; Spronk et al., 2011; Baskaran
et al., 2012; Olbrich and Arns, 2013). Furthermore, theta power
decreases while upper alpha power increases in several conditions
(i.e., the early part of life until adulthood, in neurological
disorders, and the transition phase from awake to sleeping),
whereas the direction of their relationship is opposite for the late
part of the lifespan (Klimesch, 1999).

Similarly, alpha and beta spectral power have been found
to interact (Laufs et al., 2006; Hamid et al., 2010), and both
are associated with high levels of mental stress and depression
(Hayashi et al., 2009; Alonso et al., 2015; Jena, 2015; Al-
shargie et al., 2016; Jun and Smitha, 2016; Díaz et al., 2019;
Al-Dabass, 2020; de Hemptinne et al., 2021). More specifically,
prefrontal beta power in lateral areas was found to be positively
associated with depression and anxiety, whereas lateral beta
power was negatively associated with mood (de Hemptinne
et al., 2021). The authors interpreted these results to be in
line with the organization of the reward networks in the
prefrontal cortex (PFC).

However, no robust literature is available to make specific
interpretations about how alpha asymmetry interacts with other
frequency bands, and whether asymmetries in other frequency
bands could be associated with psychological constructs such
as well-being. Thus, we aim to bring light to this matter in
this study and hypothesize that well-being will be associated
with asymmetries in other frequency bands. This study includes
asymmetry scores estimated on the delta (1–3 Hz), theta (4–
7 Hz), and beta (14–30 Hz) frequency bands, for both frontal
and TP sites. Since no previous research exists on this matter,
we have no specific hypothesis concerning the direction of these
potential associations.

Summary of the Study Goals and Hypotheses
Considering the potential importance of alpha asymmetry as a
physiological correlate in general, and for well-being specifically,
the overall objective of this study was to determine whether a
low-cost wearable EEG headset (the Muse by Interaxon) could
be used to measure EEG correlates (CoG, EEG asymmetry) of
well-being on a relatively large sample (N = 353). The analyses
were designed to address the main limitations of EEG asymmetry
research addressed above. The hypotheses for the study were as
follows:

1. Well-being will be positively associated with approach-
motivation processes and positive valence of emotion, as
reflected by relatively greater right than left alpha power.
We hypothesize that this will be the case for both frontal
and temporoparietal (TP) areas (although the direction
might be different, based on the literature discussed).

2. Age and gender will be associated with both well-being and
mean alpha asymmetry (predefined 8–13 Hz band).

3. The CoG will be positively correlated with
well-being levels.

4. Asymmetry scores estimated on sub-components of alpha
oscillations (namely lower/upper alpha and CoG) will
provide stronger correlations regarding the relationship
between well-being and alpha asymmetry than those
estimated on the predefined alpha aband (8–13 Hz), by
better accounting for alpha source differences (lower/upper
alpha) and interindividual differences (CoG).

5. Well-being levels will be associated with asymmetries in
other frequency bands (namely delta, theta, and beta),
although we do not have specific hypotheses regarding
which bands and their directions.

MATERIALS AND METHODS

Participants
353 participants were recruited from groups attending workshops
focusing on well-being and personal development at the Earthrise
Campus. Exclusion criteria: people younger than 18 years of
age, inability to read or understand the consent form, acute or
chronic illness precluding completion of measurements. Upon
arrival at the research laboratory, participants were briefly
interviewed by the research assistants to ensure they met
the inclusion/exclusion criteria and were then allocated to a
carrel where the following equipment was available for their
participation: a wearable EEG headset, a Chromebook, and
a pair of headphones. The settings allowed the recording of
up to 9 participants simultaneously. Participants volunteered
and were not compensated for participation. The study and
the consent form were approved by the Institute of Noetic
Sciences’ institutional review board (IRB). All questionnaires
were optional and anonymous.

