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The development of biological fluorescent probes is of great significance to the field of
cancer bio-imaging. However, most current probes within the bulky hydrophobic group
have limited application in aqueous medium and restricted imaging under physiological
conditions. Herein, we proposed two efficient molecules to study their physical properties
and imaging work, and the absorption and fluorescence intensity were collected with
varying ions attending in aqueous medium. We enhance the water solubility through the
quaternization reaction and form a balance between hydrophilic and hydrophobicity with
dipyrrome-theneboron difluoride (BODIPY) fluorophore. We introduced pyridine and
dimethylaminopyridine (DMAP) by quaternization and connected the BODIPY
fluorophore by ethylenediamine. The final synthesized probes have achieved ideal
affinity with HeLa cells (human cervical carcinoma cell line) in live-cell imaging which
could be observed by Confocal Microscope. The probes also have a good affinity with
subcutaneous tumor cells in mice in in vivo imaging, which may make them candidates as
oncology imaging probes.
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INTRODUCTION

Small molecular probes with a high fluorescence signal are of use in cancer imaging development
and play important roles in the study of biological activity and metabolism in cancer disease
treatment (Gonzalez-Vera et al., 2020; Zhao et al., 2020; Zheng et al., 2020). There are many
members in traditional fluorescent probes family, such as fluorescein, rhodamine, and some
other potential probes (Chen et al., 2020; Ren et al., 2020; Zhong et al., 2020). With the
continuous emergence of probes, small molecular fluorescent probes cut a striking figure in this
field. One of these probes, named BODIPY, has become the key subject in the view of
researchers, due to its excellent photophysical properties and the advantage of easy
modification (Liu et al., 2020; Wang H. et al., 2020). However, there are still many problems
to be solved for the structural modification of BODIPY, such as its highly structural complexity
and poor water solubility. Based on this, a simple and convenient preparation method from
easily available raw materials also needs to be proposed.

Aqueous systems are essential in life processes and the global environment. But traditional
BODIPY dyes are only soluble in organic solvents, and their low solubility mean they have limited
application in biological fields. To this end, H.J. Worries introduced a chlorosulfonic acid group to
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the core structure in 1985, which markeda key first step to
advancing water solubility (Choi et al. 2018). Inspired by this,
some related work on improving solubility has been carried out.
The water solubility of BOPIDY can be improved by introducing
different types of hydrophilic groups such as sulfonate (Koh et al.,
2019), phosphonate, and quaternary ammonium salt (Mao et al.,
2020; Zhou et al., 2020). Common water-soluble modification
occurs in the core structure or boron atom center, and the 2, 6 or
3, 5 sites are common modification sites. Even though many
works are studying the exploration of hydrophilicity, it remains
superficial, which has caused certain obstacles to the imaging
application of compounds. Research on the development of
fluorescent probes with a simplified structure and enhanced
water solubility is still in its infancy stage and more work
needs to be done in the future.

As a noticeable probe synthesized since 1968, BODIPY has
many new biological applications which have been gradually
discovered and gained more and more attention (Wang R. et
al., 2020; Xu et al., 2020). Live cell imaging is a great example of
these applications (Guasch-Ferre et al., 2020; Wang F. et al., 2020).
It is an important practice in biomedical study for the analysis of
the functional and pathological of cells and tissues and clinical
diagnosis. Water soluble modification opens up a new avenue for
bioactivity research, including cell imaging and research on water-
soluble probes for imaging, the study of which has gradually
increased (Callmann et al., 2020; Liang et al., 2020). For example,
Jin et al. synthesized a new water-soluble compound (4,4-di-(4′-
methylmercaptophenoxy)-8-(N-methylpyridinium-2-yl)-1,3,5,7-
tetramethyl-4-bora-3a,4a-diaza-s-indacene) and successfully applied
it to imaging in living cells (Wegner and Zimmermann, 2004;
Khailova et al., 2020; Tang et al. 2020).