Multidimensional Well-Being
Participants’ multi-dimensional well-being was assessed on-
site using the Arizona Integrative Outcomes Scale (AIOS; Bell
et al., 2004) in SurveyMonkey1. The AIOS is a horizontally
displayed scale that provides a quick and accurate assessment
of the participants’ self-rated global sense of physical, social,
psychological, affective, and spiritual well-being over the past
24 h (Bell et al., 2004). The low anchor is “Worst you have ever
been” (AIOS score = 0) and the high anchor is “Best you have
ever been.” (AIOS score = 100). The 24-h AIOS score was found
to significantly reflect psychological well-being, global health,
psychological distress, the positive and negative affect, and the
positive states of mind, and was significantly correlated with the
1-month AIOS scores (Bell et al., 2004; Otto et al., 2010; Tuason
et al., 2021). Furthermore, AIOS-24 h was found to be associated
with personality traits (Wahbeh et al., 2021). While these findings
suggest the AIOS-24 h reflects trait components of well-being,
validation of this hypothesis requires further testing. The online
survey included additional questionnaires that are not included
in this study and are reported elsewhere (Wahbeh et al., 2021).

1https://www.surveymonkey.com/
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EEG
Data Collection
Once participants completed the survey, continuous EEG was
recorded using InteraXon’s Muse wearable EEG headband
(version 2016). Electroencephalography data were recorded
while participants were instructed to focus their attention
on their breath and count inhalation/exhalation cycles. They
were instructed to bring their attention back to their breath
and start counting again if they lost track of their count or
noticed their minds wandered. This task reduces EEG artifacts
occurring naturally with eye movements. Most importantly, this
task can later be implemented into practical translational and
therapeutical applications aimed at increasing well-being levels
through the modulation of alpha asymmetry and the underlying
brain processes (Angelakis et al., 2007; Sessa, 2007; Moynihan
et al., 2013; Doll et al., 2016; Schmalzl et al., 2018; Prpa et al.,
2020). Electroencephalography data were with a sampling rate
of 256 Hz and 12-bits of data resolution. This system has five
active dry electrodes: two frontal silver (AF7 and AF8), two
temporoparietal (TP) silicone electrodes (TP9 and TP10), and a
reference electrode (FPz). Before positioning the headband on
the subjects’ heads, their skin was cleaned with alcohol swipes
at electrode sites, and a thin layer of water was applied with
a sponge to the electrodes to improve signal quality. EEG data
were acquired on Chromebooks using the Muse Monitor App
and were uploaded onto Dropbox at the end of the recording.
Random unique identifiers were used to link survey and EEG
data. Impedance check was provided by the App (horseshoe
symbol) and visually confirmed by the raw signal displayed on
the screen in real-time.

As shown in previous publications, good internal consistency
reliability of frontal EEG asymmetry can be obtained with as few
as 100 epochs, corresponding to one to 3 min of artifact-free
recorded data [depending on window size; (Allen et al., 2004;
Towers and Allen, 2009; Smith et al., 2017)]. Allen et al. (2004)
found that the number of epochs used to estimate the asymmetry
scores matters more than the number of minutes of data (Allen
et al., 2004), with asymmetry scores estimated on 2 min of data
showing similar consistency reliability than those obtained on
8 min of data. Furthermore, a recent publication showed that
individuals can robustly be differentiated using spectral EEG data
obtained on segments as short as 30 s (and this was stable weeks
later; da Silva Castanheira et al., 2021). Thus, 2 min of EEG data
were recorded for each participant. When less than 8 min of data
is available, Allen et al. (2004) recommend reporting the internal
consistency reliability and how many blocks were treated through
the calculation of Cronbach’s alpha (see below).

Data Preprocessing
Data preprocessing was done in EEGLAB version 2020.0
(Delorme and Makeig, 2004) in MATLAB v2020a. EEG data
were imported with the muse_monitor plugin v3.2, low-pass
filtered at 30 Hz (transition bandwidth 12.5 Hz; passband edge
50 Hz; cutoff frequency -6 dB 56.25 Hz; linear non-causal filter)
to remove high-frequency artifacts, and high-passed filtered at
1 Hz (transition bandwidth 1 Hz; passband edge 1 Hz; cutoff

frequency -6 dB 0.5 Hz; linear non-causal filter) to remove low-
frequency drifts. 10–20 channel template locations from BESA
spherical coordinates were used in EEGLAB. Artifactual channels
(with ∼50% of data being noisy or artifactual) were manually
tagged and removed with a custom-made single-page figure
displaying each channel’s overall raw data, standard deviation,
and power spectra. Files with at least one bad channel were
removed for analyses.