In this paper, we report two novel water-soluble fluorescent
probes, BDP-1 and BDP-2, for live cell imaging. The unique
BODIPY core with strong fluorescence properties provides
new possibilities for cell imaging and metabolism research. In
the probe design work, the balance between hydrophilicity
and lipophilicity is comprehensively considered. The
hydrophobicity fluorescein pyrrole nucleus acts as the
fluorophore. The side chain ethylenediamine bridge group
is introduced to adjust its water-lipid balance. Finally, the
N-choloropyridinium with a positive charge moiety group
acts as a water-soluble improving part. In this paper, the
concise synthetic strategy of novel BODIPY probes has been
proposed and the optical properties in the presence of
different ions are also explored. The probes have achieved
ideal non-specific affinity with HeLa cells (human cervical
carcinoma cell line) in live cell imaging and a good non-
specific affinity with subcutaneous tumor cells in mice in in
vivo imaging.

MATERIALS AND METHODS

General Materials
The acetonitrile solvent used in the reaction was distilled by
calcium hydride in advance. In the characterization part, the 1H
and 13C spectra were recorded on Bruker Avance spectrometer

(400 MHz for 1H, 101 MHz for 13C) in CD3OD with the Me4Si at
chemical shifts δ 0.00 ppm as standard to characterize the
structures. Ultraviolet-visible (UV-vis) and fluorescence spectra
were recorded on a UV-2550 spectrophotometer and Shimadzu
RF-5301PCS spectrofluorophotometer, respectively, at room
temperature.

Synthesis
Synthesis of 7-chloro-2-ethyl-5,5-difluoro-1,3-dimethyl-10-phenyl-
5H-4l4,5l4-dipyrrolo[1,2-c:2′,1′-f] [1,3,2]diazaborinine (1).

The compound 1 was synthesized from 2-chloro-5-benzoyl-
pyrrole (0.8 g, 4.0 mmol), POCl3 (2 ml), and 2,4-dimethyl-3-
ethylpyrrole (1.8 g, 15.0 mmol) in dichloromethane through
stirring for 24 h at room temperature. Neutralization by
NaHCO3 was carried out to obtain the intermediate. Et3N
(2 ml) was added into the intermediate in toluene and
BF3·OEt (2 ml) was added by stirring for 7 h at 100°C.
Neutralization by NaHCO3 was carried out again and
purification by column chromatography to gain 1 was used
(0.5 g, 41%).

Synthesis of (Z)-N1-(1-(difluoroboranyl)-5-((4-ethyl-3,5-
dimethyl-2H-pyrrol-2-ylidene) (phenyl)methyl)-1H-pyrrol-2-
yl)ethane-1,2-diamine (2).

(Z)-2-chloro-1-(difluoroboranyl)-5-((4-ethyl-3,5-dimethyl-
2H-pyrrol-2-ylidene) (phenyl)methyl)-1H-pyrrole (0.3 g,
0.8 mmol) was mixed with the dry acetonitrile solution of
ethane-1,2-diamine (0.1 g, 1.7 mmol) with the attendance of
triethylamine (0.2 g, 1.3 mmol) and stirred for 6 h at room
temperature. The reaction mixture was evaporated and
purified by silica gel column chromatography to obtain 2 in
red powder (0.3 g, 91%). 1H NMR (400 MHz, CDCl3) δ
7.42−7.40 (m, 3H), 7.31−7.29 (m, 2H), 6.46 (d, J � 4.4 Hz,
1H), 5.92 (d, J � 4.8 Hz, 1H), 3.409 (s, 2H), 3.00 (t, J � 6.0 Hz,
2H), 2.47 (s, 3H), 2.35−2.29 (dd, J � 7.6, 14.8 Hz, 2H), 1.37 (s,
3H), 0.99 (t, J � 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ
159.8, 144.9, 135.2, 133.3, 133.1, 132.4, 132.3, 130.0, 129.6,
128.3, 128.0, 106.0, 46.8, 41.4, 29.7, 17.1, 15.0, 11.9, 11.6. ITMS
(ESI) calculated for C21H25BF2N4 [M + H]+ m/z 383.2218;
found 383.2345.

General synthesis procedure of 1-(2-((2-((8-ethyl-5,5-
difluoro-7,9-dimethyl-10-phenyl-5H-5l4,6l4-dipyrrolo[1,2-c:2′,1′-f]
[1,3,2]diazaborinin-3-yl)amino)ethyl)amino)-2-oxoethyl)pyridin-1-
ium chloride (BOD-1) and 4-(dimethylamino)-1-(2-((2-((8-ethyl-
5,5-difluoro-7,9-dimethyl-10-phenyl-5H-5l4,6l4-dipyrrolo[1,2-
c:2′,1′-f][1,3,2]diazaborinin-3-yl)amino)ethyl)amino)-
2-oxoethyl) pyridin-1-ium chloride (BOD-2).