An existing automatic method to clean EEG artifacts over this
large sample was cross-validated: 150 files were randomly selected
from the database to be cleaned manually and automatically
with EEGLAB’s clean_rawdata plugin v2.2 (Euclidean method).
Performance was calculated on each channel by comparing
each sample as either true positive (TP, bad sample correctly
rejected), true negative (TN, good sample correctly kept),
false positive (FP, good sample incorrectly rejected), or false
negative (FN, bad sample incorrectly kept). “Positive” and
“negative” refer to presence or absence. Then, the true positive
rate (TPR, i.e., sensitivity) and the true negative rate (TNR,
i.e., specificity or selectivity) were calculated for each channel
with: TPR = TP/(TP + FN) and TNR = TN/(TN + FP).
The average sensitivity and specificity were then calculated
over all channels to obtain the overall performance of the
automatic method compared to manual rejection. After testing
different parameters, the best performance obtained showed 81%
sensitivity and 83% specificity [settings: “burst_criteria” = 6,
“window_criteria” = 0.3, “window_tolerance” = “(-Inf 7)”].
50 additional datasets were randomly selected for cross-
validation, showing 84% sensitivity and 89% specificity. Since
further increasing the sensitivity scores (i.e., removing more
subtle artifacts) corresponded to a decrease in specificity (i.e.,
removing more non-artifactual data), these thresholds were
considered most suited for this analysis. On average, this
method removed an additional 11.4 s of data (± 23.0).
Thus, bad channels were manually tagged and data were
cleaned using this automated method and parameters. Files
with less than 60 s of remaining artifact-free data were
removed for analysis.

Note that this was done on duplicated data that were
averaged-referenced to a fifth zero-filled channel as it increased
performance by homogenizing raw signal amplitude across
channels. But because this average re-referencing method was
not validated for this specific montage and is not recommended
with less than 30 channels (Smith et al., 2017), artifactual sections
were removed from the original raw files and then re-processed
as above. The issue of the electrode reference and its impact on
asymmetry scores has been detailed and is of high importance
(Allen et al., 2004; Smith et al., 2017). The recommended
referencing methods (i.e., average-referencing, current-source
density transformation) or the “residualization procedure” are
not feasible with the low density and sparse montage of the
Muse headset. The frontal channels are located close to the
Fpz reference, potentially providing invalid asymmetry scores
for the frontal channels by not reflecting the same underlying
cortical activity as in the literature. Since frontal asymmetry
estimated on linked-mastoid data is associated with the severity
of current depression (Stewart et al., 2010), frontal channels were
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re-referenced to TP9/TP10. Temporoparietal channels were kept
with the default Fpz reference.

Power Spectral Density and Asymmetry Estimates
Power Spectral Density (PSD) was calculated using MATLAB’s
pwelch function on 1-s hamming tapered windows (42.5 dB
sidelobe attenuation) with 50% overlap [per guidelines (Allen
et al., 2004; Smith et al., 2017)], since the pwelch method smooths
over non-systematic noise and is more robust compared to the
more popular fft method that is more sensitive to noise and non-
stationarities. Power spectra were then converted to 10∗log10
deciBels (dB) as untransformed power values tend to be positively
skewed due to individual differences in skull thickness that
influence the signal amplitude (Allen et al., 2004).

The CoG was estimated for each channel using the automated,
open-source method developed by Corcoran et al. (2017) which
uses curve-fitting algorithms and a smoothing Savitzky-Golay
Filter (SGF). This technique is thought to better account
for interindividual variance and to be more reliable under
low SNR conditions.

Asymmetry scores were obtained on the alpha PSD averaged
over the predefined band (8–13 Hz), averaged over the predefined
lower (8–10.5 Hz) and upper (11–13 Hz) sub-bands, and the
individualized CoG.

They were calculated following standard procedures by
subtracting the alpha power of interest of the left frontal
channel from the right frontal channel (alpha_power_dB_AF8 –
alpha_power_dB_AF7). Positive scores, therefore, indicate
greater alpha power in the right relative to the left electrode.
Asymmetry scores were also obtained from the temporoparietal
(TP) channels. Finally, asymmetry scores were also computed on
the delta (1–3 Hz), theta (4–7 Hz), and beta (14–30) frequency
bands. Gamma was not included due to the Muse’s vulnerability
to line noise in the high frequencies.