Oxalyl chloride (0.2 ml, 3.0 mmol) was slowly dropwised to
the previously synthesized 2 (0.3 g, 1.0 mmol) under ice bath
temperature with 5 ml acetonitrile as a solvent. The reaction was
over after 10 min and purified by silica gel column
chromatography to obtain 3. The pyridine (3 ml, 37 mmol) or
DMAP (0.08 g, 0.7 mmol) was mixed with 3 (0.05 g, 0.1 mmol) in
a pressure tube and the resulted mixture was heated at 50°C for
8 h. From that, DMAP was reacted in 2 ml acetonitrile, while
pyridine acted as a solvent. Then the reaction was evaporated by
rotary evaporation and washed with 3 ml EtOAc and Petroleum
ether (1: 3) to obtain pure crimson solid.
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Synthesis Procedure of BOD-1
The pyridine (3 ml, 37 mmol) was mixed with 3 (0.05 g,
0.1 mmol) according to the general procedure to obtain pure
powder BDP-1 (0.04 g, 68.2%). 1H NMR (400 MHz, CD3OD) δ
8.62 (d, J � 4.4 Hz, 2H), 8.10 (t, J � 6.8 Hz, 1H), 7.49 (t, J � 2 Hz,
3H), 7.31−7.29 (m, 2H), 6.50 (d, J � 4.8 Hz, 1H), 6.20 (d, J �
4.8 Hz, 1H), 5.47 (s, 2H), 3.56 (s, 4H), 3.34 (m, 2H), 3.07 (d, J �
10 Hz, 1H), 2.44 (s, 3H), 2.37 (d, J � 7.6 Hz, 2H), 1.39 (s, 3H),
1.03 (t, J � 7.6 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 165.1,
160.3, 148.3, 146.1, 146.0, 143.5, 135.2, 133.1, 132.8, 132.4,
131.1, 129.5, 128.8, 127.9, 127.5, 121.4, 106.8, 61.6, 43.0, 39.3,
16.6, 14.1, 10.7, 10.4. HR-MS (FAB) calculated for
C28H31BClF2N5O [(M-BF2)+-Cl−] m/z, 454.26014, observed
454.25972.

Synthesis Procedure of BDP-2
This was carried out according to the general procedure to obtain
pure crimson powder BDP-2 (0.03 g, 47.4%). 1HNMR (400 MHz,
CDCl3) δ 8.13 (d, J � 6.2 Hz, 2H), 8.01 (s, 1H), 7.48 (d, J � 4.7 Hz,
3H), 7.41 (d, J � 3.5 Hz, 2H), 7.29 (d, J �4.3 Hz, 2H), 6.99 (d, J �
6.5 Hz, 2H), 6.88 (d, J � 5.6 Hz, 2H), 6.53−6.44 (m, 1H), 6.23 (s,
1H), 3.54 (d, J � 14.2 Hz, 4H), 3.25 (s, 6H), 2.43 (d, J � 5.6 Hz,
3H), 2.38 (dd, J � 7.6 Hz, 2H), 1.38 (d, J � 4.8 Hz, 3H), 1.00 (t, J �
7.6 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 166.9, 157.7, 156.6,
147.8, 142.9, 138.7, 135.2, 134.3, 133.1, 132.5, 130.8, 129.5,
128.3, 127.9, 122.3, 107.1, 106.8, 58.1, 43.0, 38.9, 38.8, 16.6,
14.1, 10.7, 10.4. HR-MS (FAB) calculated for C30H36BClF2N6O
[(M-BF2)+-Cl−] m/z, 497.30234, observed 497.30167.

Photophysical Properties and Sensing of
Target Ions
Ultraviolet-visible (UV-vis) and fluorescence spectra were
recorded on a UV-2550 spectrophotometer and Shimadzu RF-
5301PCS spectrofluorophotometer, respectively, at room
temperature. The mother liquor for sensing in aqueous
solution was prepared at concentration of 5 mM and diluted
into the desired concentration. The spectra data was collected by
the above instruments under different preset concentrations with
the absence and attendance of eight target ions after mixing
evenly.

Transmission ElectronMicroscope Analysis
Transmission electron microscopy of compounds (10 μM) BDP-
1 and BDP-2 was conducted in methanol. The sample of the
configured electron microscope was dissolved in methanol
solution, and the pictures were collected by transmission
electron microscope (Japan Electronics, JEM-1400plus) at
room temperature.