Statistical Analyses
Robust linear regression models were generated in MATLAB
2021a using MATLAB’s fitlm package. Because of small portions
of artifacts remaining in some EEG data after automatic
preprocessing, robust least-squares regressions (Tukey’s bisquare
function; default tuning constant = 4.685) were used for
statistical analysis to down-weight the residuals’ influence on the
model, using iterative reweighted least-squares (IRLS; Huber and
Ronchetti, 2009). All models were tested for lack of fit first using a
degenerate model consisting of only a constant term. Reported F-
statistics with a p-value, therefore, indicate a valid fit for the model
but do not inform on the relationship between the dependent
and independent variables. The Beta (β) coefficient estimates and
their standard error (SE) are reported in the first column and
indicate a significant linear relationship between the predictor
and the outcome variables when p-values are present. Summary
statistics of the models include the number of observations, the
error degrees of freedom, the root mean squared error (RMSE),
R2 (for models with one predictor), adjusted R2 (for models with
multiple predictors). Note that the descriptions below each table
reporting the statistical results indicate whether the models were
simple or multiple linear regressions (i.e., one or more predictor

variables). In sum, all models were simple linear models and one
was a multiple linear model (the two variables being lower and
upper alpha asymmetry). Finally, following recommendations
(Allen et al., 2004), asymmetry scores were also calculated on
eleven 4-s blocks (as opposed to the average alpha power over
all blocks for the asymmetry measures) to validate the internal
reliability consistency of alpha asymmetry scores obtained on
these short file lengths, using Cronbach’s alpha method, where
a value below 0.2 indicates poor internal reliability consistency
and greater than 0.8 a high internal reliability consistency
(Cronbach, 1951).

RESULTS

230 participants remained for analyses after preprocessing.
83 files contained at least one bad channel and 36 had
less than 60 s of artifact-free data and were excluded
from the analyses (the data loss due to signal quality
is discussed in the Discussion). They were aged from 22
to 80 years old (mean age was 55 ± 13.4) and were
64.3% female, 28.7% males, and 7% “Other” or missing.
Cronbach’s alpha scores indicated a high internal reliability
consistency of the asymmetry scores estimated on both
frontal (Cronbach α = 0.95) and temporoparietal (Cronbach
α = 0.82) channels.

Well-Being and Alpha Asymmetry
(Predefined Frequency Bands)
No association between subjective well-being levels and frontal
alpha (predefined 8–13 Hz band) asymmetry was found (Figure 1
and Table 1). However, well-being was negatively correlated with
TP alpha asymmetry scores (predefined 8–13 Hz band), reflecting
greater cortical activity in the right TP area relative to the left
is associated (assuming the inhibitory role of alpha oscillations
on regional cortical activity; see Introduction). Detailed statistics
are reported in Table 1 and an illustration of the results in
the frequency and the scalp topography domain can be found
in Figure 1, using the 20 participants with the highest well-
being levels. The relationship between well-being and TP total
alpha asymmetry scores appear to be driven more specifically
by neural activity in the lower frequencies of the alpha band
(8–10.5 Hz) because well-being was significantly correlated with

TABLE 1 | Subjective well-being and alpha asymmetry (strict bounds at 8–13 Hz).

Predictor variable β (SE) N (DF) Model
RMSE

Model
R2

Model
F-statistic

Frontal α asymmetry 0.001 (0.002) 230 (228) 0.468 0.158 42.8***

TP α asymmetry −0.007* (0.003) 0.808 0.036 8.51**

Column 2: p-values next to the Beta (β) coefficients and their standard error (SE)
indicate a significant association between the predictor and the response variable
at 95% confidence level (*), 99% confidence level (**) and 99.9% confidence level
(***). Column 3: number of observations (N) and degrees of freedom (DF). Column
4–6: root mean square error (RMSE), R-squared, and F-statistic of the linear model.
p-values next to F-statistic indicate a significant fit (see above for confidence levels).
Each simple linear model follows the equation: Response variable ∼ 1 + predictor.
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FIGURE 1 | (Panel A) These linear regression models of well-being and mean alpha asymmetry (predefined 8–13 Hz band) show the absence of relationship at
frontal channels (top) and the presence of one at temporoparietal (TP, bottom) channels. Higher well-being levels are associated with greater cortical activity in the
right TP area relative to the left (assuming alpha inhibits regional cortical activity). (Panel B) Mean and standard error of the alpha power spectral density (PSD) from
the 20 participants with highest reported well-being level at frontal (top) and TP (bottom) channels, illustrating the results reported in (Panel A). (Panel C) Scalp
topography of mean alpha PSD on a typical subject with low self-reported well-being (AIOS = 17; top) and high self-reported well-being (AIOS = 100; bottom), as
an illustration of the effect reported in (Panel A).

TABLE 2 | Subjective well-being and temporoparietal (TP) lower/upper
alpha asymmetry.

Predictor variable Estimate
(SE)

N (DF) Model
RMSE

Model
R2

Model
F-statistic

Lower α-asymmetry
(8–10.5 Hz)

−0.008* (0.003) 230 (228) 0.981 0.035 8.28**

Upper α-asymmetry
(11–13 Hz)

−0.005 (0.003) 0.863 0.011 2.61

Column 2: p-values next to the Beta (β) coefficients and their standard error (SE)
indicate a significant association between the predictor and the response variable
at 95% confidence level (*), 99% confidence level (**) and 99.9% confidence
level (***). Column 3: number of observations (N) and degrees of freedom (DF).
Column 4–6: root mean square error (RMSE), R-squared, and F-statistic of the
linear model. p-values next to F-statistic indicate a significant fit (see above
for confidence levels). The multiple linear model follows the equation: Response
variable ∼ 1 + predictor1 + predictor2.

lower alpha asymmetry but not with upper alpha asymmetry (see
Table 2).

Well-Being, Alpha Asymmetry
(Predefined 8–13 Hz Band), and
Covariates
Age was negatively correlated with alpha asymmetry calculated
on the predefined 8–13 Hz band (meaning the older the
individual, the greater cortical activity is in the right frontal
and TP areas relative to the left ones) and positively
correlated with subjective well-being levels (i.e., older age

FIGURE 2 | Left: Age is negatively associated with frontal (top) and TP
(middle) alpha asymmetry scores, reflecting greater cortical activity in the
right hemisphere relative to the left in older individuals. Age is positively
associated with well-being levels (bottom). Right: Gender was not
associated with any of the three variables.

reflecting greater well-being score). However, gender was not
associated with well-being or alpha asymmetry (Figure 2 and
Table 3).
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TABLE 3 | Subjective well-being and alpha asymmetry, and covariates.

Predictor
variable

Estimate
(SE)

N (DF) Model
RMSE

Model
R2

Model
F-statistic

α-asymmetry (Frontal)

Age −0.006* (0.002) 218 (216) 0.469 0.188 50***

Gender_Male 0.009 (0.071) 214 (212) 0.477 0.162 41***

α-asymmetry (TP)

Age −0.009* (0.004) 218 (216) 0.819 0.026 5.76*

Gender_Male 0.129 (0.123) 214 (212) 0.833 0.01 2.09

Well-being

Age 0.258* (0.100) 218 (216) 19.7 0.031 7**

Gender_Male 0.68 (2.914) 214 (212) 19.7 0.003 0.56

Column 2: p-values next to the Beta (β) coefficients and their standard error (SE)
indicate a significant association between the predictor and the response variable
at 95% confidence level (*), 99% confidence level (**) and 99.9% confidence level
(***). Column 3: number of observations (N) and degrees of freedom (DF). Column
4–6: root mean square error (RMSE), R-squared, and F-statistic of the linear model.
p-values next to F-statistic indicate a significant fit (see above for confidence levels).
Each simple linear model follows the equation: Response variable ∼ 1 + predictor.

Well-Being, Alpha Center of Gravity, and
Center of Gravity-Asymmetry
No linear relationships were observed between well-being and
the CoG (Supplementary Table 2), and between well-being
and asymmetry scores calculated on the CoG (Supplementary
Table 3), for both frontal and TP channels.

Well-Being and EEG Asymmetry in the
Other Frequency Bands
No associations were observed between well-being and EEG
asymmetry in the delta (1–3 Hz), theta (3–7 Hz), or beta
(14–30 Hz) frequency bands (Supplementary Figure 1 and
Supplementary Table 1).

DISCUSSION

Results Summary
Contrary to the existing literature on the emotional valence
and the motivational models of frontal EEG asymmetry, we
found an absence of association between multidimensional well-
being levels and frontal alpha asymmetry (predefined 8–13 Hz
band, 8–10.5 Hz, and CoG-asymmetry). However, well-being
was negatively correlated with alpha asymmetry at the TP
sites (predefined 8–13 Hz and 8–10.5 Hz bands, but not for
CoG-asymmetry), reflecting greater cortical activity in the right
TP area relative to the left (assuming the inhibitory role of
alpha oscillations on regional cortical activity; see Introduction).
Interestingly, the direction of the asymmetry is opposite to
the one in the frontal areas in the literature of frontal alpha
asymmetry. Hence, while approach motivation and the related
emotional processes are associated with relatively greater left than
right frontal cortical activation, multidimensional well-being
seems to be associated with asymmetric activation in the opposite
direction in the TP areas.