Cytotoxicity Analysis
HCT-116, Hela, and normal liver L-02 cells were screened for
in vitro cytotoxicity, and all were purchased from the American
type culture collection (United States). HCT-116 and Hela cells
were routinely cultured in RPMI-1640, while L-02 cells were
routinely cultured in DMEM. 10% fetal bovine serum (FBS,
purchased from Hangzhou Sijiqing Biological Engineering
Materials Co., Ltd.) was added to the medium, and the cells
were sub-melted in a humidified atmosphere at 37°C and 5%CO2.
These cells were monitored daily and maintained at 80% cell
density.

MTT cancer cells (HCT-116 and Hela) and normal human
lung L-02 were tested for the cytotoxicity of each cell line in the
logarithmic growth phase. All cells were seeded on 96-well plates
at a rate of 106 cells per well. Then they were treated with
berberine or compounds (BDP-1, BDP-2) at different
concentrations, and the samples were tested for 24 h.
Supernatant was dissolved in 100 ml DMSO and shaken for
10 min. The optical density of the sample was measured at
490 nm with a microplate photometer. Cell viability was
expressed as the percentage change in absorbance relative to
the control value.

Hela Cervical Cancer Live Cell Imaging
Hela Cells were incubated with different BODIPY derivatives,
BDP-1 and BDP-2 (5 mM, 2 μL), for 1 h at 37°C after good
cultivation and washing. The culture medium was separated
and discarded and treated with PBS afterward; the stained
cells were then observed under the confocal laser scanning
microscope with the emission wavelengths between
500–510 nm. Hela cells were also stained with DAPI (5 μg/ml)
under the same operating procedures as the control group and
images were collected.

SCHEME 1 | Chemical structure design and mechanism.
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In vivo Experiment
Animal studies were conducted under institutional approval
(Laboratory Animal Center of Jiangsu University, Zhenjiang,
China). Two mouse components weighing 21 g and 20 g were
used for in vivo imaging experiments. BDP-1 (20 μM) and BDP-2
(20 μM) were added by intraperitoneal injection under fasting
conditions and fluorescence was collected after 30 min of
exposure.

RESULT AND DISCUSSION

Chemistry
For the design, the fluorescent excimer is the (Z)-1-
(difluoroboranyl)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)
(phenyl)methyl)-1H-pyrrole, and the BF2 unit inside this group
can generate the intense emission band from S1 to S0 transition
through the flow of electrons inside the molecule. As shown in
Scheme 1, the green carbonyl amine part in the middle acts as a
water-solubility part which is a vital bridge between the
fluorescence core and the hydrophilic functional part. The
hydrophilic pyridine moiety plays an important role in
improving the biocompatibility and water solubility of the

compound and it produces a marked effect by forming a super-
hydrophilic quaternization structure. In addition, the positive
charge enriches the target anion response in aqueous medium.
Meanwhile, the oxygen-enriched and nitrogen-rich part in the
structure as acts as a hydrogen bond donor or acceptor, which is
beneficial to the improvement of live cell imaging. In summary, the
powerful combination of the three parts provides unprecedented
new ideas for the structural modification of BODIPY, and also adds
color to the application of fluorescent probes for cancer cell
imaging.

As shown in Scheme 2, the probes were synthesized in a few
short steps. The compound 1 was synthesized from 2-chloro-5-
benzoyl-pyrrole and 2,4-dimethyl-3-ethylpyrrole with the
attendance of POCl3 in dichloromethane, with triethylamine
and boron trifluoride etherate subsequently added (Suzuki
et al., 2006; Carrascal et al., 2019; Li et al., 2019). We
synthesized BDP-1 and BDP-2 starting from compound 1
followed by nucleophilic substitution with ethylenediamine
and subsequently by acyl chlorination with chloroacetyl
chloride to obtain intermediate 3. The intermediate 3 was
quaternized with pyridine and 4-dimethylaminopyridine to
improve the biocompatibility and increase the water solubility
of the products.