This effect appears to be driven more specifically by oscillatory
activity in the lower frequencies of the alpha band (8–10.5 Hz),

aligning with studies highlighting the inhibitory function of these
lower frequencies (Oakes, 2004). Making the distinction between
lower and upper frequencies of the alpha band seems therefore
especially relevant for neurophysiological studies using source-
localization or simultaneous EEG-fMRI techniques to identify the
intricate mechanisms involved in EEG asymmetry.

Contrary to our expectations, the CoG did not show
associations with well-being levels. While CoG is associated with
cognitive processes in the literature on the individual alpha
frequency (IAF), we hypothesized that it would also be associated
with self-reported well-being levels. However, the CoG may
reflect other brain processes associated with cognition that are
different than those involved with multidimensional well-being.
Future studies using advanced source localization methods and
high-density EEG systems should elucidate the different sources
and networks associated with the different sub-components of
alpha oscillations, and their associations with cognitive systems
(i.e., PAF, CoG, lower/upper alpha).

While some researchers suspected that gender was the main
driver of frontal alpha asymmetry levels (Gale et al., 2001;
Dennis and Solomon, 2010; Mikolajczak et al., 2010), it was not
associated with well-being or alpha asymmetry measures (for
both frontal and temporoparietal sites) in this sample. However,
age was negatively correlated with alpha asymmetry scores of
both regions (meaning that cortical activity is greater in the right
areas relative to the left ones as age increases) and positively
correlated with subjective well-being levels. This finding aligns
with the well-being literature (e.g., Carstensen et al., 2011),
and supports a strong mediator role of age on the relationship
between well-being and TP alpha asymmetry. Hence, the absence
of a relationship between well-being and CoG-asymmetry might
further indicate that there is a strong relationship between well-
being, age, and alpha asymmetry in the TP area. Age is likely
not the mechanism of change itself but may represent many
underlying factors associated with brain changes and well-being
(Kazdin, 2007). Thus, future studies using larger samples and
higher density EEG data are necessary to confirm the accuracy of
the asymmetry estimates obtained with this automated method,
as well as to confirm or disprove the relationship between age,
well-being, and alpha asymmetry in the TP area. If confirmed,
the IAF-estimation method can be used to homogenize EEG
asymmetry estimation procedures across investigators, and the
specific interactions between these three variables should be
further elucidated to determine the underlying mechanisms.

No associations were observed between subjective well-being
and PSD asymmetry in the delta (1–3 Hz), theta (3–7 Hz), or
beta (14–30 Hz) frequency bands (Supplementary Figure 1 and
Supplementary Table 1), supporting the specific role of alpha
oscillations in the brain processes underlying well-being.

Interpretations of the Results and
Potential Mechanisms
Studies using source-localization methods found the alpha
asymmetry to originate mainly from brain activity in the dorsal
system of the frontoparietal network (FPN; 13). Functional
magnetic resonance imagery (fMRI) showed that this system
is organized bilaterally and comprises the intraparietal sulcus
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(IPS) and the frontal eye fields (FEF) of each hemisphere, and
is thought to mediate top-down guided voluntary allocation of
attention to locations or features (Vossel et al., 2013). Both
IPS and FEF are active when attention is overtly or covertly
oriented in space and are suspected to be the regions for the
maintenance of spatial priority maps, saccade planning, and
visual working memory. In contrast, the ventral system comprises
the temporoparietal junction (TPJ) and the ventral frontal cortex
(VFC) and is associated with detecting unattended or unexpected
stimuli and triggering shifts of attention (Vossel et al., 2013).
It has been proposed that the ventral system is lateralized to
the right hemisphere of the brain and exhibits asymmetric
activity during attentional reorientation, the processing of rare
deviant stimuli, and the response to valid vs. invalid cued targets
(Corbetta and Shulman, 2002; Corbetta et al., 2008; Doricchi
et al., 2010). The functional role of the TPJ also includes
filtering irrelevant distractors during focused states of attention,
modulating neural activity between various networks, and it
has been implicated in social cognition and theory of mind
(Vossel et al., 2013).

Hence, since our experimental task consisted of focusing
attention on the breath, detecting mind-wandering thoughts (i.e.,
mental distractions), and reallocating attention to the goal, the TP
alpha asymmetry may reflect these attentional processes and the
underlying activity of the TPJ. Whereas, frontal alpha asymmetry
may better reflect the dorsal system, as most studies use
traditionally a cross-fixation task or resting-state condition with
no focus of attention on any object. In line with these systems,
one might speculate that participants with lower subjective well-
being were more likely to ruminate on negative thoughts or
memories (associated with negative valence and a withdrawal
motivation; Mason et al., 2013; Smallwood and Andrews-Hanna,
2013) and less able to redirect their attention to their breath.
This would decrease their capacity to detect negative thoughts
and redirect their attention to their breath, corresponding to
relatively greater left than right cortical activity in the TP area
(positive TP asymmetry score). On the other hand, participants
with higher well-being would be more likely to engage in mind
wandering with positive valence and more likely to redirect their
attention to their breath, which would correspond to greater
cortical activity in the right TP area (negative TP asymmetry
score). Another possibility is that alpha asymmetry in the TP
regions might simply occur in opposite direction compared
to the alpha asymmetry in the frontal areas (Davidson et al.,
1990). Future studies using high-density systems and advanced
source-localization methods are necessary to confirm or disprove
this hypothesis.

Limits and Recommendations
There are several limitations of this study that should be
considered when reviewing the results.

While the AIOS-24h was found to be associated with longer-
term well-being levels (i.e., reported well-being levels reflective
of the past month and personality trait; see Methods), further
validation is required to fully validate it as a measure of
trait well-being.

While the asymmetry scores showed a relatively high
internal reliability consistency and the Muse was validated for
ERP research (Krigolson et al., 2017), 83 files had at least
one bad channel and 36 had less than 60 s of remaining
artifact-free data after preprocessing. This is a significant loss
of data. The largest loss of data came from the presence
of bad channels (considered bad when at least 50% of
the channel was artifactual), likely due to the headband’s
flexibility that is prone to moving and disconnecting electrodes.
Thus, future investigators could consider using the more
recent Muse S that was developed for sleep studies. The
Muse S is made of a flexible fabric that can stretch and
keep stronger pressure on the electrodes, preventing them
from disconnecting as much. Furthermore, we recorded the
data when participants already started the task with their
eyes closed to reduce data cleaning over the large sample.
Automatic cleaning performance would have likely been
increased by adding a period before the task that includes
obvious artifacts (e.g., asking participants to produce eye
blinks and jaw clenching) to help the automatic method
algorithms create a more robust baseline and therefore reject
artifacts more efficiently. Thus, higher-grade and -density
wearable EEG systems and longer recordings (at least 4 min
of continuous data to ensure having at least 2 min of
artifact-free data on a larger portion of the sample) are
recommended for future studies to keep the advantages
of wearable technologies to acquire large datasets without
compromising data quantity and quality.

The Muse has only four channels. There are obvious benefits
to having more EEG channels in terms of scalp distribution and
data quality, which allow the use of advanced methods such
as independent component analysis (ICA) which can be used
to remove subtle artifacts such as muscle activity, subtle eye
movements, or channel noise (Makeig et al., 1996; Delorme and
Makeig, 2004). Furthermore, while we controlled for the potential
reference issue using this system, a wearable headset with at
least 30 channels would allow multiple referencing methods (e.g.,
average or CSD) and ensure highly accurate asymmetry estimates.
However, this study showed that it is feasible to use a low-
cost, low-density wearable system to examine the relationships
between well-being and alpha asymmetry in a relatively large and
diverse population.

Alpha center of gravity (CoG) and therefore CoG-asymmetry
is expected to better account for interindividual differences. The
automated IAF-estimation toolbox used in this study was not able
to detect the CoG for 8 subjects (see Supplementary Tables 2, 3).
We wanted to ensure that the absence of association between
well-being and TP asymmetry calculated on the CoG was not
due to this small sample difference (8 subjects missing compared
to models on predefined alpha bands). Thus, we removed these
8 subjects from the model assessing the association between
well-being and TP-asymmetry (predefined 8–13 Hz band) to see
if the effect disappeared as a consequence of these 8 subjects
being removed. Results showed that the significant association
was still present (see Supplementary Table 4). Hence, this
absence of association between well-being and CoG-asymmetry
is either due to:
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1) poorer estimation of alpha activity by the automatic
method compared to the predefined band since the method
performs best with more neighboring EEG channels (and
the Muse has only four sparse channels). Here, we fed
the algorithm with 2 channels at a time to avoid alpha
contamination from distal channels (to keep alpha activity
from frontal and TP channels separate).