SCHEME 2 | Synthetic route to the water-soluble N-choloropyridinium BODIPYs.
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Photophysical Properties
The optical spectra were also characterized in methanol at room
temperature for its photophysical properties in Figure 1 and
Table 1. The absorption spectrum data of BDP-1 and BDP-2 were
collected in the concentration range from 6 to 14 μM and 10 to
16 μM, respectively, to keep it at an applicable range according to
Lambert Beer’s law. As shown in Figure 1, the absorption band of

BDP-1 was similar in shape and peaks to BDP-2, retaining the
maximum absorptions at 530 and 528 nm, respectively. The
fluorescence spectra of BDP-1 showed maximum at 560 nm,
although it showed a slightly greater red shift than that of
BDP-2 and 2 (λem � 550 nm). This phenomenon may indicate
that the fluorophore is served by the BODIPY core, and the
introduced pyridine group does not negatively affect the
fluorescence effect of the compound while providing an
indicator of its hydrophilicity. Therefore, intensive
fluorescence and proper hydrophilic-lipophilic equilibrium can
serve as candidates for excellent cell imaging.

Absorption and emission studies for ion response experiments
were carried out and the result was shown in Figure 2. The results
show that the compounds spectra did not change after the
addition of of many ions (Cl−, F−, Br−, I−, Ca2+, and Zn2+),
while the absorption peaks of HS− ions are conspicuously blue-
shifted from 500 to 450 nm accompanied by a significant decline
in absorption spectra. Analysis of absorption spectroscopy results
showed that BDP-1 has a more obvious effect on HS− than other
ions and produces a more obvious decrease in absorbance than
BDP-2. The fluorescence emission spectrum recording situation
is similar to the absorption spectrum which responds to H2S
distinctly. Surprisingly, in the presence H2S, the fluorescence
appears to increase slightly and differ from the addition of other
tested ions. In the end, we deduce the reason for the fluorescence
enhancement may be that the ionization of the active ions in
water hinders the electron flow between the pyridine group and
the fluorophore in the structure, and then affects the

FIGURE 1 | Absorption and emission spectra of BDP-1 and BDP-2. Absorption spectra of (A) BDP-1 and (B) BDP-2 in methanol at 25°C. Emission spectra of (C)
BDP-1 and (D) BDP-2 in methanol at 25°C. (concentration BDP-1: 6, 8, 10, 12, 14 μM; BDP-2: 10, 11.5, 13, 14.5, 16 μM). (E) Normalized spectrum of 2, BDP-1 and
BDP-2. Insert: The absorption changes upon the increasing concentration.

TABLE 1 | Absorption and emission data.a

Compound λmax,abs

(nm) (ε/105 L·mol−1·cm−1)
λmax,emi (nm)

2 530 (0.300) 550
BDP-1 530 (0.717) 560
BDP-2 528 (0.544) 550

aMeasurements were performed in MeOH unless otherwise noted. The excitation
wavelength is 500 nm for 2, BDP-1, and BDP-2.

TABLE 2 | Cytotoxicity analysis of BDP-1 and BDP-2 with the drug berberine as
reference.

Comp. IC50 (μM) ± SD

HCT-116 Hela L-02

BDP-1 125.62 ± 3.70 110.46 ± 8.43 28.69 ± 8.73
BDP-2 103.83 ± 2.98 97.28 ± 11.93 33.78 ± 5.16
Berberine 29.47 ± 9.19 21.26 ± 3.11 >150
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intramolecular electron transfer. And in order to prove this
hypothesis, the following experiment was conducted.

In addition, the optical response of BDP-1 and BDP-2 to HS−

obviously depended on the volume fraction of water (fw) in the
water/MeOH mixture which responded under all circumstances.
As shown in Figure 3 (solid line), the methanol-dissolved BDP-1
maintained a sharper peak at 528 nm than that of the full water
solvent with a blunt peak at 500 nm. It could be seen that, as the
fw value gradually grows from 50 to 100%, the property of probes
changed a lot in peak shape and maximum absorbance. On the
other hand, after adding HS− (short dot line), the spectrum
changes obviously in morphology and peaks. The methanol
dissolved BDP-1 still maintained a small peak at 528 nm with
an evident blueshift from 528 nm to 450 nm with an increase of
fw value. In detail, for the HS−-activated absorption transition,
both the morphology and the distribution of absorption peaks
showed a gradual reduction to lower and this phenomenon can be
clearly reflected in pure water (fw � 100%). Furthermore, BDP-2
has a similar situation, with the strongest response changes in

pure water. Therefore, in the presence of different volume
fractions of water (fw), it has a stable response activity to H2S
as expected, so it has great potential for application research. This
phenomenon could also prove our previous hypothesis that
ionization in aqueous solution induces fluorescence
enhancement.