2) this method better accounting for interindividual
differences, which would indicate that the main effect (TP
asymmetry calculated on the predefined 8–13 Hz band)
might be a consequence of the relationship between age,
well-being, and related brain activity.

Lastly, cross-sectional designs are always a limitation to
consider. More sessions would be beneficial for the field
to confirm the results and assess changes in both well-
being and EEG asymmetry to evaluate the stability of this
relationship over time.

Long Term Applications and Goals
Attentional and inhibitory impairments are thought to be
crucially associated with an increased vulnerability to depressive
episodes and cognitive vulnerability (De Raedt and Koster, 2010).
Alpha asymmetry (both frontal and TP) seems to play an essential
role in understanding the neural networks underlying executive
functions, attention, emotion regulation, and well-being. A better
understanding of these processes is crucial to improving general
well-being levels via targeted interventions. For example, Xu et al.
(2018) found that positive psychological interventions (PPIs)
increased not only subjective well-being and relief in depression
but also left frontal asymmetry scores (Xu et al., 2018). Kim
et al. (2012) found that positive reappraisals (i.e., techniques to
recognize the negative pattern that one’s thoughts have taken
using meta-awareness to cognitively reframe an event as more
positive and therefore increase the sense of well-being) showed
an increase in metabolic activity in the left dlPFC, caudate, and
cingulate regions (Kim et al., 2012). Moynihan et al. (2013) found
that mindfulness-based stress reduction produced significant
changes in executive and immune functions, as well as in left
frontal alpha asymmetry scores.

Neuroscientific tools such as neurofeedback (Linden,
2014; Brandmeyer and Delorme, 2020b) might increase these
interventions’ efficacy by targeting brain networks on the same
occasion. For instance, Angelakis et al. (2007) improved cognitive
processing speed and executive function of elderly individuals
using PAF as a neurofeedback index (Angelakis et al., 2007).
Allen et al. (2001) found that increasing right frontal activity
relative to the left using frontal asymmetry neurofeedback led to
decreased positive affect (Allen et al., 2001).

Furthermore, neuromodulation techniques may be used
to directly modulate specific networks such as the FPN.
For example, some clinical studies have shown that exciting
the left dlPFC with transcranial magnetic stimulation (TMS)
or transcranial direct current stimulation (tDCS) improved
depression symptoms (Kalu et al., 2012). Conversely, excitation
of the right dlPFC led to reductions in craving (Boggio et al.,
2008; Fregni et al., 2008) and risky decision-making (Fecteau
et al., 2007), i.e., behaviors associated with difficulty in inhibiting

extreme rewards with positive valence. Additionally, Sanguinetti
et al. (2020) recently used novel transcranial focused ultrasound
stimulation to target the right prefrontal cortex with higher
resolution and depth than TMS or tDCS and successfully
modulated mood and emotion regulation. By modulating both
bottom-up and top-down systems, long-term solutions without
side effects and at lower costs will emerge by helping patients
self-control negative biases (Moser et al., 2002; Hanslmayr et al.,
2011).

Understanding the role of third variables on these
mechanisms will help adapt these therapies to meet each
individual’s anatomy, physiology, and medical history, for
more efficiency and safety. Once these intricacies are better
understood, neuromodulation therapies might positively affect
both the executive control and perceptive systems to decrease
the propensity of depressive patients to focus on negative
information and ruminative thought.

Finally, advancements in wearable technologies may allow
care providers to monitor patients and apply neurofeedback or
neuromodulation protocols at a low cost and remotely while
patients are in the comfort of their homes (Cannard et al., 2020;
Biondi et al., 2021).

CONCLUSION

Overall, this study brings practical methodological information,
challenges, and guidelines for conducting EEG research on large
samples on well-being or related neuropsychological constructs,
using wearable EEG technologies. Our findings bring novel
knowledge that will help deepen our understanding of EEG
asymmetries and their relations with well-being, the potential
underlying neural networks and mechanisms, and the foreseeable
long-term applications.
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