In addition, to further observe the morphology of the
quaternized compounds, the structure characterization was
also carried out by transmission electron microscope (TEM)
characterization in methanol at 25°C, and the self-assembly
BDP-1 and BDP-2 structures were clearly presented. As can
be seen in the image (Supplementary Figure S10), the
compound is in a state of aggregation in the solution. This
aggregation may be inferred to be caused by the positive
charge of the compound itself resulting in it layering itself on
top of each other; thus, the aggregation becomes like the picture.

It is interesting to analyze anti-proliferation as shown in
Figure 4. IC50 values of 125.62 ± 3.70 and 103.83 ± 2.98 μM
were observed for BDP-1 and BDP-2 in HCT-116 cells at 37°C,

FIGURE 2 | Absorption and fluorescence responses of probes to ions (100 μM) in aqueous solution. (A) Absorption and (B) Fluorescence spectra of BDP-1
(10 μM); (C) Absorption and (D) Fluorescence spectra of BDP-2 (10 μM). (1) Free; (2) Cl−; (3) NaHS; (4) F−; (5) Br−; (6) I−; (7) Ca2+; (8) Zn2+. Data were recorded 10 min
after the addition of different ions.
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respectively IC50 values of 110.46 ± 8.43for 5 and 97.28 ±
11.93 μM for 6 in HeLa cell line were observed. For a non-
cancerous lung cell line (L-02), the toxicity of 5 (28.69 ± 8.73 μM)
and 6 (33.78 ± 5.16 μM) is not ideal compared to the reference
drug and should be improved in further study. Therefore,
reducing the toxicity to normal cells and adjusting the balance
between the water-solubility and bioactivity is also a required
direction.

The BDP-1 and BDP-2 presents obvious aggregation and
displayed good stability in methanol solvent under the 200 nm
scale. Meanwhile, the presence of positive charges in the structure
leads to the stacking of layers. It could also infer that it keeps the
balance between the hydrophilicity and lipophilicity of the
compounds to achieve amphiphilicity, which may lead to this
polymerization.

Moreover, the fluorescence performance in cell imaging
means a lot for the application of probes in the fluorescent
family. HeLa cells were incubated with BODIPYs for 30 min
for cell imaging study. Then the imaging results were shown in
Figure 5, and it could be directly observed that both BDP-1
and BDP-2 were uptaken by the HeLa cell membrane with
desired fluorescence imaging. Both BODIPY derivatives show
higher fluorescence than the non-quaternized compound 2. It
could be deduced that the compounds were absorbed into the
cell membrane and then firmly targeted to the cells due to the
positive charge and the counterpoise of hydrophilic and
lipophilic. Then they emit strong fluorescence in
intracellular structures.

In vivo fluorescence experiments in mice were designed and
executed. BDP 1 and BDP 2 (10 mM) were intraperitoneally
injected under fasting conditions in mice. After 40 min of
exposure, the fluorescence intensity of the tumor tissue was
detected. As shown in Figure 6, in vivo fluorescence is
generated in subcutaneous tumors. It is reasonable that the
fluorescence intensity of the two compounds is high and the
fluorescence brightness is sensitive. Finally, it can be observed
that the precise generation and penetration of fluorescence in

subcutaneous tumors have the potential for further medical
imaging applications.

CONCLUSION

In conclusion, we designed and prepared two water-soluble small
molecule probes that have ideal fluorescence intensity and good
potential for cancer cell imaging applications. Traditional small-
molecule fluorophores have the shortcomings of low water
solubility and weak fluorescence, however, the BODIPYs
synthesized in this paper could not only generate high
intensity fluorescent, but also solve the problem of water
solubility. What’s more, they could also serve as potential

FIGURE 3 | Absorption spectra at different fw (water/methanol) of (A) BDP-1 (10 μM) and (B) BDP-2 (10 μM) at 25°C (solid line), with the addition of NaHS at 25°C
(short dot line).

FIGURE 4 | Cytotoxicity analysis of BDP-1 and BDP-2 with the drug
berberine as reference.
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probes in aqueous solution. The application of cell imaging
contributes to intracellular visualization for biological study.
The newly synthesized probes with excellent photophysical
properties have a broad development prospect, which lay a
foundation for further research on water-soluble ion probes.
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